
1

COEN-4710 Computer Hardware

Lecture 8

From ILP to Parallel Processors

(Ch.6)

Cristinel Ababei

Marquette University

Department of Electrical and Computer Engineering

2

Outline

• Limits of Instruction Level Parallelism (ILP)

• TLP – Hardware Multithreading

• Multiprocessors and Multicores (+ Networks-
on-Chip)

• Graphics Processor Units (GPUs)

• Domain Specific Architectures

1

2

2

3

Getting CPI less than 1

Superscalar and VLIW processors
• Trade-off between static and dynamic instruction

scheduling
– Static scheduling places burden on software

– Dynamic scheduling places burden on hardware

• Superscalar processors issue a variable number of
instructions per cycle, up to a maximum, using static
(compiler) or dynamic (hardware) scheduling

• VLIW processors issue a fixed number of instructions per
cycle, seen as a packet (potentially with empty slots),
and created and scheduled statically by the compiler

4

Superscalar Execution

• A superscalar architecture is one in which
several instructions can be initiated
simultaneously and executed independently.

• Pipelining allows several instructions to be
executed at the same time, but they have to be
in different pipeline stages at a given moment.

• Superscalar architectures include all features
of pipelining but, in addition, there can be
several instructions executing simultaneously
in the same pipeline stage.

3

4

3

5

Superscalar Execution

Superscalar processor with dynamic
scheduling

• Extend Tomasulo’s algorithm to handle
multiple issue

• Instructions issued in program order

• Cannot issue multiple dependent instructions
in the same cycle. Two ways to deal with that:

1. Issue stage split in halves to issue dependent instructions in
the same cycle (one in half cycle, another in the second
half); not scalable

2. Add logic to be able to handle two or more instructions at the
same time; this done at Issue stage to process instructions
and find dependencies

6

5

6

4

7

Limitations of multiple-issue processors

8

The Future?

• Moving away from ILP enhancements

7

8

5

Outline

• Limits of Instruction Level Parallelism (ILP)

• TLP – Hardware Multithreading

• Multiprocessors and Multicores (+ Networks-
on-Chip)

• Graphics Processor Units (GPUs)

• Domain Specific Architectures

Performance Beyond Traditional ILP

• There can be much higher natural parallelism
in some applications (e.g., Database or
Scientific codes)

• Explicit
– Thread Level Parallelism (TLP) or

– Data Level Parallelism (DLP)

• Thread: light-weight process with own
instructions and data

– Each thread has all the state (instructions, data, PC, register
state, and so on) necessary to allow it to execute

• Data Level Parallelism: Perform identical
operations on data, and lots of data

9

10

6

Thread Level Parallelism (TLP)

• Goal: Improve Uniprocessor Throughput

• ILP exploits implicit parallel operations within a loop or
straight-line code segment

• TLP explicitly represented by the use of multiple threads of
execution that are inherently parallel

• Goal: Use multiple instruction streams to improve
1. Throughput of computers that run many programs

2. Execution time of multithreaded programs

• TLP could be more cost-effective to exploit than ILP

12

Multithreaded Execution

• Hardware Multithreading: multiple threads to share the
functional units of 1 processor via overlapping

– processor must duplicate independent state of each thread e.g., a
separate copy of register file, a separate PC, and for running
independent programs, a separate page table

– memory shared through the virtual memory mechanisms, which
already support multiple processes

– HW for fast thread switch; much faster than full process switch
(which can take 100s to 1000s of clocks)

» single process might contain multiple threads; all threads within
a process share the same memory space, and can communicate
with each other directly, because they share the same variables

• When to switch between threads?
1.Alternate instruction per thread (fine grain)

2.When a thread is stalled, perhaps for a cache miss, another thread
can be executed (coarse grain)

11

12

7

Simple Multithreaded Pipeline

13

14

1. Fine-Grained Multithreading

• Switches between threads on each cycle, causing the
execution of multiples threads to be interleaved

• Usually done in a round-robin fashion, skipping any
stalled threads

• CPU must be able to switch threads every clock

• Advantage is it can hide both short and long stalls, since
instructions from other threads executed when one
thread stalls

• Disadvantage is it slows down execution of individual
threads, since a thread ready to execute without stalls
will be delayed by instructions from other threads

• Used on Sun’s T1 (2005) and T2 (Niagara, 2007)

13

14

8

15

Fine-Grained Multithreading on the Sun T1

• Circa 2005; first major processor to focus on TLP
rather than ILP

16

CPI on Sun T1

• T1 has 8 cores; with 4 threads/core

• Ideal effective CPI per thread? (4)

• Ideal per-core CPI? (1)

• In 2005 when it was introduced, the Sun T1 processor had
the best performance on integer applications with extensive
TLP and demanding memory performance, such as
SPECJBB and transaction processing workloads

15

16

9

17

2. Course-Grained Multithreading

• Switches threads only on costly stalls, such as L2 cache
misses

• Advantages
– Relieves need to have very fast thread-switching

– Doesn’t slow down thread, since instructions from other threads
issued only when the thread encounters a costly stall

• Disadvantage is hard to overcome throughput losses
from shorter stalls, due to pipeline start-up costs

– Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

– New thread must fill pipeline before instructions can complete

• Because of this start-up overhead, coarse-grained
multithreading is better for reducing penalty of high cost
stalls, where pipeline refill time << stall time

• Used in IBM AS/400, but not in modern processors

• Techniques presented so far have all been
“vertical” multithreading where each pipeline stage
works on one thread at a time

• SMT uses fine-grain control already present inside
an OOO superscalar to allow instructions from
multiple threads to enter execution on same clock
cycle. Gives better utilization of machine resources.

18

3. Simultaneous Multithreading (SMT) for OOO
superscalars

17

18

10

19

Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT): a variation of fine-
grained multithreading implemented on top of a
multiple-issue, dynamically scheduled processor

• Add multiple contexts and fetch engines and allow
instructions fetched from different threads to issue
simultaneously

• Utilize wide out-of-order superscalar processor issue
queue to find instructions to issue from multiple threads

• OOO instruction window already has most of the
circuitry required to schedule from multiple threads

• Any single thread can utilize whole machine

• Used in Core i7 (2008) and IBM Power 7 (2010)

20

Illustration of Multithreading Categories

T
im

e
(p

ro
ce

ss
or

 c
yc

le
)

Superscalar Fine-Grained Coarse-Grained
Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

Execution slots

19

20

11

Example 1: Intel Core i7

• Aggressive out-of-order speculative
microarchitecture

• Total pipeline depth is 14 stages; branch
mispredictions cost 17 cycles

• 48 load and 32 store buffers

• Six independent functional units can each begin
execution of a ready micro-op in the same cycle

• Uses a 36-entry centralized reservation station
shared by six functional units, with ROB

– Up to six micro-ops may be dispatched to functional
units every cycle

21

Intel Core i7 Performance: CPI

22

The CPI for the 19 SPECCPU2006 benchmarks shows an average CPI of 0.83

for both the FP and integer benchmarks. SMT further improves performance by

15-30% (according to Intel)

21

22

12

23

Outline

• Limits of Instruction Level Parallelism (ILP)

• TLP – Hardware Multithreading

• Multiprocessors and Multicores (+ Networks-
on-Chip)

• Graphics Processor Units (GPUs)

• Domain Specific Architectures

24

Back to Basics

• “A parallel computer is a collection of processing elements that
cooperate and communicate to solve large problems fast.”

Parallel Architecture =

Computer Architecture + Communication Architecture

• Two classes of multiprocessors WRT memory:

1. Centralized Memory Multiprocessor

• < few dozen processor chips (and < 100 cores)

• Small enough to share single, centralized memory

2. Physically Distributed-Memory multiprocessor

• Larger number chips and cores than 1

• BW demands Memory distributed among processors

23

24

13

25

Centralized vs. Distributed Memory

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Shared cache

Main Mem

Centralized

Shared-memory

Multiprocessor

Distributed-memory

Multiprocessor

Scale

26

1. Centralized Memory
Multiprocessor

• Also called symmetric multiprocessors (SMPs)
because single main memory has a symmetric
relationship to all processors

• Large caches single memory can satisfy
memory demands of small number of processors

• Can scale to a few dozen processors by using a
switch and by using many memory banks

• Although scaling beyond that is technically
conceivable, it becomes less attractive as the
number of processors sharing centralized
memory increases

25

26

14

Centralized Memory Multiprocessor

27

SMP Examples: Commodity processors

4/26/2023
28

Note size of

crossbar:

about die

area of one

core

27

28

15

29

2. Distributed Shared Memory (DSM)
Multiprocessor

• Also called non uniform memory access (NUMA)
since the access time depends on the location of
a data word in memory

• Pros:

– Cost-effective way to scale memory bandwidth

• If most accesses are to local memory

– Reduces latency of local memory accesses

• Cons:

– Communicating data between processors more complex

– Must change software to take advantage of increased
memory BW

Distributed Shared Memory
Multiprocessor

30

29

30

16

NUMA Example

31

32

Two Models for Communication and
Memory Architecture

1. Communication in DSM and SMP occurs through a
shared address space (via loads and stores):
shared memory multiprocessors either

• UMA (Uniform Memory Access time) for shared
address, centralized memory MP

• NUMA (Non Uniform Memory Access time
multiprocessor) for shared address, distributed
memory MP

2. Communication occurs by explicitly passing
messages among the processors:
message-passing multiprocessors

• Mostly clusters and warehouse scale systems

31

32

17

Networks-on-Chip (NoC)

• See separate PPT
presentation dedicated to
this topic only!

33

34

Outline

• Limits of Instruction Level Parallelism (ILP)

• TLP – Hardware Multithreading

• Multiprocessors and Multicores (+ Networks-
on-Chip)

• Graphics Processor Units (GPUs)

• Domain Specific Architectures

33

34

18

Graphics Processing Units (GPUs)

• Original GPUs were dedicated fixed-function devices for
generating 3D graphics (mid-late 1990s) including high-
performance floating-point units

– Provide workstation-like graphics for PCs

– Programmability was an afterthought

• Over time, more programmability added (2001-2005)

– E.g., New language Cg (Nvidia) for writing small programs run on
each vertex or each pixel, also Windows DirectX variants

– Massively parallel (millions of vertices or pixels per frame) but very
constrained programming model

• Graphics logical pipeline:

Historical PC

36

35

36

19

Contemporary: Intel, AMD

37

38

Basic unified GPU architecture

Example GPU with 112 streaming processor (SP) cores organized in 14 streaming multiprocessors (SMs); the cores

are highly multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The processors connect

with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has eight SP cores, two special

function units (SFUs), instruction and constant caches, a multithreaded instruction unit, and a shared memory.

37

38

20

A Shift in the GPU Landscape

• Some users noticed they could do general-purpose
computation by mapping input and output data to
images, and computation to vertex and pixel shading
computations

• Referred to as general-purpose computing on
graphics processing units (GP-GPU)

• Incredibly difficult programming model as had to use
graphics pipeline model for general computation

– A programming revolution was needed!

39

General-Purpose GPUs (GP-GPUs)

• In 2006, Nvidia introduced GeForce 8800 GPU supporting
a new programming language: CUDA

– “Compute Unified Device Architecture”

– Subsequently, broader industry pushing for OpenCL, a vendor-neutral
version of same ideas.

• Idea: Take advantage of GPU computational performance
and memory bandwidth to accelerate some kernels for
general-purpose computing

• Attached processor model: Host CPU issues data-parallel
kernels to GP-GPU for execution

• This lecture has a simplified version of Nvidia CUDA-style
model and only considers GPU execution for
computational kernels, not graphics

– Would need another course to describe graphics processing

39

40

21

CUDA Revolution

• CUDA Community Showcase

– http://www.nvidia.com/object/gpu-applications.html

– Computational fluid dynamics, EDA, finance, life sciences, signal processing, …

– Speed-up’s of >300x for some applications

• GPU Technology Conference

– http://www.gputechconf.com/page/home.html

– Include archive of previous editions

• General-Purpose Computation on Graphics Hardware

– http://gpgpu.org/

– Catalog the current and historical use of GPUs for general-purpose computation

• Download CUDA

– https://developer.nvidia.com/cuda-downloads

– And start using it!

• Many universities have already courses dedicated to teaching and
using CUDA

41

42

• As a programming model, CUDA is a set of
extensions to ANSI C

• CPU code is compiled by the host C compiler and
the GPU code (kernel) is compiled by the CUDA
compiler. Separate binaries are produced

CUDA Compilation

41

42

http://www.nvidia.com/object/gpu-applications.html
http://www.gputechconf.com/page/home.html
http://gpgpu.org/
https://developer.nvidia.com/cuda-downloads

22

43

GPU Memory Hierarchy

Thread

Per-thread
Local Memory

Block

Per-block
Shared
Memory

Kernel

0

. .

.
Per-device

Global
Memory

. . .

Kernel

1

Sequential

Kernels

44

CUDA Device Memory Space Overview

• Each thread can:

– R/W per-thread registers

– R/W per-thread local memory

– R/W per-block shared memory

– R/W per-grid global memory

– Read only per-grid constant
memory

– Read only per-grid texture
memory

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host⚫ The host can R/W
global, constant, and
texture memories

43

44

23

45

Example: Tesla Architecture

⚫ Used for Technical and Scientific Computing

⚫ L1/L2 Data Cache

— Allows for caching of global and local data

— Same on-chip memory used for Shared and L1

— Configurable at kernel invocation

46

CPU vs. GPU memory hierarchies

45

46

24

47

Entire system view: CPU + discrete GPU

48

Figure 6.12 Quick guide to GPU terms. We use the first column for hardware terms. Four groups

cluster these 12 terms. From top to bottom: Program Abstractions, Machine Objects, Processing Hardware,

and Memory Hardware.

47

48

25

49

Outline

• Limits of Instruction Level Parallelism (ILP)

• TLP – Hardware Multithreading

• Multiprocessors and Multicores (+ Networks-
on-Chip)

• Graphics Processor Units (GPUs)

• Domain Specific Architectures

50

Domain Specific Architectures (DSA)

Figure 6.13 TPUv1 Block Diagram. The main computation part is the Matrix Multiply Unit (MXU) in the upper-right corner. Its

inputs are the Weight FIFO and the Unified Buffer and its output is the Accumulators. The 24 MiB Unified Buffer is almost a

third of the TPUv1 die, and the MXU with 65,536 multiple-accumulate ALUs is a quarter, so the datapath is nearly two-thirds

of the TPUv1 die. For CPUs, Multilevel caches are often two-thirds of the die. (Adapted from Hennessy JL, Patterson DA.

49

50

26

1. Use dedicated memories to minimize distance
over which data are moved

2. Invest resources saved from dropping advanced
microarchitectural optimizations into more
arithmetic units or bigger memories

3. Use the easiest form or parallelism that matches
the domain

4. Reduce data size and type to the simplest
needed for the domain

5. Use a domain-specific programming language
to port code to DSAs

51

DSA Five Principles

Conclusion

• ILP ran out of steam

• Parallelism (thread and core)
took over

• GPUs have become general
purpose, thousands of cores

• DSAs at the beginning

• Cloud – datacenters/warehouse
scale computers

52

51

52

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Superscalar processor with dynamic scheduling
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Performance Beyond Traditional ILP
	Slide 11: Thread Level Parallelism (TLP)
	Slide 12: Multithreaded Execution
	Slide 13: Simple Multithreaded Pipeline
	Slide 14: 1. Fine-Grained Multithreading
	Slide 15
	Slide 16
	Slide 17: 2. Course-Grained Multithreading
	Slide 18: 3. Simultaneous Multithreading (SMT) for OOO superscalars
	Slide 19: Simultaneous Multithreading (SMT)
	Slide 20: Illustration of Multithreading Categories
	Slide 21: Example 1: Intel Core i7
	Slide 22: Intel Core i7 Performance: CPI
	Slide 23
	Slide 24
	Slide 25: Centralized vs. Distributed Memory
	Slide 26: 1. Centralized Memory Multiprocessor
	Slide 27: Centralized Memory Multiprocessor
	Slide 28: SMP Examples: Commodity processors
	Slide 29: 2. Distributed Shared Memory (DSM) Multiprocessor
	Slide 30: Distributed Shared Memory Multiprocessor
	Slide 31: NUMA Example
	Slide 32: Two Models for Communication and Memory Architecture
	Slide 33: Networks-on-Chip (NoC)
	Slide 34
	Slide 35: Graphics Processing Units (GPUs)
	Slide 36: Historical PC
	Slide 37: Contemporary: Intel, AMD
	Slide 38
	Slide 39: A Shift in the GPU Landscape
	Slide 40: General-Purpose GPUs (GP-GPUs)
	Slide 41: CUDA Revolution
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: DSA Five Principles
	Slide 52: Conclusion

