COEN-2710 Microprocessors - Lecture 6

Arithmetic for Computers - Building the ALU (Ch. 3 + Appendices A,C)
Cristinel Ababei
Marquette University
Department of Electrical and Computer Engineering

1

Outline

* Basics
* ALU
* Carry look ahead

Shifting

Design process summary

* 1. Divide and Conquer:

Outline what needs to be accomplished
-Formulate solution in terms of simpler components
Design each component

* 2. Connect, test, and verify:

P Put together the basic building blocks

- Verify that every possible input gives valid output
* 3. Successive refinement:

Evaluate results, correct errors, improve design

Design Methodologies

Hierarchical Design to manage complexity

* Top Down vs. Bottom Up
- Block Diagrams
- Decomposition into Bit Slices
- Truth Tables, K-Maps
- Circuit Diagrams
- Other: state \& timing diagrams, ...
* Measurement Criteria:
- Design Performance
- Design Cost
- Design Time
- Gate count
- Power dissipation
- ...

First step: arithmetic circuits

Questions to be addressed:

* How do we represent numbers?
- Integers vs. floating-point (i.e., real numbers)
- Negative numbers
* How do we implement:
- Addition?
-Subtraction?
-Multiplication?
Division?
* How do we handle errors? (overflow, etc.)

5

Possible Representations

Sign Magnitude:	One's Complement	Two's Complement $000=+0$
$000=+0$	$000=+0$	
$001=+1$	$001=+1$	$001=+1$
$010=+2$	$010=+2$	$010=+2$
$011=+3$	$011=+3$	$011=+3$
$100=-0$	$100=-3$	$100=-4$
$101=-1$	$101=-2$	$101=-3$
$110=-2$	$110=-1$	$110=-2$
$111=-3$	$111=-0$	$111=-1$

* Issues: balance, number of zeros, ease of operations *Which one is best? Why?

RISC-V - Two's complement

* Positive numbers - regular binary
* Negative numbers
- Take equivalent positive binary number
- Flip the bits
- Add 1
* Significant design advantages

Easy to negate numbers (steps given above)

- Easy to check positive/negative (still have sign bit)
- Biggest one: adding and subtracting work right!

Sign extension

We will often need to take a 16-bit number and put it into a 32-bit (or 64-bit) location.
Doing this in two's complement requires some slight additional care:

- Must always replicate the left-most bit (sign bit) into the other positions.
- This process is called sign-extension, and is built into most commands

Unsigned numbers

*Sometimes we have variables (like counters) that can only be positive. By not using two's complement for these cases, we get a whole extra bit of representation.
*Positive-only numbers are called unsigned.

* Math commands on unsigned numbers will have to be handled carefully, both in design and in programming (especially with the built-in sign extension)

9

Addition \& Subtraction

* Two's complement operations easy
- subtraction using addition of negative numbers

0111
$\begin{array}{r}1010 \\ \hline\end{array}$

* Overflow (result too large for finite computer word):
\checkmark e.g., adding two n-bit numbers does not yield an n-bit number
0111
$\begin{array}{r}+0001 \\ \hline 1000\end{array}$

Integer Addition

* Example: 7 + 6

- Overflow if result out of range
- Adding positive and negative operands, no overflow
- Adding two positive operands
- Overflow if result sign is 1
- Adding two negative operands
- Overflow if result sign is 0

Integer Subtraction

Add negation of second operand
Example: 7-6 = 7 + (-6)
+7: $00000000 \ldots 00000111$
-6: $11111111 \ldots 11111010$
+1: $00000000 \ldots 00000001$

* Overflow if result out of range
- Subtracting two positive or two negative operands, no overflow
-Subtracting positive from negative operand > Overflow if result sign is 0
-Subtracting negative from positive operand $>$ Overflow if result sign is 1

Practice

1. Represent $+14,-14,+25$, and -25 in 6-bit two's complement notation
2. Using these representations,
a) Add -14 + -14
b) Add $14+-25$
c) Add $14+25$
3. Any overflows?

Detecting Overflow

* No overflow when adding a positive and a negative number
* No overflow when signs are the same for subtraction
$\%$ Overflow occurs when the value affects the sign:
\checkmark adding two positives yields a negative
- adding two negatives gives a positive
- subtract a negative from a positive and get a negative
- subtract a positive from a negative and get a positive
* How to handle overflow:
- Control jumps to predefined address for exception
- Interrupted address is saved for possible resumption
- Ignore it (several commands for unsigned arithmetic do not cause exceptions on overflow)

Outline

*Basics

* ALU
* Carry look ahead * Shifting

The Arithmetic Logic Unit (ALU)

*Will use a bottom-up approach to design a 32-bit ALU (64-bit is similar)

* Based on the chosen instruction set, we need to be able to implement:
- Addition
- Subtraction
- Bit-wise AND
- Bit-wise OR
- Set on less-than
- Zero-flag (BNE)
- Nor

- Shift left

Shift right

- Multiplication
- Division
(Will do later)

Building blocks: Start with 1-bit ALU

Start with just AND, OR, ADD functions
ALU inputs:

- Input A, Input B, Carry In, Control flags
(for deciding what operation is implemented)

ALU outputs:

Result, Carry Out

* Practice: Work out the logic formulas for Add from the basic concept of addition

ALU formulas

AND
Result = AB
OR

- Result = A+B

ADD
\bullet Result $=\bar{A} \bar{B} C_{i}+A \bar{B} \bar{C}_{i}+\bar{A} B \bar{C}_{i}+A B C_{i}$
-Carry Out $=A B+A C_{i}+B C_{i}$

First-pass ALU Implementation

* Implement AND, OR, ADD logic
* Use 3-input mux to select output function
(Operation)

Extending to full 32-bit ALU

* Just need to hook up in series (in chain) so the carries will propagate.
* This is an example of hierarchical design (using building blocks) - what the book calls "abstraction"

Including subtraction

* Subtraction is just A plus \bar{B}, so just need an inverter!
\% Implement AND, OR, ADD logic
* Use 2-input mux to choose ADD/SUB (Binvert)
* Use 3-input mux to select output function (Operation)

Flip the bits

Including NOR

* A NOR operation can be written as $\bar{A} \bullet \bar{B}$ Therefore, we can use the AND gate. Just need another inverter!
* To implement NOR, set Alnvert and Blnvert and Operation = AND

Including Set on Less Than (SLT)

* SLT sets output = 1 if $A<B, 0$ else
* Bitwise formula for slt:

Result $=0$, unless $A-B<0$ and this is LSB

* So:
-Set Binvert (to perform A-B)
- Add a new input called Less
$>$ Connect to logical 0, for all bits except LSB
$>$ Connect LSB Less input to sign bit (MSB) from A-B
Question: Where do we get that sign bit? (We will be setting the result output of the MSB to logic 0)
- Answer: Need slightly modified ALU for MSB; add an output called Set connected to MSB adder

Final Standard and MSB Units

Standard 1-bit units
Chain 31 of them (for bits Index 0..30)

LSB: Connect to Set
Else: Hardwire to 0
MSB unit
Use for last bit (bit Index 31)
(Note we've also added overflow detection to the MSB.)

Final Version with Zero-check flag

Control lines: "ALU operation", 4 bits:

* Ainvert
* Bnegate
* Operation1
* Operation0

0000 = and
$0001=$ or
0010 = add
0110 = sub
0111 = slt
$1100=$ NOR

25

Problem for You

* Analyze the performance of this design
- Does it implement the required tasks? YES
-How long does it take to do it?
> Assume: The logic in a 1-bit adder takes 2 levels of logic to produce the carry output, and each gate has a 1 ns delay in this particular design.
$>$ What's the total amount of delay from IN to OUT for a 32-bit ALU to do an ADD?
* This design is called a ripple carry adder. Not the best

What is the minimum delay possible?

Outline

*Basics

* ALU
* Carry look ahead
* Shifting

Carry look-ahead

So, what do we know without any delay?
\rightarrow The values of the a_{i} and b_{i} inputs
What can we do with them?

- Figure out when a Carry Out will be generated (regardless of the Carry In value).

$$
g_{i}=a_{i} b_{i}
$$

-Figure out when a Carry In will be propagated to the Carry Out. (when $\mathrm{c}_{\text {out }}$ will equal $\mathrm{c}_{\text {in }}$)

$$
p_{i}=a_{i}+b_{i}
$$

* At each bit, we get $c_{\text {out }}=g+p c_{\text {in }}$

4-bit case, expanded	
$c_{1}=$	$g_{0}+p_{0} c_{0}$
$c_{2}=$	$g_{1}+p_{1} c_{1}$
$=$	$g_{1}+p_{1}\left(g_{0}+p_{0} c_{0}\right)$
$=$	$g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}$
$c_{3}=$	$g_{2}+p_{2} c_{2}$
$=$	$g_{2}+p_{2}\left(g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}\right)$
$=$	$g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0}$
$c_{4}=$	$g_{3}+p_{3} c_{3}$
$=$	$g_{3}+p_{3}\left(g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0}\right)$
$=$	$g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}+p_{3} p_{2} p_{1} p_{0} c_{0}$

* Can we build a 16-bit adder this way?
-How much delay would it have?
-How many gate inputs for the MSB Carry Out?
*How about a compromise?
Hierarchical design approach:
-Put together 4 4-bit carry-lookahead adders
Create 4-bit signals: propagates (P0-3), generates (G0-3), carries (C1-4). Example formulas:

$$
\begin{aligned}
& P_{0}=p_{3} P_{2} P_{1} P_{0} \\
& G_{0}=g_{3}+p_{3} g_{2}+p_{3} P_{2} g_{1}+p_{3} P_{2} p_{1} g_{0} \\
& C_{1}=G_{0}+P_{0} c_{0}
\end{aligned}
$$

16-bit hierarchical carry-lookahead

* How much total delay is there in this design?
$-1^{\text {st }}$ level p \& g in ($\mathrm{a} \& \mathrm{~b}$ in $\rightarrow \mathrm{p}$ \& g out)
$-1^{\text {st }}$ level P \& G out?
($\mathrm{p} \& \mathrm{~g}$ in $\rightarrow \mathrm{P} \& \mathrm{G}$ out)
- $2^{\text {nd }}$ level Carry Out?
($\mathrm{P} \& \mathrm{G}$ in $\rightarrow \mathrm{C}$ out)
$\rightarrow 1^{\text {st }}$ level carry in?
(C in $+\mathrm{p} \& \mathrm{~g}$ in $\rightarrow \mathrm{c}$ in)
- Result out?
(a \& b \& c in \rightarrow Result out)
* What is the performance improvement?

Outline

* Basics
* ALU
* Carry look ahead
* Shifting

Shifting

Shifting we need to implement (6 kinds)
 - Direction: Left or right
 - Extension:

> Logical (Zero extended)
$>$ Arithmetic (Sign extended)
$>$ Rotate (extended by rotation of bits)

* Goal - shift in 1 clock cycle. Common types:
$>$ Barrel Shifter (Full mux into flip-flop for each bit)
$>$ Combinational Shifter (Hierarchical, MUX-based)
$>$ Funnel Shifter (Selects a region of a doubled register)

Combinational Shifter from MUXes

* 8-bit right shifter

Issues/questions

* What comes in the MSBs?
* How many levels for 32-bit shifter?
* How can we do rotates (circular shifting)?

Funnel Shifter

* Advantage: Can do all 6 kinds of shifts with same hardware (can still use combinational mux design).

Type	Left half	Right half	Offset
Logical Left	$\mathbf{R}_{\mathrm{N}-1}-\mathbf{R}_{0}$	$\mathbf{0} \ldots 0$	$\mathrm{~N}-\mathrm{k}$
Logical Right	$\mathbf{0} \ldots 0$	$\mathbf{R}_{\mathrm{N}-1}-\mathbf{R}_{0}$	\mathbf{k}
Arithmetic Left	$\mathbf{R}_{\mathrm{N}-1}-\mathbf{R}_{0}$	$\mathbf{0} \ldots 0$	$\mathrm{~N}-\mathrm{k}$
Arithmetic Right	$\mathbf{R}_{\mathrm{N}-1} \ldots \mathbf{R}_{\mathrm{N}-1}$	$\mathbf{R}_{\mathrm{N}-1}-\mathbf{R}_{0}$	k
Rotate Left	$\mathbf{R}_{\mathrm{N}-1}-\mathbf{R}_{0}$	$\mathbf{R}_{\mathrm{N}-1}-\mathbf{R}_{0}$	$\mathrm{~N}-\mathrm{k}$
Rotate Right	$\mathbf{R}_{\mathrm{N}-1}-\mathbf{R}_{0}$	$\mathbf{R}_{\mathrm{N}-1}-\mathbf{R}_{0}$	\mathbf{k}

