
1

Lecture 1
Introduction

Cristinel Ababei
Dept. of Electrical and Computer Engineering

COEN-4720 Embedded Systems

1

Outline

•Admin

•What is an Embedded System (ES)

•Examples of embedded systems

•Embedded systems characteristics

•How to design an embedded system

•ARM Cortex-M processors

2

1

2

2

Admin

•Discussion of Syllabus

•Grading policies, attendance, labs, etc.

•Course websites:
 D2L:

• https://d2l.mu.edu/d2l/login

 Public:
• http://dejazzer.com/coen4720/index.html

3

What is an Embedded System?

•Multiple definitions:
 Any electronic system that uses a computer chip, but that is not a

general-purpose workstation, desktop or laptop computer

 Some combination of computer hardware and software, either fixed
in capability or programmable, that is specifically designed for a
particular function

 A multi-agent system and computer system designed for specific
control functions within a larger system, often with real-time
computing constraints

 …

4

3

4

https://d2l.mu.edu/d2l/login
http://dejazzer.com/coen4720/index.html

3

5

• Systems that are part of a larger system
– Application-specific

• Diverse application areas

• Tight constraints
– Real-time, performance, power, size

– Cost, time-to-market, reliability

• Ubiquitous
– Far bigger market than general purpose

computing (PCs, servers)
• 98% of all processors sold

Embedded Systems

Where are Embedded Systems Used?

•Everywhere
 industrial machines

 automobiles, trains

 airplanes, space vehicles

 medical equipment

 video games, cameras, MP3 players, TVs

 cell phones

 vending machines, household appliances, toys

 ...

6

5

6

4

Types of Embedded Systems
•General

 similar to traditional computer systems, in a smaller package
 PDA’s
 portable games

•Communications
 cell phones

•Signal Processing
 video and audio

•Control
 real time feedback control
 automotive
 aerospace
 appliances

7

Example of Embedded System: Digital Camera

• Single functionality - always a digital camera

• Tightly constrained - low cost, low power, small, fast

• Reactive and real time - only to a small extent
8

Microcontroller

CCD preprocessor Pixel coprocessor
A2D

D2A

JPEG codec

DMA controller

Memory controller ISA bus interface UART LCD ctrl

Display ctrl

Multiplier/Accum

Digital camera chip

Lens

CCD

7

8

5

9

Example of Embedded System: Mobile Phone

Mobile phones: the most successful technology ever?

10

9

10

6

Outline

•Admin

•What is an Embedded System (ES)

•Examples of embedded systems

•Embedded systems characteristics

•How to design an embedded system

•ARM Cortex-M processors

11

Embedded Systems Characteristics

12

11

12

7

Embedded Systems Characteristics
• Part of a larger system (system within system)
• Computational
• Interact (sense, manipulate, communicate) with the

external world: sensors, actuators
• Reactive: at the speed of the environment
• Heterogeneity: hardware/software blocks, mixed

architectures
• Networked: shared, adaptive, sensor networks (buildings,

environmental monitoring), smart products, wearable
computing

• Flexibility: can run/implement multiple applications
sequentially or concurrently - concurrency

• Reprogrammability/reconfigurability: flexibility in
upgrading, bug fixing, product differentiation, product
customization

• Performance and constraints:
 Timing (frequency, latency, throughput)
 Real time critical, safety, reliability
 Power consumption, area, temperature
 Weight, size, cost (hardware & software), time to market

13

Source: theengineeringprojects.com

Key Trends
• Difficult to design

 Planes still crash

 Car recalls…

• Getting even harder to design:
 Increasing computation demands, increasing complexity

• e.g., multimedia processing in set-top boxes, HDTV

 Increasingly networked and distributed

 Increasing need for flexibility
• programmable & customizable

• time-to-market under ever changing standards

 Reaching physical limits of technology scaling
• Power walls (and dark silicon)

• Efficiency/optimality vs. flexibility/generality

14

13

14

8

15

• Technological advances
 Higher integration: more blocks on the same chip
 Multi-Processor System-On-Chip (MPSoC)

• Embedded systems evolve toward
 System-on-Chip (SoC)
 Cyber Physical Systems (CPS)

• IP reuse, platform based design, NoC vs. Bus
•HW-SW co-design
•Diversity in design methodologies, platform dependent, lack of

standards, quality risks, customer confusion
• Systems are designed and built as “systems of systems”
•Opportunity and need for specialization

 Heterogeneous multi-core / Asynchronous CMP
 GP-GPUs

Key Trends

16

SoC and IoT Market Size

15

16

9

Outline

•Admin

•What is an Embedded System (ES)

•Examples of embedded systems

•Embedded systems characteristics

•How to design an embedded system

•ARM Cortex-M processors

17

18

Design Process

17

18

10

19

Abstraction Layers

Object code

Gate-level models
Switch-level models
Circuit-level models
Device-level models
Layout models

System

Task

Instruction

Component

Logic

RTLISA

uArch Gate

Architecture

• Complexity
• High degree of parallelism at various levels
• High degree of design freedom
• Multiple optimization objectives design constraints

• Handled by working at higher levels of abstraction, hierarchy

System Level Design
•From specification

 Functionality, behavior
• Application algorithms

• Constraints

•To implementation
 Architecture

• Spatial and temporal order
• Components and connectivity

• Across hardware and software

•Design automation at system level
 Modeling & simulation
 Synthesis & exploration
 Verification

20

19

20

11

1) System Specification
•Capture requirements (what)

 Functional
• Free of any implementation details

 Non-functional
• Constraints

•Formal representation
 Models of computation

• Objects & composition rules
• Concurrency & time
• Computation & communication

 Executable
• Semantics

•Application development
 Precise description of desired system

behavior
• Complete and unambiguous

21

2) System Architecture
•Architecture definition

 Processing elements (PEs)
• Processors, memories, FPGAs, DSPs

 Communication elements
• Busses, Networks-on-Chip (NoCs), transducers, bus bridges

•Virtual platform prototyping
 PE simulation (functional, full-system) for computation
 Event-driven simulation, transaction-level modeling

(TLM) for communication

•Design space exploration and system
optimization
 Partitioning, mapping (allocation + binding),

scheduling
 Estimation: Synthesis based on abstraction only makes

sense if there are powerful estimation methods
available:

• Estimate properties of the next layer(s) of abstraction
• Design decisions are based on these estimated properties

22

21

22

12

3) System Implementation

23

•Hardware
 Microarchitecture models
 Register-transfer level (RTL)
 Layouts

•Software binaries
 Application object code
 Real-time operating system (RTOS)
 Hardware abstraction layer (HAL)

•System netlist
 Pins and wires
 Arbiters, muxes, interrupt controllers (ICs), etc.
 Bus protocol state machines

24

Hardware vs. Software Modules
• Significant part of the problem is deciding which parts should be in

software on programmable processors, and which in specialized
hardware

• Hardware = functionality implemented via a custom architecture
(datapath + FSM)

• Software = functionality implemented in software on a
programmable processor

• Key differences:
– Multiplexing

• software modules multiplexed with others on a processor
• hardware modules are typically mapped individually on dedicated hardware

– Concurrency
• processors usually have one “thread of control”
• dedicated hardware often has concurrent datapaths

23

24

13

25

Concept Specification
HW/SW

Partitioning

Hardware Components

Software Components

Estimation -

Exploration

Hardware

Software

Validation and Evaluation (area, power, performance, …)

HW/SW Co-design

Co-simulation

OK?

26

HW/SW Co-design
• HW/SW Co-design means the design of a special-purpose system

composed of a few application-specific ICs that cooperate with
software procedures on general-purpose processors (1994)

• HW/SW Co-design means meeting system-level objectives by
exploiting the synergism of hardware and software through their
concurrent design (1997)

• HW/SW Co-design tries to increase the predictability of embedded
system design by providing analysis methods that tell designers if
a system meets its performance, power, and size goals and
synthesis methods that let designers rapidly evaluate many
potential design methodologies (2003)

• It moved from an emerging discipline (early ‘90s) to a mainstream
technology (today)

25

26

14

27

System Level Design Flow (Methodology)

• Past and present:

– Ad hoc approaches based on earlier experience with
similar products, and on manual design

– HW/SW partitioning decided at the beginning, and
then designs proceed separately

• Present and future:

– From HW/SW co-design to HW/SW co-synthesis

– Design automation (CAD) tools: very challenging

28

From HW/SW Co-design to HW/SW Co-synthesis

• Early approaches: HW/SW partitioning would be done first
and then HW/SW blocks would be synthesized separately

• Ideally, system synthesis would do HW/SW partitioning,
mapping, and scheduling in a unified fashion – very difficult

• Design space exploration (estimation and refinement)
would also be done in a unified fashion; by working at the
same time with both HW and SW modules → co-synthesis

• Key: communication models

27

28

15

29

HW/SW Co-synthesis

• Co-synthesis: Synthesize the
software, hardware and interface
implementation in a unified fashion.

• Done concurrently with as much
interaction as possible between the
three implementations.

Outline

•Admin

•What is an Embedded System (ES)

•Examples of embedded systems

•Embedded systems characteristics

•How to design an embedded system

•ARM Cortex-M processors

30

29

30

16

Why study the ARM architecture (Cortex-M0+ in particular)?

•Very popular in industry
• Lots of manufacturers design MCUs based off ARM processors

 What differentiates these products? Peripherals (aka devices)!

31

Summary

•Embedded systems are everywhere!

•Big picture:
 Embedded systems → SoC, IoT

 Abstraction layers and system-level design → handle complexity

 Key challenge: optimization of design metrics, which compete with
one another

 Unified view of hardware & software is necessary

•Focus of this course:
 Rather simple embedded systems - ARM Cortex-M0+ based MCU

32

31

32

17

Embedded Systems and You
•As engineers, it is very likely that you will:

 Design microprocessors and other digital circuits (e.g., ASICs, FPGAs, etc.)
to be used in embedded applications

 Develop algorithms (control, signal processing, etc.) that will be
implemented on embedded microprocessors

 Develop software (e.g., design automation CAD tools, RTOS, apps, etc.)
for the embedded market

 Work in application fields that involve an embedded microprocessor
 Design sensors/actuators (e.g., MEMS devices) that may be used in

embedded systems
 Design and implement complete systems that contain embedded systems

•It is certain that you encounter embedded systems in all
aspects of your daily life!

33

34

Skills Needed

• An embedded system application involves a diverse set of
skills that extend across traditional disciplinary boundaries,
including
– computer hardware

– software

– algorithms

– interface electronics

– application domain

• Make engineering tradeoffs that extend across these
boundaries

33

34

	Slide 1: Lecture 1 Introduction
	Slide 2: Outline
	Slide 3: Admin
	Slide 4: What is an Embedded System?
	Slide 5
	Slide 6: Where are Embedded Systems Used?
	Slide 7: Types of Embedded Systems
	Slide 8: Example of Embedded System: Digital Camera
	Slide 9: Example of Embedded System: Mobile Phone
	Slide 10: Mobile phones: the most successful technology ever?
	Slide 11: Outline
	Slide 12: Embedded Systems Characteristics
	Slide 13: Embedded Systems Characteristics
	Slide 14: Key Trends
	Slide 15: Key Trends
	Slide 16
	Slide 17: Outline
	Slide 18
	Slide 19
	Slide 20: System Level Design
	Slide 21: 1) System Specification
	Slide 22: 2) System Architecture
	Slide 23: 3) System Implementation
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Outline
	Slide 31: Why study the ARM architecture (Cortex-M0+ in particular)?
	Slide 32: Summary
	Slide 33: Embedded Systems and You
	Slide 34

