
1

Cristinel Ababei

Marquette University

Department of Electrical and Computer Engineering

COEN-2710 Microprocessors - Lecture 4

Processor Part 1: Pipelining 

(Ch.4)

2

Outline

❖ Pipelining Introduction

❖ Pipelined Datapath 

❖ Pipeline Control

❖ Data Hazards

◆Address data hazards – forwarding  

◆Double data hazards - revised forwarding

◆Load-use data hazards - hazard detection unit to “Stall”

❖ Branch Hazards

◆ “Flush”

❖ Exceptions

◆Exception Handling Routine

❖ Improving Performance

1

2



2

3

Pipelining is Natural

Laundry Example

❖Ann, Brian, Cathy, Dave 

each have one load of clothes 

to wash, dry, and fold

◆Washer takes 30 minutes

◆Dryer takes 30 minutes

◆“Folder” takes 30 minutes

◆“Stasher” takes 30 minutes

to put clothes into drawers

A B C D

4

Sequential Laundry

❖ Sequential laundry takes 8 hours for 4 loads

30T
a
s
k

O
r
d
e
r

B

C

D

A
Time

30 30 3030 30 3030 30 30 3030 30 30 3030

6 PM 7 8 9 10 11 12 1 2 AM

If we pipelined, how long would  laundry take?

3

4



3

5

Pipelined Laundry: Start work ASAP

❖Pipelined laundry takes 3.5 hours for 4 loads! 

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

3030 30 3030 30 30

What’s the theoretical speedup?

6

Pipelining Lessons

❖Pipelining doesn’t help latency 

of a single task, it helps 

throughput of entire workload

❖Max potential speedup 

is Number of pipe stages

❖Performance limited by 

slowest pipeline stage 

(Unbalanced lengths of pipe) 

❖Times to “fill” pipeline and to 

“drain” it - reduce speedup

❖Might need to stall for 

dependencies

6 PM 7 8 9

Time

B

C

D

A

3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

5

6



4

7

The Five Stages of “Load”

1. IF: Get instruction from Instruction Memory

2. ID: Register Fetch and Instruction Decode

3. EX: Calculate the memory address

4. MEM: Read the data from data Memory

5. WB: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

8

Pipeline Performance

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

7

8



5

9

Pipeline Speedup

❖If all stages are balanced

◆i.e., all take the same time

◆Time between instructionspipelined

= Time between instructionsnonpipelined

  Number of stages

❖If not balanced, speedup is less

❖Speedup due to increased throughput

◆Latency (time for each instruction) does not 

decrease

10

Pipelining and ISA Design

❖RISC-V ISA designed for pipelining

◆All instructions are 32-bits
➢Easier to fetch and decode in one cycle

➢c.f. x86: 1- to 17-byte instructions

◆Few and regular instruction formats
➢Can decode and read registers in one step

◆Load/store addressing
➢Can calculate address in 3rd stage, access memory in 

4th stage

9

10



6

11

Implementing Pipelining

❖What makes it easy

◆Instructions are all the same length

◆Small number of instruction formats

◆Memory operands appear only in loads and stores

❖What makes it hard

◆Structural hazards

➢Multiple instructions needing the same datapath components

◆Data hazards

➢ Instructions depending on previous instruction’s output

◆Control hazards

➢Changes to instruction sequence - branching, jumping  

◆Exception handling: overflows, interrupts

12

RISC-V Pipelined Datapath

12 32

11

12



7

13

Pipeline registers

❖Need registers between stages

◆To hold information produced in previous cycle

12 32

14

Pipeline Operation

❖Cycle-by-cycle flow of instructions through the 

pipelined datapath

◆“Single-clock-cycle” pipeline diagram

➢Shows pipeline usage in a single cycle

➢Highlight resources used

◆c.f. “multi-clock-cycle” diagram

➢Graph of operation over time

❖We’ll look at “single-clock-cycle” diagrams for 

Load & Store

13

14



8

15

IF for Load, Store, …

12 32

16

ID for Load, Store, …

12 32

15

16



9

17

EX for Load

12 32

18

MEM for Load

12 32

17

18



10

19

WB for Load

Wrong

register

number

12 32

20

Corrected Datapath for Load

12 32

19

20



11

21

EX for Store

12 32

22

MEM for Store

12 32

21

22



12

23

WB for Store

12 32

24

Graphically Representing Pipelines

❖ Can help with answering questions like:
◆How many cycles does it take to execute this code?

◆What is the ALU doing during cycle 4?

❖ Grayed portions – what’s being used for this instruction.

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6

Time (in clockcycles)

lw$10,20($1)

Program

execution

order

(in instructions)

sub $11,$2, $3

ALU

ALU

23

24



13

25

Multi-Cycle Pipeline Diagram

❖Form showing resource usage

26

Multi-Cycle Pipeline Diagram

❖Traditional form

25

26



14

27

Pipeline Control (Simplified)

12 32

28

We have 5 separate stages  

1. IF:  Instruction Fetch and PC Increment

2. ID:  Instruction Decode / Register Fetch

3. EX:  Execution

4. MEM:  Memory Access

5. WR:  Write Back

❖ How should control be handled?

◆ A fancy control center telling everyone what to do?

◆ Should we use a state machine?

Pipeline Control

What lines need to be controlled in each stage?

27

28



15

29

Pipeline Control

❖ Control signals derived from instruction

◆ As in single-cycle implementation

❖ Pass control signals along just like the data

Execution/Address 

Calculation stage control 

lines

Memory access stage 

control lines

Write-back 

stage control 

lines

Instruction

Reg 

Dst

ALU 

Op1

ALU 

Op0

ALU 

Src

Branc

h

Mem 

Read

Mem 

Write

Reg 

write

Mem 

to Reg

R-format 1 1 0 0 0 0 0 1 0

Load 0 0 0 1 0 1 0 1 1

Store X 0 0 1 0 0 1 0 X

BEQ X 0 1 0 1 0 0 0 X

30

Datapath with Control

12 32

29

30



16

31

Pipeline Summary

❖Pipelining improves performance by increasing 

instruction throughput

◆Executes multiple instructions in parallel

◆Each instruction (in isolation) has the same latency

❖Subject to hazards

◆Structure, data, control

❖Instruction set design affects complexity of 

pipeline implementation

The BIG Picture

32

Outline

❖ Pipelining Introduction

❖ Pipelined Datapath 

❖ Pipeline Control

❖ Data Hazards

◆Address data hazards – forwarding  

◆Double data hazards - revised forwarding

◆Load-use data hazards - hazard detection unit to “STALL”

❖ Branch Hazards

◆ “FLUSH”

❖ Exceptions

◆Exception Handling Routine

❖ Improving Performance

31

32



17

33

Hazards

❖Situations that prevent starting the next 
instruction in the next cycle

❖Structure hazards
◆A required resource is busy

❖Data hazard
◆Need to wait for previous instruction to complete its 

data read/write

❖Control hazard
◆Deciding on control action depends on previous 

instruction

34

1) Structure Hazards

❖Conflict for use of a resource

❖In RISC-V pipeline with a single memory

◆Load/store requires data access

◆Instruction fetch would have to stall for that cycle

➢Would cause a pipeline “bubble”

❖Hence, pipelined datapaths require separate 

instruction/data memories

◆Or separate instruction/data caches

33

34



18

35

2 - A) Data Hazards

❖An instruction depends on completion of data 

access by a previous instruction

◆add x19, x0, x1
sub x2, x19, x3

36

Data Hazards in ALU Instructions

❖Consider this sequence:

 sub  x2, x1,x3
and  x12,x2,x5
or   x13,x6,x2
add  x14,x2,x2
sd   x15,100(x2)

❖We can resolve hazards with forwarding

◆How do we detect when to forward?

35

36



19

37

Forwarding (aka ByPassing)

❖Use result when it is computed

◆Don’t wait for it to be stored in a register

◆Requires extra connections in the datapath

38

Dependencies & Forwarding

Forwarding can 

happen only to 

the right or 

“forward in time”!

37

38



20

39

Detecting the Need to Forward

❖Pass register numbers along pipeline
◆e.g., ID/EX.RegisterRs1 = register number for Rs1 

sitting in ID/EX pipeline register

❖ALU operand register numbers in EX stage 
are given by
◆ID/EX.RegisterRs1, ID/EX.RegisterRs2

❖Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs1

1b. EX/MEM.RegisterRd = ID/EX.RegisterRs2

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs1

2b. MEM/WB.RegisterRd = ID/EX.RegisterRs2

Fwd from

EX/MEM

pipeline reg

Fwd from

MEM/WB

pipeline reg

40

Detecting the Need to Forward

❖But only if forwarding instruction will write to a 

register!

◆EX/MEM.RegWrite, MEM/WB.RegWrite

❖And only if Rd for that instruction is not x0

◆EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

39

40



21

41

Forwarding Paths

42

Forwarding Conditions

Mux control Source Explanation

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior 

ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data 

memory or an earlier ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register 

file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior 

ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data 

memory or an earlier ALU result.

41

42



22

43

Double Data Hazard

❖Consider the sequence:

 add x1,x1,x2
add x1,x1,x3
add x1,x1,x4

❖Both hazards occur

◆Want to use the most recent

❖Revise MEM hazard condition

◆Only fwd if EX hazard condition isn’t true

44

Revised Forwarding Condition

❖MEM hazard

◆ if (MEM/WB.RegWrite

 and (MEM/WB.RegisterRd ≠ 0)

 and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

  and (EX/MEM.RegisterRd ≠ ID/EX.RegisterRs1))

 and (MEM/WB.RegisterRd = ID/EX.RegisterRs1)) ForwardA = 01

◆ if (MEM/WB.RegWrite

 and (MEM/WB.RegisterRd ≠ 0)

 and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

  and (EX/MEM.RegisterRd ≠ ID/EX.RegisterRs2))

 and (MEM/WB.RegisterRd = ID/EX.RegisterRs2)) ForwardB = 01

43

44



23

45

Datapath with Forwarding

46

2 - B) Load-Use Data Hazard

❖ Can’t always avoid stalls by forwarding

◆ If value not computed when needed

◆ Can’t forward backward in time!

45

46



24

47

Load-Use Hazard Detection

❖Check when using instruction is decoded in ID 
stage

❖ALU operand register numbers in ID stage are 
given by
◆IF/ID.RegisterRs1, IF/ID.RegisterRs2

❖Load-use hazard when
◆ID/EX.MemRead and

  ((ID/EX.RegisterRd = IF/ID.RegisterRs1) or
   (ID/EX.RegisterRd = IF/ID.RegisterRs1))

❖If detected, STALL and insert Bubble

48

How to STALL the Pipeline

1. Force control values in ID/EX register to 0

◆EX, MEM and WB will therefore do NOP (no-

operation)

2. Prevent update of PC and IF/ID register

◆Using instruction is decoded again

◆Following instruction is fetched again

◆1-cycle stall allows MEM to read data for ld

➢Can subsequently forward to EX stage

47

48



25

49

Datapath with Hazard Detection

50

Code Scheduling to Avoid Stalls

❖Reorder code to avoid use of load result in the 

next instruction

❖C code for a = b + e; c = b + f;

ld  x1, 0(x0)

ld  x2, 8(x0)

add  x3, x1, x2

sd  x3, 24(x0)

ld  x4, 16(x0)

add  x5, x1, x4

sd  x5, 32(x0)

stall

stall

ld  x1, 0(x0)

ld  x2, 8(x0)

ld  x4, 16(x0)

add  x3, x1, x2

sd  x3, 24(x0)

add  x5, x1, x4

sd  x5, 32(x0)

11 cycles13 cycles

49

50



26

51

Stalls and Performance

❖Stalls reduce performance

◆But are required to get correct results

❖Compiler can arrange code to avoid hazards and 

stalls

◆Requires knowledge of the pipeline structure

The BIG Picture

52

3) Branch (Control) Hazards

❖Branch determines flow of control
◆Fetching next instruction depends on branch outcome

◆Pipeline can’t always fetch correct instruction
➢Still working on ID stage of branch

❖In RISC-V pipeline
◆Need to compare registers and compute target early 

in the pipeline

◆Add hardware to do it in ID stage

51

52



27

53

Branch Hazards

PC

FLUSH these

instructions

(Set control

values to 0)

❖ If branch outcome determined at the end of EX stage

❖ By the time we know to branch, new instructions are in the pipe!

54

❖Default operation = We are basically predicting 

“branch not taken” 

❖What if it is?

◆Toss all instructions in the pipe

◆Keep going (the branch instruction will update the PC 

correctly and we’ll get to the right place) 

◆Undo any memory/register changes

(this won’t happen, since that’s at the end of the pipe)

So – how do we tell the datapath to quit executing 

an instruction in the middle of the pipeline? 

Predict!

53

54



28

55

❖To flush the pipe (when branch is taken)

◆Set IF.Flush (new control line)

◆Zero all control lines

➢Similar to STALL, except don’t disable the PC and IF/ID write 

controls – this effectively writes over what the previous 

instruction was doing.

◆No memory or register writes will have yet happened, 

so everything else is OK

Could we make the decision quicker, to lose fewer clock cycles?

FLUSH

56

❖Move hardware to determine outcome to ID 

stage

◆Target address adder

◆Register comparator

❖This means the branch decision can be made 

during the ID stage instead of the EX stage.

◆This is why we need an IF.Flush, but not an ID.Flush!

But Problem: Messes up forwarding for branching

Reducing Branch Delay

55

56



29

57

Example: Branch Taken

58

Data Hazards for Branches

❖If a comparison register is a destination of 2nd or 

3rd preceding ALU instruction

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

◼ Can resolve using forwarding

57

58



30

59

Data Hazards for Branches

❖If a comparison register is a destination of 

preceding ALU instruction or 2nd preceding load 

instruction

◆Need 1 STALL cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

ld  $1, addr

beq $1, $4, target

60

Data Hazards for Branches

❖If a comparison register is a destination of 

immediately preceding LOAD instruction

◆Need 2 STALL cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

ld  $1, addr

beq $1, $0, target

59

60



31

61

Other branch hazard methods

❖Dynamic branch prediction

◆Keep a table of bits associated with the current chunk 

of memory, telling whether a branch was taken last 

time that instruction was executed.  Use that to guess 

at the next instruction to execute

❖Delayed branching

◆Make the instruction set operate such that at a branch 

the following instruction is always executed, then the 

branch actually occurs. Puts the work on the 

programmer / assembler. MIPS does this! 

62

Outline

❖ Pipelining Introduction

❖ Pipelined Datapath 

❖ Pipeline Control

❖ Data Hazards

◆Address data hazards – forwarding  

◆Double data hazards - revised forwarding

◆Load-use data hazards - hazard detection unit to “Stall”

❖ Branch Hazards

◆ “Flush”

❖ Exceptions

◆Exception Handling Routine

❖ Improving Performance

61

62



32

63

Exceptions and Interrupts

❖“Unexpected” events requiring change

in flow of control

◆Different ISAs use the terms differently

❖Exception

◆Arises within the CPU

➢e.g., undefined opcode, syscall, …

❖Interrupt

◆From an external I/O controller

❖Dealing with them without sacrificing performance 

is hard

64

Handling Exceptions

❖Save PC of offending (or interrupted) instruction
◆In RISC-V: Supervisor Exception Program Counter 

(SEPC)

❖Save indication of the problem
◆In RISC-V: Supervisor Exception Cause Register 

(SCAUSE)

◆64 bits, but most bits unused
➢Exception code field: 2 for undefined opcode, 12 for 

hardware malfunction, …

❖Jump to handler
◆Assume at 0000 0000 1C09 0000hex

63

64



33

65

An Alternate Mechanism

❖Vectored Interrupts
◆Handler address determined by the cause

❖Exception vector address to be added to a 
vector table base register:
◆Undefined opcode  00 0100 0000two

◆Hardware malfunction: 01 1000 0000two

◆…:    …

❖Instructions either
◆Deal with the interrupt, or

◆Jump to real handler

66

Handler Actions

❖Read cause, and transfer to relevant handler

❖Determine action required

❖If restartable
◆Take corrective action

◆Use SEPC to return to program

❖Otherwise
◆Terminate program

◆Report error using SEPC, SCAUSE, …

65

66



34

67

Exceptions in a Pipeline

❖Another form of control hazard

❖Consider malfunction on add in EX stage
add x1, x2, x1

◆Prevent x1 from being clobbered

◆Complete previous instructions

◆Flush add and subsequent instructions

◆Set SEPC and SCAUSE register values

◆Transfer control to handler

❖Similar to mispredicted branch
◆Use much of the same hardware

68

Pipeline with Exceptions

67

68



35

69

Improving Performance

❖Try to avoid stalls! e.g., reorder these 

instructions:

lw t0, 0(t1)

lw t2, 4(t1)

sw t2, 0(t1)

sw t0, 4(t1)

70

Instruction-Level Parallelism (ILP)

❖Pipelining: executing multiple instructions in 
parallel

❖To increase ILP
◆Deeper pipeline

➢Less work per stage  shorter clock cycle

◆Multiple issue
➢Replicate pipeline stages  multiple pipelines

➢Start multiple instructions per clock cycle

➢CPI < 1, so use Instructions Per Cycle (IPC)

➢E.g., 4GHz 4-way multiple-issue

▪ 16 BIPS, peak CPI = 0.25, peak IPC = 4

➢But dependencies reduce this in practice

69

70



36

71

Super-Pipelining

❖This is just creating longer pipelines.

Remember that the speedup is directly related to 

the number of stages in the pipe.

❖Big issue:

◆How do you break up a datapath into smaller pieces, 

each with smaller and roughly equal latencies!

72

Superscalar Processing

❖Could you do laundry faster if you had 3 

washers and 3 dryers?

◆Yes, if you could keep them moving smoothly

❖Basic method:

◆Put multiple copies of datapath into hardware

◆Launch multiple instructions every clock cycle

◆Get ready to have serious control and hazard issues!

❖Biggest issue: need to schedule instructions 

quickly and efficiently and get them into the 

pipes, in such a way that hazards are minimized.

71

72



37

73

Dynamic Pipeline Scheduling

❖This is like regular or super pipelining, except 

with very advanced techniques to make sure 

there are always instructions ready to fill in if a 

stall happens (don’t want to waste a clock cycle.)

❖Basically keeps a series of instruction buffers 

and schedule the instructions as needed to keep 

the pipe full and the program running without 

hazards.

◆Branch prediction / speculative execution

❖Can create quite a problem for accurate 

exception handling.

74

Current processors

❖Nearly all have pipelining/superscalar design

❖Compiler technology important

◆Can’t create efficient code for a pipelined or 

superscalar processor without the compiler 

thoroughly understanding how the pipelining, 

scheduling, forwarding and hazard detection all work 

for that specific processor.

73

74



38

75

Concluding Remarks

❖ISA influences design of datapath and control

❖Datapath and control influence design of ISA

❖Pipelining improves instruction throughput

using parallelism

◆More instructions completed per second

◆Latency for each instruction is NOT reduced!

❖Hazards: structural, data, control

❖Multiple issue and dynamic scheduling (ILP)

◆Dependencies limit achievable parallelism

◆Complexity leads to the power wall

75


	Slide 1
	Slide 2: Outline
	Slide 3: Pipelining is Natural
	Slide 4: Sequential Laundry
	Slide 5: Pipelined Laundry: Start work ASAP
	Slide 6: Pipelining Lessons
	Slide 7: The Five Stages of “Load”
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Implementing Pipelining
	Slide 12
	Slide 13
	Slide 14: Pipeline Operation
	Slide 15: IF for Load, Store, …
	Slide 16: ID for Load, Store, …
	Slide 17: EX for Load
	Slide 18: MEM for Load
	Slide 19: WB for Load
	Slide 20: Corrected Datapath for Load
	Slide 21: EX for Store
	Slide 22: MEM for Store
	Slide 23: WB for Store
	Slide 24: Graphically Representing Pipelines
	Slide 25
	Slide 26
	Slide 27: Pipeline Control (Simplified)
	Slide 28: Pipeline Control
	Slide 29: Pipeline Control
	Slide 30: Datapath with Control
	Slide 31
	Slide 32
	Slide 33: Hazards
	Slide 34: 1) Structure Hazards
	Slide 35: 2 - A) Data Hazards
	Slide 36
	Slide 37: Forwarding (aka ByPassing)
	Slide 38
	Slide 39: Detecting the Need to Forward
	Slide 40: Detecting the Need to Forward
	Slide 41: Forwarding Paths
	Slide 42: Forwarding Conditions
	Slide 43: Double Data Hazard
	Slide 44: Revised Forwarding Condition
	Slide 45: Datapath with Forwarding
	Slide 46: 2 - B) Load-Use Data Hazard
	Slide 47: Load-Use Hazard Detection
	Slide 48: How to STALL the Pipeline
	Slide 49: Datapath with Hazard Detection
	Slide 50: Code Scheduling to Avoid Stalls
	Slide 51: Stalls and Performance
	Slide 52: 3) Branch (Control) Hazards
	Slide 53: Branch Hazards
	Slide 54
	Slide 55
	Slide 56: Reducing Branch Delay
	Slide 57: Example: Branch Taken
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Other branch hazard methods
	Slide 62
	Slide 63: Exceptions and Interrupts
	Slide 64: Handling Exceptions
	Slide 65: An Alternate Mechanism
	Slide 66: Handler Actions
	Slide 67: Exceptions in a Pipeline
	Slide 68: Pipeline with Exceptions
	Slide 69: Improving Performance
	Slide 70
	Slide 71
	Slide 72: Superscalar Processing
	Slide 73: Dynamic Pipeline Scheduling
	Slide 74: Current processors
	Slide 75: Concluding Remarks

