
Page 1

1

Cris Ababei

Marquette University

Department of Electrical and Computer Engineering

COEN-2710 Microprocessors - Lecture 3

Processor Part 1: Datapath and

Control (Ch.4)

2

Goals of this Chapter

❖Design a datapath and control that implement

the RISC-V instruction set architecture (ISA).

❖By the end of this chapter, you should:

◆Be able to design a datapath for an instruction set

◆Be able to design a control logic for the datapath

◆Understand the importance of the clocking

methodology on the processor design

❖We will examine two RISC-V implementations
◆A simplified version

◆A more realistic pipelined version

1

2

Page 2

3

What are datapath and control?

❖ Datapath

◆The path the “data” follow and undergo computations.

◆Realized by the hardware components connected in a way to

perform operations on data such that machine instructions are

implemented.

❖ Control

◆Control is the sequential logic that reconfigures the Datapath to

allow the “data” to flow properly through the hardware

components.

◆Responsible with the generation of all control signals to

“orchestrate” the correct flow of data through Datapath!

◆Can be implemented as finite state-machine(s), FSMs.

◆Can also be implemented as a computer inside of a computer

(microcode).

4

Design Process

1. Select a subset of the instruction set to

implement. Simple subset, shows most aspects
◆Memory reference: ld, sd

◆Arithmetic/logical: add, sub, and, or

◆Control transfer: beq

2. Order the steps within instruction cycle

(performed during instruction execution)

3. Select the hardware components.

4. Connect the hardware components.

5. Design the control to make the components work

together properly.

3

4

Page 3

5

Order the steps: FIDE

❖ FIDE – the sequence of activities that

happens during instruction execution

1. Fetch (the instruction)

2. “Increment” (the Program Counter)

3. Decode (the Instruction Register)

4. Execute (using datapath hardware)

6

Fetch and Increment Hardware

PC

Instruction

MemoryInstruction

address

Instruction

Adder

5

6

Page 4

7

Fetch and Increment Connections

PC
Instruction

MemoryInstruction

address
Instruction

Adder

4

64-bit

register

Increment by

4 for next

instruction

8

Decode and Execute

❖Decode

◆Takes the Instruction Register (IR) and computes

the bits needed to control the datapath (R/W flags,

enables, mux selects, etc.)

◆We will work more on the control later

❖Execute

◆Take the inputs specified by the instruction, and

complete the required operation

7

8

Page 5

9

Instruction Execution

❖PC → instruction memory, fetch instruction

❖Register numbers → register file, read

registers

❖Depending on instruction class

◆Use ALU to calculate

➢Arithmetic result

➢Memory address for load/store

➢Branch comparison

◆Access data memory for load/store

◆PC target address or PC + 4

10

R-format Example: “ADD” Instruction

General form: add rd, rs1, rs2

Example: add x9, x20, x21

❖ For the execute step of FIDE, what hardware

do we need?

funct7 rs2 rs1 rdfunct3 opcode

7 bits 7 bits5 bits 5 bits 5 bits3 bits

0 21 20 90 51

0000000 10101 10100 01001000 0110011

9

10

Page 6

11

R-Format Instructions - Hardware

❖Read two register operands

❖Perform arithmetic/logical operation

❖Write register result

12

With Hardware Connections

ALU
zero

result

rs1 [19-15]

rs2 [24-20]

rd [11-7]

Registers

read reg1

read reg2

write reg

write data

read data2

read data1

0010

11

12

Page 7

13

Complete “Add” Datapath

ALU
zero

result

Registers

read reg1

read reg2

write reg

write data

read data2

read data1

PC

Instruction

Memory

Adder

14

Complete Add Datapath

ALU
zero

result

Registers

read reg1

read reg2

write reg

write data

read data2

read data1

PC

Instruction

Memory

Adder

4

13

14

Page 8

15

Complete Add Datapath

ALU
zero

result

Registers

read reg1

read reg2

write reg

write data

read data2

read data1

PC

Instruction

Memory

Adder

4

16

Complete Add Datapath

ALU
zero

result

Registers

read reg1

read reg2

write reg

write data

read data2

read data1

PC

Instruction

Memory

Adder

4

rs1 [19-15]

rs2 [24-20]

rd [11-7]

15

16

Page 9

17

Complete Add Datapath

ALU
zero

result

Registers

read reg1

read reg2

write reg

write data

read data2

read data1

0010

PC

Instruction

Memory

Adder

4

rs1 [19-15]

rs2 [24-20]

rd [11-7]

18

Complete Add Datapath

ALU
zero

result

Registers

read reg1

read reg2

write reg

write data

read data2

read data1

0010

PC

Instruction

Memory

Adder

4

rs1 [19-15]

rs2 [24-20]

rd [11-7]

17

18

Page 10

19

Control of R-format Instructions

❖ Simplicity favors regularity!

◆and, or, add, subtract, set-on-less-than all use the same

datapath

❖ Need to decode the instructions to control the ALU.

◆ Input: Function codes for each (recall from Chapter 2)

◆Output: ALU control lines (will look at later)

20

ALU Decoding for R-format

ALU

Control

zero

result
ALU

rs1 [19-15]

rs2 [24-20]

rd [11-7]

19

20

Page 11

21

R-format Datapath and Control

Registers

read reg1

read reg2

write reg

write data

read data2

read data1

PC

Instruction

Memory

Adder

ALU

Control

zero

result
ALU

22

R-format Datapath and Control

Registers

read reg1

read reg2

write reg

write data

read data2

read data1

PC

Instruction

Memory

Adder

4
ALU

Control

zero

result
ALU

21

22

Page 12

23

R-format Datapath and Control

Registers

read reg1

read reg2

write reg

write data

read data2

read data1

PC

Instruction

Memory

Adder

4
ALU

Control

zero

result
ALU

rs1 [19-15]

rs2 [24-20]

rd [11-7]

24

R-format Datapath and Control

Registers

read reg1

read reg2

write reg

write data

read data2

read data1

PC

Instruction

Memory

Adder

4
ALU

Control

zero

result
ALU

rs1 [19-15]

rs2 [24-20]

rd [11-7]

23

24

Page 13

25

R-format Datapath and Control

Registers

read reg1

read reg2

write reg

write data

read data2

read data1

PC

Instruction

Memory

Adder

4
ALU

Control

zero

result
ALU

rs1 [19-15]

rs2 [24-20]

rd [11-7]

26

R-format Datapath and Control

Registers

read reg1

read reg2

write reg

write data

read data2

read data1

PC

Instruction

Memory

Adder

4
ALU

Control

zero

result
ALU

rs1 [19-15]

rs2 [24-20]

rd [11-7]

25

26

Page 14

27

R-format Datapath and Control

Registers

read reg1

read reg2

write reg

write data

read data2

read data1

PC

Instruction

Memory

Adder

4
ALU

Control

zero

result
ALU

rs1 [19-15]

rs2 [24-20]

rd [11-7]

28

Load/Store Instructions - Hardware

❖Read register operands

❖Calculate address using 12-bit offset
◆Use ALU, but sign-extend offset

❖Load: Read memory and update register

❖Store: Write register value to memory

12 32

27

28

Page 15

29

I-format Instructions

❖ Immediate arithmetic and load instructions
◆ rs1: source or base address register number

◆ immediate: constant operand, or offset added to base
address

➢ 2s-complement, sign extended

immediate rs1 rdfunct3 opcode

12 bits 7 bits5 bits 5 bits3 bits

General form: addi rd, rs1, imm

General form: lw rd, imm(rs1)

30

S-format Instructions

❖ Different immediate format for store instructions
◆ rs1: base address register number

◆ rs2: source operand register number

◆ immediate: offset added to base address

➢ Split so that rs1 and rs2 fields always in the same place

rs2 rs1 funct3 opcode

7 bits 7 bits5 bits 5 bits 5 bits3 bits

imm[11:5] imm[4:0]

General form: sw rs2, imm(rs1)

29

30

Page 16

31

Composing the Elements

❖Datapath does an instruction in one clock

cycle

◆Each datapath element can only do one function

at a time

◆Hence, we need separate instruction and data

memories

❖Use multiplexers where alternate data

sources are used for different instructions

32

R-Type/Load/Store Datapath

12 32

31

32

Page 17

33

Branch Instructions

❖Read register operands

❖Compare operands

◆Use ALU, subtract and check Zero output

❖Calculate target address

◆Sign-extend displacement

◆Shift left 1 place (halfword displacement)

◆Add to PC value

34

SB-format - Branch Addressing

❖SB format:

◼ PC-relative addressing

◼ Target address = PC + immediate × 2

rs2 rs1 funct3 opcode
imm

[10:5]
imm
[4:1]

imm[12] imm[11]

❖Branch to a labeled instruction if condition is
true
◆Otherwise, continue sequentially

❖beq rs1, rs2, L1
◆if (rs1 == rs2) branch to instruction labeled L1

33

34

Page 18

35

Branch Instructions

Just

re-routes

wires

Sign-bit wire

replicated

12 32

36

Full Datapath (Without Control Shown)

12 32

35

36

Page 19

37

Overall Control

❖Split into two Controllers (for now…)

❖Divide and Conquer

1. “ALU Control” Unit

➢Uses 2-bit ALUOp generated by Main Control unit

➢Uses also Funct7 and Funct3 fields from Instruction

➢Generates control signals ALUOperation (4 bits) that control

directly the function executed by the ALU

2. “Main Control” Unit

➢Control signals derived from instruction (Opcode)

➢Generates a 2-bit ALUOp used by ALU Control

38

1) “ALU Control” Unit

❖ Generates “ALUOperation” control signals (4 bits)

◆Based on inputs: ALUOp, Funct7, and Funct3

❖ ALUOp (2 Bits) derived from opcode by “Main Control” unit

❖ Can be implemented by simple combinational logic

◆By logic synthesis from Truth Table on next slide

ALUOp Values

37

38

Page 20

39

ALU Control – Truth Table

❖ Input signals:

◆ALUOp (2 bits), Funct7 (7 bits, Instruction[31-25], Funct3 (3 bits,

Instruction [14-12])

❖ Output signals:

◆ALUOperation control signals (4 bits)

❖ Table is from Figure 4.13 in Textbook

ALUOper

ation

Truth Table

40

2) “Main Control” Unit

❖ Generates control signals for: Register file, data memory,

multiplexers, AND gate (branch related), ALUOp (2 bits),

etc.

❖ Control signals derived from instruction Opcode

39

40

Page 21

41

❖ Table is from Figure 4.26 in Textbook

❖ Input signals:

◆ Opcode (7 bits, Instruction [6-0])

❖ Output signals:

◆ ALUOp (2 bits, used by ALU Control), ALUSrc, MemtoReg, RegWrite, etc.

Main Control – Truth Table

Truth Table

ALUOp Values

42

Datapath With Control

12 32

41

42

Page 22

43

R-Type Instruction

2

4

12 32

44

Load Instruction

Instr.[31-25,14-12]

12 32

43

44

Page 23

45

BEQ Instruction

Instr.[31-25,14-12]

12 32

46

Control table:

Instruction

Type
ALUSrc MemtoReg RegWrite MemRead MemWrite Branch ALUOp1 ALUOp0

New control

signal:

SUBGTZ
R-type 0 0 1 0 0 0 1 0

LW 1 1 1 1 0 0 0 0

SW 1 X 0 0 1 0 0 0

BEQ 0 X 0 0 0 1 0 1

SUBGTZ

subgtz rd, rs1, rs2

If (rs1 < rs2) then

 rd = rs1 – rs2

Else

 rd = 0

12 32

45

46

Page 24

47

Control table:

Instruction

Type
ALUSrc MemtoReg RegWrite MemRead MemWrite Branch ALUOp1 ALUOp0

New control

signal:

SUBGTZ
R-type 0 0 1 0 0 0 1 0 0

LW 1 1 1 1 0 0 0 0 0

SW 1 X 0 0 1 0 0 0 0

BEQ 0 X 0 0 0 1 0 1 0

SUBGTZ 0 0 1 0 0 0 1 0 1

Custom Instruction:

subgtz rd, rs1, rs2

If (rs1 > rs2) then

 rd = rs1 – rs2

Else

 rd = 0 12 32

Essentially, if “rs1 greater than rs2” (i.e., “gt”), write

the “sub”traction, otherwise write “z”ero.

48

Practice – Performance Analysis
❖ Calculate cycle time assuming:

◆ Memory (2ns), ALU and adders (2ns), Register file access (1ns), MUX (0ns)

Instr.[31-25,14-12]

Clock

signal

12 32

47

48

Page 25

49

Limitations of single-cycle operations

❖Each instruction uses the ENTIRE datapath,

until it finishes.

◆Clock cycle time based on slowest instruction

◆What if we add more stuff, like floating-point?
➢ Worst-case time delay drastically exceeds average

➢ Need really long cycle time to accommodate

❖Goal: Use as much of the hardware as much

of the time as possible

◆PIPELINING: Break the datapath into smaller

chunks, and let new instructions start while

others are finishing

49

	Slide 1
	Slide 2: Goals of this Chapter
	Slide 3: What are datapath and control?
	Slide 4: Design Process
	Slide 5: Order the steps: FIDE
	Slide 6: Fetch and Increment Hardware
	Slide 7: Fetch and Increment Connections
	Slide 8: Decode and Execute
	Slide 9: Instruction Execution
	Slide 10: R-format Example: “ADD” Instruction
	Slide 11: R-Format Instructions - Hardware
	Slide 12: With Hardware Connections
	Slide 13: Complete “Add” Datapath
	Slide 14: Complete Add Datapath
	Slide 15: Complete Add Datapath
	Slide 16: Complete Add Datapath
	Slide 17: Complete Add Datapath
	Slide 18: Complete Add Datapath
	Slide 19: Control of R-format Instructions
	Slide 20: ALU Decoding for R-format
	Slide 21: R-format Datapath and Control
	Slide 22: R-format Datapath and Control
	Slide 23: R-format Datapath and Control
	Slide 24: R-format Datapath and Control
	Slide 25: R-format Datapath and Control
	Slide 26: R-format Datapath and Control
	Slide 27: R-format Datapath and Control
	Slide 28: Load/Store Instructions - Hardware
	Slide 29: I-format Instructions
	Slide 30: S-format Instructions
	Slide 31: Composing the Elements
	Slide 32: R-Type/Load/Store Datapath
	Slide 33: Branch Instructions
	Slide 34: SB-format - Branch Addressing
	Slide 35: Branch Instructions
	Slide 36: Full Datapath (Without Control Shown)
	Slide 37: Overall Control
	Slide 38: 1) “ALU Control” Unit
	Slide 39: ALU Control – Truth Table
	Slide 40: 2) “Main Control” Unit
	Slide 41
	Slide 42: Datapath With Control
	Slide 43: R-Type Instruction
	Slide 44: Load Instruction
	Slide 45: BEQ Instruction
	Slide 46
	Slide 47
	Slide 48: Practice – Performance Analysis
	Slide 49: Limitations of single-cycle operations

