
1

Cristinel Ababei

Marquette University

Department of Electrical and Computer Engineering

COEN-2710 Microprocessors - Lecture 5

VHDL Refresher

(Project 2)

Outline

▪ VHDL Overview

▪ Basic VHDL Modelling

• Entity declaration

• Architecture declaration

▪ Structural vs. Behavioural Description

▪ Combinational, Sequential

▪ Testbenches

▪ Resources

1

2

2

VHDL overview

▪ What does VHDL stand for?

• Very High Speed Integrated Circuit (VHSIC) Hardware Description Language

▪ VHDL is a formal language for specifying the behavior and structure of a

digital circuit

• Concurrent and sequential statements

• Machine-readable specification

• Man- and machine-readable documentation

▪ Initially developed under DOD auspices, later standardized as IEEE

standards 1076-1987, 1076-1993, & 1076-1164 (standard logic data type)

▪ A concurrent language, initially aimed at simulation, later at synthesis

▪ Syntax similar to ADA and Pascal

▪ Verilog is another, equally popular, hardware description language (HDL)

ENTITY entity_name IS

 PORT (name_list : mode type);
END entity_name;

ARCHITECTURE body_name OF entity_name IS

 -- declarative_statements
BEGIN

 -- activity_statements
END body_name;

▪ A VHDL Design Entity or Unit always consists of:

1) Entity declaration: Names entity and defines interfaces
between entity and its environment.

2) Architecture: Establishes relationship between inputs and
outputs of design

Basic VHDL Modeling: Design Unit

3

4

3

1) Entity Declaration

entity entity-name is port (

 port-name-A: mode type;

 port-name-B: mode type;

 port-name-C: mode type;

 …

);

end [entity][entity-name];

▪ Names entity and defines interfaces between

entity and its environment.

▪ Each I/O signal in the entity statement is referred

to as a port.

▪ A port is analogous to a pin on a schematic.

▪ A port is a data object.

▪ Can be assigned values.

▪ Can be used in expressions.

Port

5

6

4

▪ The mode describes the direction in which data

is transferred through a port.

▪ There are 4 different modes:

Mode

Mode Description

in Data only flows into the entity (input)

out Data only flows out of the entity (output)

inout Data flows into or out of the entity (bidirectional)

buffer Used for internal feedback

▪ VHDL is a strongly typed language

▪ Data objects of different types cannot be assigned to one another

without the use of a type-conversion function.

▪ There are two broad categories of data types:

▪ Scalar - stores a single value

▪ Composite - stores multiple values

▪ VHDL data types include:

Type

bit

boolean

integer

character

std_ulogic

std_logic

bit_vector

string

std_ulogic_vecto
rstd_logic_vector

scalar

composite

7

8

5

2) Architecture Declaration

▪ Establishes relationship between inputs and

outputs of design.

architecture architecture-name of entity-name is

 [declarations]

begin

 architecture body

end [architecture][architecture-name];

▪ Several different models or styles may be

used in the architecture body including:

▪ Behavioral/Functional

▪ Dataflow

▪ Algorithmic

▪ Structural

▪ These models allow to describe the design

at different levels of abstraction.

Architecture body

9

10

6

▪ One or more architecture statements may

be associated with an entity statement.

▪ Only one may be referenced at a time.

▪ Declarations

▪ Signals and components.

▪ Architecture body

▪ Statements that describe the functionality of the

design (i.e., the circuit).

Architecture statement

Example 1: Entity Declaration

entity FULL_ADDER is

 port (

 A, B, Cin: in std_logic;

 S: out std_logic;

 Cout: out std_logic);

end FULL_ADDER;

11

12

7

Example 1: Architecture Declaration

architecture My_Structural of FULL_ADDER is

begin

 S <= A xor B xor Cin;

 Cout <= (A and B) or (A and Cin) or (B and Cin);

end My_Structural;

Outline

▪ VHDL Overview

▪ Basic VHDL Modelling

• Entity declaration

• Architecture declaration

▪ Structural vs. Behavioural Description

▪ Combinational, Sequential

▪ Testbenches

▪ Resources

13

14

8

1) Structural Description in VHDL

▪ Structural model: describe how it is composed of
subsystems, based on a precise knowledge of
the internal structure.

• Component declaration and instantiation

▪ A structural architecture describes the schematic
by defining the interconnection of components

▪ Simplest components: associated with design
entities describing AND, OR, etc. switching
algebra operations; logic gates basically

▪ Use component statement in structural
descriptions

The following is the FORMAT for declaring components:

 COMPONENT component_name

 PORT (clause) ;

 END COMPONENT;

Note the similarity between component declaration
statement and entity declaration statement. Both have a
header, port clause, and end statement.

This similarity is not coincidental. Components are virtual
design entities.

Component Declaration Format

15

16

9

Example 2: Design entities used as components in top-level entity

library IEEE ;
use IEEE.std_logic_1164.all;

entity HALFADDER is

 port (A, B : in std_logic;
 SUM, CARRY : out std_logic);
end HALFADDER;

architecture my_arch of HALFADDER is
begin
 SUM <= (not A and B) or (A and not B);
 CARRY <= A and B;
end my_arch;

library IEEE ;
use IEEE.std_logic_1164.all;

entity ORGATE is
 port (A, B : in std_logic;
 RES : out std_logic);
end component;

architecture behavioral of ORGATE is
begin
 RES <= A or B;
end behavioral;

Example 2: Top-level 1-bit FULLADDER - Component Declarations

▪ In a component declaration, all

module types, which will be used
in the architecture, are declared.

▪ Their declaration must occur

before the begin keyword of the
architecture statement.

▪ The port list elements of the
component are called local
elements, they are not signals

entity FULLADDER is
 port (A,B, CARRY_IN: in std_logic;
 SUM, CARRY: out std_logic);
end FULLADDER;

architecture STRUCT of FULLADDER is

 -- component declarations go here!
 component HALFADDER
 port (A, B : in std_logic;
 SUM, CARRY : out std_logic);
 end component;

 component ORGATE
 port (A, B : in std_logic;
 RES : out std_logic);
 end component;

 signal W_SUM, W_CARRY1, W_CARRY2 : std_logic;

begin
 -- component instantiations go here!

end STRUCT;

17

18

10

Component Instantiation → Hierarchy!

▪ A module can be assembled out of several submodules →
hierarchical model description

▪ A purely structural architecture does not describe any functionality
and contains just a list of components, their instantiation and their
interconnections

Example 2: Component Instantiation

architecture STRUCT of FULLADDER is

component HALFADDER
 port (A, B : in std_logic;
 SUM, CARRY : out std_logic);
end component;

component ORGATE
 port (A, B : in std_logic;
 RES : out std_logic);
end component;

signal W_SUM, W_CARRY1, W_CARRY2: std_logic;

begin

 MODULE1: HALFADDER port map (A, B, W_SUM, W_CARRY1);
 MODULE2: HALFADDER port map (W_SUM, CARRY_IN, SUM, W_CARRY2);
 MODULE3: ORGATE port map (W_CARRY2, W_CARRY1, CARRY);

end STRUCT;

▪ Component instantiations occur in the
statements part of an architecture (after the
keyword "begin").

▪ The choice of components is restricted to
those that are already declared, either in the
declarative part of the architecture or in a
package.

▪ The connection of signals to the entity port:
positional association, the first signal of the
port map is connected to the first port from
the component declaration.

19

20

11

Component Instantiation: Named Signal Association

▪ Named association:

• left side: "formals"
(port names from
component declaration)

• right side: "actuals"
(architecture signals)

• Independent of order in
component declaration

entity FULLADDER is
 port (A,B, CARRY_IN: in bit;
 SUM, CARRY: out bit);
end FULLADDER;

architecture STRUCT of FULLADDER is

 component HALFADDER
 port (A, B : in bit;
 SUM, CARRY : out bit);
 end component;
 ...
 signal W_SUM, W_CARRY1, W_CARRY2 : bit;

begin

 MODULE1: HALFADDER
 port map (A => A,
 SUM => W_SUM,
 B => B,
 CARRY => W_CARRY1);
 ...
end STRUCT;

Example 3: Structural fourbit_adder design entity

LIBRARY IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity fourbit_adder is

 port(a, b: in STD_LOGIC_VECTOR(3 downto 0);

 z: out STD_LOGIC_VECTOR(3 downto 0);

 cout: out STD_LOGIC);

end fourbit_adder;

architecture MY_STRUCTURE of fourbit_adder is

component FULL_ADDER

 port(a, b, carry_in: in STD_LOGIC;

 sum, carry: out STD_LOGIC);

end component;

signal c0, c1, c2, c3 : STD_LOGIC;

begin

c0 <= '0';

b_adder0: FULL_ADDER port map (a(0), b(0), c0, z(0), c1);

b_adder1: FULL_ADDER port map (a(1), b(1), c1, z(1), c2);

b_adder2: FULL_ADDER port map (a(2), b(2), c2, z(2), c3);

b_adder3: FULL_ADDER port map (a(3), b(3), c3, z(3), cout);

end MY_STRUCTURE;

21

22

12

Example 3: fourbit_adder

fourbit_adder

2) Behavioral Description in VHDL

▪ Specify a set of statements to model the function,

or behavior, of the design.

▪ Dataflow: uses concurrent statements

• Concurrent statements:

▪ Are executed at the same time; they mimic the actual

hardware parallelism (processes, signal assignment)

▪ Order is unimportant

▪ Algorithmic: uses sequential statements

• Sequential statements:

▪ Are executed in sequence (if, case, loops – while, for –

assertion)

▪ Order is very important

23

24

13

Behavioral synthesis

▪ Advantages
• Easy to write HDL code; fewer lines of VHDL

code

• Useful especially for automatic generation of
state machines

• Faster simulation than RTL

▪ Disadvantages
• May not be synthesizable

Example 4: Behavioral fourbit_adder

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity add is

 generic (

 width : positive := 4);

 port (

 in1 : in std_logic_vector(width-1 downto 0);

 in2 : in std_logic_vector(width-1 downto 0);

 sum : out std_logic_vector(width-1 downto 0);

 carry : out std_logic);

end add;

architecture BEHAVIORAL of add is

 signal temp : unsigned(width downto 0);

begin

 temp <= resize(unsigned(in1), width+1)+resize(unsigned(in2),

width+1);

 sum <= std_logic_vector(temp(width-1 downto 0));

 carry <= temp(width);

end BEHAVIORAL;

25

26

14

Outline

▪ VHDL Overview

▪ Basic VHDL Modelling

• Entity declaration

• Architecture declaration

▪ Structural vs. Behavioural Description

▪ Combinational, Sequential

▪ Testbenches

▪ Resources

▪ Combinational circuits

• See fourbit_adder example on previous slides

• Browse resources provided on the last slide of this
presentation

▪ Sequential circuits

• Adopt the “Two process VHDL coding style” described here:

▪ http://dejazzer.com/eece4740/lectures/lec02_edge_detector_mealy_
moore.pdf

▪ http://dejazzer.com/eece4740/lectures/lec03_d_sequential_2.pdf

• Browse resources provided on the last slide of this
presentation

Combinational vs. Sequential Circuits

27

28

http://dejazzer.com/eece4740/lectures/lec02_edge_detector_mealy_moore.pdf
http://dejazzer.com/eece4740/lectures/lec02_edge_detector_mealy_moore.pdf
http://dejazzer.com/eece4740/lectures/lec03_d_sequential_2.pdf

15

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0

Example 5: VHDL coding style

Use “two-process” approach for FSMs

Logic

Memory

state

next_state

X Z

Process 1

Process2

Sequential Recognizer Circuit

What “pattern” does it recognize?

library ieee;

use ieee.std_logic_1164.all;

entity seq_rec_MEALY is

 port (CLK, RESET, X: in std_logic;

 Z: out std_logic);

end seq_rec;

architecture process_2 of seq_rec_MEALY is

 type state_type is (A, B, C, D);

 signal state, next_state: state_type;

begin

-- continue on next slide…

Example 5: VHDL coding style

Use “two-process” approach for FSMs

29

30

16

-- process 1: implements positive edge-triggered

-- flip-flop with asynchronous reset

state_register: process (CLK, RESET)

begin

 if (RESET = '1') then

 state <= A;

 elsif (CLK'event and CLK = '1') then

 state <= next_state;

 end if;

end process;

-- continue on next slide…

-- process 2: Z and next_state implemented

-- as functions of input X and state

X_and_next_state_functions: process (X, state)

begin

 case state is

 when A =>

 Z <= '0';

 if X = '1' then next_state <= B;

 else next_state <= A;

 end if;

 when B =>

 Z <= '0';

 if X = '1' then next_state <= C;

 else next_state <= A;

 end if;

 when C =>

 Z <= '0';

 if X = '1' then next_state <= C;

 else next_state <= D;

 end if;

 when D =>

 if X = '1' then Z <= ‘1'; next_state <= B;

 else Z <= ‘0'; next_state <= A;

 end if;

 end case;

end process;

end architecture;

31

32

17

Outline

▪ VHDL Overview

▪ Basic VHDL Modelling

• Entity declaration

• Architecture declaration

▪ Structural vs. Behavioural Description

▪ Combinational, Sequential

▪ Testbenches

▪ Resources

Testbenches

▪ Used to verify the specified functionality of a
design
• Provides the stimuli (test vectors) for the Unit Under

Test (UUT) or Design Under Test (DUT), analyzes
the UUT’s response or stores the values in a file.

• Simulation tools visualize signals by means of a
waveform which the designer compares with the
expected response. Debug if does not match.

▪ Does not need to be synthesizable

▪ No ports to the outside, self-contained

33

34

18

Observed outputs

(waveform viewer)

Testbench Concept

Test Bench design entity has no I/O ports!

Can also be just direct

signal assignments

Testbenches

▪ Simple testbench responses can be analyzed

by waveform inspection

▪ Sophisticated testbenches may require more

complicated verification techniques

• Can take >50% of project resources

• Do not underestimate the value/importance of

testbenches!

35

36

19

entity TB_TEST is

end TB_TEST;

architecture BEH of TB_TEST is

 -- component declaration of UUT

 -- internal signal definition

begin

 -- component instantiation of UUT

 -- clock and stimuli generation

 wait for 100 ns;

 A <= 0;

 CLK <= 1;

 …

end BEH;

configuration CFG1 of TB_TEST is

 for BEH;

 -- customized configuration

 end for;

end CFG_TB_TEST;

Structure of a VHDL Testbench

▪ Declaration of the Unit
Under Test (UUT)

▪ Connection of the UUT with
testbench signals

▪ Stimuli and clock generation
(behavioral modeling)

▪ Response analysis

▪ A configuration may be
used to pick the desired
components for simulation

• May be a customized
configuration for testbench
simulation

library ieee;

use ieee.std_logic_1164.all;

entity ADDER is

 port (A,B : in bit;

 CARRY,SUM : out bit);

end ADDER;

architecture RTL of ADDER is

begin

 ADD: process (A,B)

 begin

 SUM <= A xor B;

 CARRY <= A and B;

 end process ADD;

end RTL;

library ieee;

use ieee.std_logic_1164.all;

entity TB_ADDER IS -- empty entity is defined

end TB_ADDER; -- no need for interface

architecture TEST of TB_ADDER is

 component ADDER

 port (A, B: in bit;

 CARRY, SUM: out bit);

 end component;

 signal A_I, B_I, CARRY_I, SUM_I : bit;

begin

 UUT: ADDER port map(A_I, B_I, CARRY_I, SUM_I);

 STIMULUS: process

 begin

 A_I <= ´0´; B_I <= ´0´; wait for 10 ns;
 A_I <= ´1´; B_I <= ´1´; wait for 10 ns;
 A_I <= ´1´; B_I <= ´0´; wait for 10 ns;
 A_I <= ´1´; B_I <= ´1´; wait for 10 ns;
 wait;

 -- and so on…

 end process STIMULUS;

end TEST;

Example 6: Simple Testbench

37

38

20

Resources

▪ Read description of each part of Project #2,
provided on D2L

▪ Read materials suggested in the steps for Project
#2 on the website of this class:

• http://dejazzer.com/coen2710/index.html

▪ (Optional) Read slides and lecture notes of this
class (focuses on VHDL design and FPGAs):

• http://dejazzer.com/eece4740/index.html

39

http://dejazzer.com/coen2710/index.html
http://dejazzer.com/eece4740/index.html

	Slide 1
	Slide 2: Outline
	Slide 3: VHDL overview
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: 1) Structural Description in VHDL
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

