COEN-4720 Embedded Systems

Lecture 5
Interrupts

Cris Ababei
Dept. of Electrical and Computer Engineering

([} MARQUETTE

BE THE DIFFERENCE.

Outline

e|ntroduction
eNVIC and Interrupt Control

eProgram Image and Start-up
Sequence

How Does it Work?

e Something tells the processor core (which is running the main
execution flow) there is an interrupt/exception

e Core transfers control to code that needs to be executed to address the
interrupt

e Said code “returns” to the main (old) program

Program
execution

Peripheral

®

(Interrupt
Request)

IRQ

-
-

Processor

Thread
e.g. main|

Thread

resume

Processor status and
some registers are save
to stack d___ﬂ{f'

©) e

)

4 o T——
O Processor status and —————__ Interupt
some registers are return

restored from the stack

Handler

®

Service the
peripheral
request

Figure 8.1
Interrupt handling concept.

Some Questions

e How do you figure out where to branch/jump to?

° If you know number the possible interrupt cases, and an interrupt comes in, you can
just branch to a location, using that number as an offset

e How to you ensure that you can get back to where you started?
© Store return address to stack or dedicated register

e Don’t we have a pipeline? What about partially executed
instructions?
° Complex architectures

e What if we get an interrupt while we are already “processing” an
interrupt?
° Nested interrupts: handle directly, ignore, prioritize

e \What if we are in a “critical section?”
° Prioritization

Interrupts

e An interrupt is the automatic transfer of software execution
in response to a hardware event that is asynchronous with
the current software execution

eThis hardware event is called a trigger and it breaks the
execution flow of the main thread of the program

eThe event causes the CPU to stop executing the current
program and begin executing a special piece of code called
an interrupt handler or interrupt service routine (ISR)

e Typically, the ISR does some work and then resumes the
interrupted program

Interrupts

e The hardware event can either be:

1) A busy-to-readg transition in an external I/O device. Caused by
the external worl

° Peripheral/device, e.g., UART input/output device

° Reset button, Timer expires, Power failure, System error

° Names: exception, interrupt, external interrupt

2) An internal event
° Bus fault, memory fault
° A periodic timer
° Div. by zero, illegal/unsupported instruction
° Names: exception, trap, system exception

e When the hardware needs service, signified by a busy to ready
]§|tate transition, it will request an interrupt by setting its trigger
ag

Cortex-M Interrupts

eExceptions:
° System exceptions: numbered 1 to 15
°External interrupt inputs: numbered from 16 up
eDifferent numbers of external interrupt inputs
(from 1 to 32-240) and different numbers of
priority levels

eValue of current running exception is indicated
by:

°Special register Interrupt Program Status Register (IPSR)

List of System Exceptions

Number Exception type Priority" Function

1 Reset) Reset

2 NMI -2 Non-Maskable Interrupt

3 Hard Fault 1 All classes of Fault, when the fault cannot activate because of

priority or the Configurable Fault handler has been disabled.
i Memory » MPU mismatch, including access violation and no match. This is
Management® Configurable” o even if the MPU is disabled or not present.

: Pre-fetch fault, memory access fault, and other address/memory
¢

5 Bus Fault Configurable related.

6 U — Corlfgutabie Usage fault, such as Undefined instruction executed or illegal state

sage Fau

transition attempt.

SecureFault is available when the CPU runs in Secure state. It is

triggered by the various security checks that are performed. For
example, when jumping from Non-secure code to an address in

Secure code that is not marked as a valid entry point.

7 SecureFault? Configurable

8-10 - - RESERVED
11 SVCall Configurable ~ System service call with SVC instruction.
12 Debug Monitor® Configurable Debug monitor - for software based debug.
13 - - RESERVED
14 PendSV Configurable Pending request for system service.

15 SysTick Configurable ~ System tick timer has fired.

List of External Interrupts

Table 8.1: List of exceptions in the Cortex-M0 and Cortex-M0-- processors

Exception number Exception type Priority Descriptions

1 Reset -3 (Highest) Reset

2 NMI -2 Non-Maskable Interrupt

3 HardFault -1 Fault handling exception

4—10 Reserved NA —

11 SvCall Programmable Supervisor call via SVC instruction

12—13 Reserved NA —

14 PendSv Programmable Pendable request for system service

S e STk Programmable | System Tick Timer __ ______ -
{16 Interrupt #0 Programmable External Interrupt #0 1
117 Interrupt #1 Programmable External Interrupt #1 :
1
I - - - - I
oo e BT Progammable | Btemal ntemupt B8l .

e|ntroduction

Outline

eNVIC and Interrupt Control
eProgram Image and Start-up

Sequence

10

NVIC

e Interrupts on Cortex-M processors are controlled by Nested Vectored
Interrupt Controller (NVIC)

¢ A unit dedicated to exceptions management

e Each exception has an associated 32-bit vector that points to the
memory location where the ISR that handles the exception is located

e Vectors are stored in ROM at the beginning of the memory
e Relationship between NVIC, Cortex-M processor, and peripherals:

_I I Y NVIC
‘eripherals iRa = Syt
= IRQ

EXTI _I SysTick Timer
Controller

Cortex-M core

STM32 Microcontroller

11

NVIC

oA programmable unit that allows software to
manage interrupts and exceptions

e|t has a number of memory mapped registers for
the following:

° Defining the priority levels of each interrupts and some of the
system exceptions
°Enabling or disabling of each of the interrupts

° Enabling the software to access the pending status of each
interrupt, including the capability to trigger interrupts by
setting pending status in software

12

12

0xFFFFFFFF

0xE0100000
OxEQOFFFFF
0xE0000000
0xDFFFFFFF

0xC0000000
0xBFFFFFFF

0xAQ000000
OxSFFFFFFF

0x80000000
OxTFFFFFFF

0x80000000
OxSFFFFFFF

040000000
Ox3FFFFFFF

0x20000000
Ox1FFFFFFF

0x00000000

Memory map of the

Memory map Private Peripheral Bus
0xEDOFFFFF
ROM Table *
Reserved 0x=EQOFFOOO
0xEQOFEFFF Debua C .
eDu ontrol
Internal Private Peripheral Reserved 9 0xE0QO0EDOO
Bus NVIC
*EQOOFO00D (Nested Vectored
System Control Space Interrupt Controller) | g, 000E 100
Extemal d (5Cs) 0xEQ0DEDOD Reserved 0xEQO0EQ20
[Prtemaldeviee = SysTick Timer | 0xEO00E010
Reserved
0xE0003008—___ Reserved 0xEOQOEQOD
BP
(Breakpoint unit) OxE0002000
DWT (Data
Watchpoint unit]
| BAM P) 0xE0001000
Reserved
O0xE0000000
Peripheral
SRAM
Cod
Figure 7.2
Architecturally defined memory map of the Cortm<®—M0/M0+ processor. 13

13

Interrupt Programming

ePRIMASK - Interrupt Mask Special Register
oA 1-bit wide interrupt mask register

eWhen set, it disables (i.e., blocks) all interrupts
apart from the Non-Maskable Interrupt (NMI)
and the HardFault exception

eWhen reset, it enables interrupts; means to
allow interrupts at this time

14

Interrupt Programming

eTo activate an “interrupt source” we need
to set its priority and enable that source
in NVIC

Activate = Set priority + Enable source in NVIC

eThis activation is in addition to the
“enable” step discussed earlier

15

Priority Levels

e Cortex-MO and Cortex-MO+ processors support three fixed
highest priority levels for three of the system exceptions
(Reset, NMI, and HardFault) and four programmable levels
for all other exceptions including interrupts.

e Priority levels:
© 0x00 (high priority), 0x40, 0x80, and 0xCO (low priority)

Bit7 Bit 6 Bit 5 Bit4 Bit3 Bit 2 Bit 1 Bit0

Implemented Not implemented, read as zero

Figure 8.3
A Priority Level Register with 2 bits implemented. 16

16

Priority Levels

Highest priority Implemented
Exception Priority
Levels on Cortex-MO0

(s S
I e
-1 Hard Fault — -1
0 > 0
Architectural
riority range
priority range 40 —¢&— 0x40
0x80 Programmable % 0x80
Exceptions
0xCo —— 0xCO
_ OxFF
Lowest priority
Figure 8.4 17

Awvailable priority levels in the Cortex™-M0 and Cortex-M0+ Processors.

17

Basic Interrupt Configuration

eEach external interrupt has several registers associated with
it:
° Enable and clear enable registers
° Set-pending and clear-pending registers
° Active status
° Priority level

e|n addition, several other registers can also affect the

interrupt processing:
° Exception-masking registers (PRIMASK, FAULTMASK, and BASEPRI)
° Vector Table Offset register
° Software Trigger Interrupt register
° Priority Group
18

18

Interrupt Enable and Clear Enable

* The Interrupt Enable register is programmed via two addresses
— To set the enable bit, we write to the SETENA register address
— To clear the enable bit, you need to write to the CLRENA register address

Table 8.4: Interrupt Enable Set and Clear Register

Address Name Type Reset value Descriptions

0xE000E100 SETENA RIW 0x00000000 Set enable for interrupt 0 to 31. Write
1 to set bit to 1, write 0 has no effect.
Bit| 0] for Interrupt #0 (exception #16)
Bit[1] for Interrupt #1 (exception #17)

Bit[31] for Interrupt #31 (exception #47)
Read value indicates the cumrent enable
status

0xE00Q0E180 CLRENA R/W 0x00000000 Clear enable for interrupt 0 to 31. Write 1
to clear bit to 0, write 0 has no effect.
Bit| 0] for Interrupt #0 (exception #16)

Bit[31] for Interrupt #31 (exception #47)

Read value indicates the current enable

status

19
Interrupt Pending and Clear Pending
* If aninterrupt takes place but cannot be executed immediately (e.g., if
another higher-priority interrupt handler is running), it will be pended
* The interrupt pending status can be accessed through the Interrupt Set
Pending (SETPEND) and Interrupt Clear Pending (CLRPEND) registers
Table 8.5: Interrupt Pending Set and Clear Register

Address Name Type Reset value Descriptions

0xE000E200 SETPEND R/W 0x00000000 Set pending for interrupt 0 to 31. Write 1 to
set bit to 1, write 0 has no effect.
Bit| 0] for Interrupt #0 (exception #16)
Bit[1] for Interrupt #1 (exception #17)
éi‘t[31] for Interrupt #31 (exception #47)
Read value indicates the cument pending
status

0xE000E280 CLRPEND R/W 0x00000000 Clear pending for interrupt 0 to 31. Write 1
to clear bit to 0, write 0 has no effect.
Bit[0] for Interrupt #0 (exception #16)
éi‘t[31] for Interrupt #31 (exception #47)
Read value indicates the cument pending
status

20

10

Priority Levels

* Each external interrupt has an associated priority level register.

* Each of them is 2 bit wide, occupying the two MSBs of the
Interrupt Priority Level Registers.

* Each Interrupt Priority Level Register occupies 1 byte (8 bits:

Bit 3130 24 2322 16 1514 8 7 6 0
OxEOODE41C 3N 30 29 28
0xEODDE418 27 26 25 24
0xEODDE414 23 22 21 20
0xEODDE410 19 18 17 16
OxEODDE40C 15 14 13 12
0xEOODE408 1 10 9 8
0xEOODE404 T 6 5 4
0xEOODE400 IRQ 3 IRQ 2 IRQ 1 IRQ O
Figure 8.11

Interrupt Priority Level Registers for each interrupt.

21

Vector Table

* The interrupt handling in the Cortex-M Processor is vectored,
which means the processor’s hardware automatically
determines which interrupt or exception to service

* When an exception takes place and is being handled by the
Cortex-M processor, it will need to locate the starting address of
the exception handler

* This information is stored in the

* 32-bit vectors that point to memory locations where ISRs are
located

* Stored in ROM at the beginning of the memory

22

11

Memory Exception

Address Number
0x0000004C Interrupt#3 vector 19
0x00000048 Interrupt#2 vector 18
0x00000044 Interrupt#1 vector 17
0x00000040 Interrupt#0 vector 16
0x0000003C SysTick vector 15
0x00000038 PendSV vector 14
0x00000034 Not used 13
0x00000030 Not used 12
0x0000002C SVC vector 11
0x00000028 Not used 10
0x00000024 Not used 9
0x00000020 Not used 8
0x0000001C Not used 7
0x00000018 Not used 6
0x00000014 Not used 5
0x00000010 Not used 4
0x0000000C HardFault vector 3
0x00000008 NMI vector 2
0x00000004 Reset vector 1
0x00000000 MSP initial value 0

Figure 8.5
Vector table. 23

The SYSTICK Timer

eOften a hardware timer is used:
° To generate interrupts so that the OS can carry out task management
° As an alarm timer, for timing measurement, etc.

eCortex-M processors include a simple timer: 24-bit
down counter

eInterrupts each 10 milliseconds

eThe SYSTICK Timer is integrated with the NVIC and can
be used to generate a SYSTICK exception (exception
type #15)

oSYSTICK Timer is controlled by four registers

The SYSTICK Timer

Microcontroller
Cortex-M processor
Peripheral
P > NMI 1N
 — I /] Processor
3 NvIC Core
Peripherals =l
iz » IRQs < System
» < Exceptions
1/0 port T
SysTick timer
¢ ‘ 1/0 port
Figure 8.2
. ® . .
The NVIC in the Cortex -M0 and Cortex-M0+ processors can deal with up to 32 IRQ inputs, an
NMI, and a number of system exceptions. 5
25
SYSTICK Ti Control and Status Regist
Table 10.1: SysTick register names in CMSIS
Register CMSIS Name Deetails Address
SysTick Control and Stamws SysTick-*CTRL Table 10.2 xE0DDEOTO
Register
SysTick Reload Value Register SysTick->LOAD EQDOEDT4
SysTick Current Value Register SysTick-*VAL xE0DDED1S
SysTick Calibration Value SysTick->CALIB EQDOEDTC
Register
Table 10.2: SysTick control and status register (0xED0DE010)
EBits Field Type Reservalue Descriptions
317 Reserved - - Reserved
16 COUNTFLAG RO o Set o 1 when the SysTick timer reaches zero. Clear to
0 by reading of this register.
15:3 Reserved - - Reserved
2 CLESOURCE AW 01 Walue of 1 indicates that the core clock is used for the
SysTick timer. Otherwise a reference clock frequency
{depending on MCU design) would be used.
1 TICKINT R 0O SysTick intemupt enable. When this bit is set, the
SysTick exception is generated when the SysTick timer
count down to 0.
o ENABLE R 0O ‘When set to 1 the SysTick timer is enabled. Otherwise
the counting is disabled.
26

13

Simplified Procedure for Working with an Interrupt

1) Power up peripheral, if not powered by default

2) Configure clock for peripheral, if the case and
necessary

3) Possibly configure other peripheral parameters
4) Enable the interrupt

5) Define or edit the ISR to include what is wanted
to be done during servicing of the interrupt

27

27

Interrupt Service Routine (ISR)

e\When an interrupt/exception takes place, a number of things
happen:
1. Stacking (automatic pushing of eight registers’ contents to stack)
- PC, PSR (processor status register), RO—R3, R12, and LR (link register)
2. Vector fetch (reading the exception handler starting address from the vector table)

3. Exception vector starts to execute. On the entry of the exception handler, a number
of registers are updated:
- Stack pointer (SP) to new location
- IPSR (low part of PSR) with new exception number
- Program counter (PC) to vector handler
- Link register (LR) to special value EXC_RETURN

Several other registers get updated
e Latency: as short as 12 cycles

e At the end of the exception handler, an exception exit (a.k.a. interrupt
return in some processors) is required to restore the system status so
that the interrupted program can resume normal execution

28

14

Example 1 - Toggle LD2 with User Button

eUse interrupts to toggle the LD2 LED every time we press the
user-programmable button, which is connected to the PC13

pin.
e We enable the interrupt of the EXTI line associated with the
Px13 pins, that is EXTI4 15 |RQn.

e\We do that because EXTI lines 4 to 15 share the same IRQ
inside the NVIC (and hence are serviced by the same ISR).

eThis can be seen inside file:
° Drivers/CMSIS/Device/ST/STM32XXxx/Include/stm321053xx.h

e Please also see Table 55 and Figure 30 from the MCU
Reference Manual to double check this fact!

29

29

Configure and Enable EXTI Interrupt

eDone inside mx_GPI0_Init(void)
° Declared and defined inside main.c

eCalled inside main()

static void MX_GPIO_Init(void)
{

// Configure GPIO pin : PC13
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;

// Enable interrupt
HAL_NVIC_EnableIRQ(EXTI4 15 IRQn);

30

30

15

ISR associated with IRQ for EXTI4_15 IRQn line

eDeclared inside:
° Core/Startup/startup_ stm321053r8tx.s

eDefined by us, inside main.c

void EXTI4_15_IRQHandler(void)

{
if(__HAL_GPIO_EXTI_GET_IT(GPIO_PIN 13) != RESET) {
__HAL_GPIO_EXTI_CLEAR_IT(GPIO PIN_13);
HAL_GPIO TogglePin(GPIOA, GPIO PIN 5);

}
}
31
31
e Same as Example 1, but, implemented differently
e Using the callback functions approach
e This mechanism is used by almost all IRQ handler routines inside ST HAL.
void EXTI4_15_IRQHandler(void)
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_13);
}
void HAL_GPIO_EXTI_Callback(uintl6_t GPIO_Pin)
{
// this is where user code should go, inside the callback function
// rather than in EXTI4_15_IRQHandler(); also, as a rule, we should
// minimize the amount of code inside ISRs; put as little code inside
// ISRs; ok, to put more code inside main();
if (GPIO_Pin == GPIO PIN 13) {
HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
}
} 32
32

16

Example 3 — TIM6 Timer to Blink LD2

eUse basic timer TIM6 in interrupt mode to blink the
green LED once per second

33

33

Configure and Enable TIM6 Interrupt

e Done inside mx_TIMe_Init(void)
° Declared and defined inside main.c

e Called inside main()
static void MX_TIM6_Init(void)

__HAL_RCC_TIM6_CLK_ENABLE();

// configuration of Prescaler and Period are v. important!
htimé6.Instance = TIM6;

htim6.Init.Prescaler = 15999;

htim6.Init.CounterMode = TIM_COUNTERMODE_UP;

htim6.Init.Period = 499;

htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD DISABLE;
if (HAL_TIM_Base_Init(&htimé) != HAL_OK)

{

Error_Handler();

// start the TIM Base generation in interrupt mode;
HAL_TIM_Base_Start_IT(&htim6);

// set priority @ and enable this source of interrupts with the NVIC;
HAL_NVIC_SetPriority(TIM6_DAC_IRQn, @, 0);
HAL_NVIC_EnableIRQ(TIM6_DAC_IRQn);

34

17

ISR for TIM®6 Interrupt: TIM6_DAC_IRQHandler

eDeclared inside: Core/Startup/startup_stm321053r8tx.s
° .word TIM6_DAC_IRQHandler /* TIM6 and DAC */

e “Exported” inside: Core/Inc/stm32[0xx_it.h
° void TIM6_DAC_IRQHandler(void);

e Defined inside: Core/Src/stm32[0xx_it.c
° void TIM6_DAC_IRQHandler(void)

extern TIM HandleTypeDef htim6;
void TIM6 DAC_IRQHandler(void)

HAL_TIM IRQHandler(&htim6);

}
35
35
e Declared inside: Drivers/STM32L0xx_HAL_Driver/Inc/stm32l0xx_hal_tim.h
°void HAL_TIM_IRQHandler(TIM HandleTypeDef *htim);
e Defined inside: Drivers/STM32L0xx_HAL_Driver/Src/stm3210xx_hal_tim.c
void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
{
/* TIM Update event */
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET)
if (__HAL_TIM GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET)
__HAL_TIM _CLEAR_IT(htim, TIM_IT_ UPDATE);
#if (USE_HAL_TIM REGISTER_CALLBACKS == 1)
r_;Tnum&mmmuwswaumwummn____\
else
1 HAL_TIM_PeriodElapsedCallback(htim); 1
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
} ---------------------------
}
y 36
36

18

HAL _TIM PeriodElapsedCallback()

e Declared inside: Drivers/STM32L0xx_HAL_Driver/Inc/stm32l0xx_hal_tim.h
° void HAL_TIM_PeriodElapsedCallback(TIM HandleTypeDef *htim);
¢ Defined inside: main.c

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)

// this routine should be called every 0.5 seconds based on how we configured TIM6 timer;
r-AA.first_tnggle.the.pin.driwdng.Ihe.gnaan.LED;
|

if (htim->Instance == TIM6) { ‘I

HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5); i

Ve ZLNOIE: the_above could alsq be: HAL GPTQ TogglePin(I1D2 GPIO_Pont, LD2 Pin)i_ _ .
}

// then, increment my global counter;
if (timé_counter >= 20) { // 20 x ©.5 sec = 10 sec

message_was_sent = false; // set false so user-message not printed multiple times inside main()
tim6_counter = @; // reset global counter;

%imG_counter++;
} 37
37
TIM6 Summary
main()
thread of
main(): execution

ISR

TIM6_DAC_IRQHandler()

MX_TIM6_Init()

| HAL_NVIC_EnableIRQ(TIM6_DAC_IRQn);

| HAL_TIM_IRQHandler (&htiné);

N
N

PR
| HAL_TIM_PeriodElapsedCallback (htim);

V

if (htim->Instance == TIM6) {
HAL_GPIO_TogglePin(GPIOA,
GPIO_PIN 5);

}

38

19

Outline

e|ntroduction
eNVIC and Interrupt Control

eProgram Image and Start-up
Sequence

39
39
Program Image
eThe program image for the Cortex-M0/MO+
processor is located from address 0x00000000.
Program
memaory
terrupt vectors
ys Tick vectol E:mg
(Pelmtm 0x00000038
‘ Program SVC vector 0x0000002C
Program < s reserved
NN I/ e resteser Ox0000000C
00000000 l\ ectortap Initial MSP value :umooum
Figure 4.15
Vect bl a program image. 40

40

20

0x20008000
0x20007FFC 1st stacked itern Stack
Ox20007FF8 i
fpenetai 2nd stacked item memory Stack grow
downwards
Read address Read address R:ﬁ:idr;‘:;rais Subsaquent 0420000000 SRAM
Raset 0x00000000 00000004 reset vector __ _instruction fetches
Fetch initial Fatch resat Tstinstuchioni 1|
value for MSP fetch | _____ 1 _____1
Time
Figure 4.16
Reset sequence.
Program code
Ox o Boot code ‘ + Program
i Resat axecution
I
| Cther vectors H vectar
0x00000004 0x000000C1 '“'“5'| MSP
0%00000000 0x20008000 — | v
Figure 4.17
EBxample of MSP and PC initialization.

41

Credits and references

e[1] Carmine Noviello, Mastering STM32, Second
Edition, 2022. (Required, Book 1). Available to purchase
online.

¢[2] Joseph Yiu, The Definitive Guide to ARM Cortex-MO
and Cortex-MO+ Processors, 2nd Ed., 2015. (Book 2).
Can be found online.

42

21

https://leanpub.com/mastering-stm32-2nd
https://leanpub.com/mastering-stm32-2nd
https://homepages.uni-regensburg.de/~erc24492/PDFs/ARM_Cortex_M0/The_Definitive_Guide_to_ARM_CortexM0_M0+.pdf

	Slide 1: Lecture 5 Interrupts
	Slide 2: Outline
	Slide 3: How Does it Work?
	Slide 4: Some Questions
	Slide 5: Interrupts
	Slide 6: Interrupts
	Slide 7: Cortex-M Interrupts
	Slide 8: List of System Exceptions
	Slide 9: List of External Interrupts
	Slide 10: Outline
	Slide 11: NVIC
	Slide 12: NVIC
	Slide 13
	Slide 14: Interrupt Programming
	Slide 15: Interrupt Programming
	Slide 16: Priority Levels
	Slide 17: Priority Levels
	Slide 18: Basic Interrupt Configuration
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: The SYSTICK Timer
	Slide 25: The SYSTICK Timer
	Slide 26: SYSTICK Timer Control and Status Registers
	Slide 27: Simplified Procedure for Working with an Interrupt
	Slide 28: Interrupt Service Routine (ISR)
	Slide 29: Example 1 - Toggle LD2 with User Button
	Slide 30: Configure and Enable EXTI Interrupt
	Slide 31: ISR associated with IRQ for EXTI4_15_IRQn line
	Slide 32: Example 2 - Toggle LD2 with User Button
	Slide 33: Example 3 – TIM6 Timer to Blink LD2
	Slide 34: Configure and Enable TIM6 Interrupt
	Slide 35: ISR for TIM6 Interrupt: TIM6_DAC_IRQHandler
	Slide 36: HAL_TIM_IRQHandler()
	Slide 37: HAL_TIM_PeriodElapsedCallback()
	Slide 38: TIM6 Summary
	Slide 39: Outline
	Slide 40: Program Image
	Slide 41: Reset Sequence
	Slide 42: Credits and references

