
1

Lecture 5
Interrupts

Cris Ababei
Dept. of Electrical and Computer Engineering

COEN-4720 Embedded Systems

1

Outline

•Introduction

•NVIC and Interrupt Control

•Program Image and Start-up 
Sequence

2

1

2



2

How Does it Work?
• Something tells the processor core (which is running the main 

execution flow) there is an interrupt/exception
•Core transfers control to code that needs to be executed to address the 

interrupt
• Said code “returns” to the main (old) program

Some Questions
•How do you figure out where to branch/jump to?

 If you know number the possible interrupt cases, and an interrupt comes in, you can 
just branch to a location, using that number as an offset

•How to you ensure that you can get back to where you started?
 Store return address to stack or dedicated register

•Don’t we have a pipeline? What about partially executed 
instructions?
 Complex architectures

•What if we get an interrupt while we are already “processing” an 
interrupt?
 Nested interrupts: handle directly, ignore, prioritize

•What if we are in a “critical section?”
 Prioritization

3

4



3

Interrupts
•An interrupt is the automatic transfer of software execution 

in response to a hardware event that is asynchronous with 
the current software execution

•This hardware event is called a trigger and it breaks the 
execution flow of the main thread of the program

•The event causes the CPU to stop executing the current 
program and begin executing a special piece of code called 
an interrupt handler or interrupt service routine (ISR)

•Typically, the ISR does some work and then resumes the 
interrupted program

Interrupts
•The hardware event can either be:
 1) A busy-to-ready transition in an external I/O device. Caused by 

the external world
 Peripheral/device, e.g., UART input/output device
 Reset button, Timer expires, Power failure, System error
 Names: exception, interrupt, external interrupt

 2) An internal event 
 Bus fault, memory fault
 A periodic timer
 Div. by zero, illegal/unsupported instruction 
 Names: exception, trap, system exception

•When the hardware needs service, signified by a busy to ready 
state transition, it will request an interrupt by setting its trigger 
flag

5

6



4

Cortex-M Interrupts
•Exceptions:

 System exceptions: numbered 1 to 15 
 External interrupt inputs: numbered from 16 up

•Different numbers of external interrupt inputs 
(from 1 to 32-240) and different numbers of 
priority levels
•Value of current running exception is indicated 
by:
 Special register Interrupt Program Status Register (IPSR) 

List of System Exceptions

7

8



5

List of External Interrupts

Outline

•Introduction

•NVIC and Interrupt Control

•Program Image and Start-up 
Sequence

10

9

10



6

NVIC
• Interrupts on Cortex-M processors are controlled by Nested Vectored 

Interrupt Controller (NVIC)
•A unit dedicated to exceptions management
• Each exception has an associated 32-bit vector that points to the 

memory location where the ISR that handles the exception is located
•Vectors are stored in ROM at the beginning of the memory
•Relationship between NVIC, Cortex-M processor, and peripherals:

NVIC
•A programmable unit that allows software to 
manage interrupts and exceptions
•It has a number of memory mapped registers for 
the following:
Defining the priority levels of each interrupts and some of the 

system exceptions
 Enabling or disabling of each of the interrupts
 Enabling the software to access the pending status of each 

interrupt, including the capability to trigger interrupts by 
setting pending status in software

12

11

12



7

13

Interrupt Programming

•PRIMASK - Interrupt Mask Special Register

•A 1-bit wide interrupt mask register

•When set, it disables (i.e., blocks) all interrupts 
apart from the Non-Maskable Interrupt (NMI) 
and the HardFault exception

•When reset, it enables interrupts; means to 
allow interrupts at this time

13

14



8

Interrupt Programming

•To activate an “interrupt source” we need 
to set its priority and enable that source 
in NVIC

 Activate = Set priority + Enable source in NVIC

•This activation is in addition to the 
“enable” step discussed earlier

Priority Levels 
•Cortex-M0 and Cortex-M0+ processors support three fixed 

highest priority levels for three of the system exceptions 
(Reset, NMI, and HardFault) and four programmable levels 
for all other exceptions including interrupts.

•Priority levels: 
 0x00 (high priority), 0x40, 0x80, and 0xC0 (low priority)

16

15

16



9

Priority Levels 

17

Basic Interrupt Configuration
•Each external interrupt has several registers associated with 

it:
 Enable and clear enable registers
 Set-pending and clear-pending registers
 Active status
 Priority level

•In addition, several other registers can also affect the 
interrupt processing:
 Exception-masking registers (PRIMASK, FAULTMASK, and BASEPRI)
 Vector Table Offset register
 Software Trigger Interrupt register
 Priority Group

18

17

18



10

Interrupt Enable and Clear Enable
• The Interrupt Enable register is programmed via two addresses

– To set the enable bit, we write to the SETENA register address

– To clear the enable bit, you need to write to the CLRENA register address

Interrupt Pending and Clear Pending
• If an interrupt takes place but cannot be executed immediately (e.g., if 

another higher-priority interrupt handler is running), it will be pended
• The interrupt pending status can be accessed through the Interrupt Set 

Pending (SETPEND) and Interrupt Clear Pending (CLRPEND) registers

19

20



11

Priority Levels

• Each external interrupt has an associated priority level register. 

• Each of them is 2 bit wide, occupying the two MSBs of the 
Interrupt Priority Level Registers. 

• Each Interrupt Priority Level Register occupies 1 byte (8 bits:

Vector Table
• The interrupt handling in the Cortex-M Processor is vectored, 

which means the processor’s hardware automatically 
determines which interrupt or exception to service

• When an exception takes place and is being handled by the 
Cortex-M processor, it will need to locate the starting address of 
the exception handler

• This information is stored in the vector table

• 32-bit vectors that point to memory locations where ISRs are 
located

• Stored in ROM at the beginning of the memory

21

22



12

23

The SYSTICK Timer
•Often a hardware timer is used:

 To generate interrupts so that the OS can carry out task management
 As an alarm timer, for timing measurement, etc.

•Cortex-M processors include a simple timer: 24-bit 
down counter
•Interrupts each 10 milliseconds
•The SYSTICK Timer is integrated with the NVIC and can 

be used to generate a SYSTICK exception (exception 
type #15)
•SYSTICK Timer is controlled by four registers

23

24



13

The SYSTICK Timer

25

SYSTICK Timer Control and Status Registers

25

26



14

Simplified Procedure for Working with an Interrupt

1) Power up peripheral, if not powered by default

2) Configure clock for peripheral, if the case and 
necessary

3) Possibly configure other peripheral parameters 

4) Enable the interrupt

5) Define or edit the ISR to include what is wanted 
to be done during servicing of the interrupt

27

Interrupt Service Routine (ISR)
•When an interrupt/exception takes place, a number of things 

happen:
 1. Stacking (automatic pushing of eight registers’ contents to stack)
 - PC, PSR (processor status register), R0–R3, R12, and LR (link register)

2. Vector fetch (reading the exception handler starting address from the vector table)
3. Exception vector starts to execute. On the entry of the exception handler, a number 

of registers are updated:
 - Stack pointer (SP) to new location
 - IPSR (low part of PSR) with new exception number
 - Program counter (PC) to vector handler
 - Link register (LR) to special value EXC_RETURN

• Several other registers get updated
• Latency: as short as 12 cycles
• At the end of the exception handler, an exception exit (a.k.a. interrupt 

return in some processors) is required to restore the system status so 
that the interrupted program can resume normal execution

27

28



15

Example 1 - Toggle LD2 with User Button 
•Use interrupts to toggle the LD2 LED every time we press the 

user-programmable button, which is connected to the PC13 
pin.

• We enable the interrupt of the EXTI line associated with the 
Px13 pins, that is EXTI4_15_IRQn. 

•We do that because EXTI lines 4 to 15 share the same IRQ 
inside the NVIC (and hence are serviced by the same ISR). 

•This can be seen inside file:
 Drivers/CMSIS/Device/ST/STM32XXxx/Include/stm32l053xx.h

• Please also see Table 55 and Figure 30 from the MCU 
Reference Manual to double check this fact!

29

Configure and Enable EXTI Interrupt

static void MX_GPIO_Init(void)
{

…
// Configure GPIO pin : PC13
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
…
// Enable interrupt
HAL_NVIC_EnableIRQ(EXTI4_15_IRQn);

}
30

•Done inside MX_GPIO_Init(void)
 Declared and defined inside main.c

•Called inside main()

29

30



16

ISR associated with IRQ for EXTI4_15_IRQn line

•Declared inside: 
 Core/Startup/startup_ stm32l053r8tx.s

•Defined by us, inside main.c

31

void EXTI4_15_IRQHandler(void)
{

if(__HAL_GPIO_EXTI_GET_IT(GPIO_PIN_13) != RESET) {
__HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_13);
HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
}

}

Example 2 - Toggle LD2 with User Button 
• Same as Example 1, but, implemented differently
• Using the callback functions approach
• This mechanism is used by almost all IRQ handler routines inside ST HAL.

32

void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{

// this is where user code should go, inside the callback function
// rather than in EXTI4_15_IRQHandler(); also, as a rule, we should
// minimize the amount of code inside ISRs; put as little code inside
// ISRs; ok, to put more code inside main();
if (GPIO_Pin == GPIO_PIN_13) {
    HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
}

}

void EXTI4_15_IRQHandler(void)
{

HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_13);
}

31

32



17

Example 3 – TIM6 Timer to Blink LD2

•Use basic timer TIM6 in interrupt mode to blink the 
green LED once per second

33

Configure and Enable TIM6 Interrupt

static void MX_TIM6_Init(void)
{

__HAL_RCC_TIM6_CLK_ENABLE();
// configuration of Prescaler and Period are v. important!
htim6.Instance = TIM6;
htim6.Init.Prescaler = 15999;
htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
htim6.Init.Period = 499;
htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
{
    Error_Handler();

// start the TIM Base generation in interrupt mode;
HAL_TIM_Base_Start_IT(&htim6);

// set priority 0 and enable this source of interrupts with the NVIC;
HAL_NVIC_SetPriority(TIM6_DAC_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(TIM6_DAC_IRQn);

} 34

• Done inside MX_TIM6_Init(void)
 Declared and defined inside main.c

• Called inside main()

33

34



18

ISR for TIM6 Interrupt: TIM6_DAC_IRQHandler

•Declared inside: Core/Startup/startup_stm32l053r8tx.s
 .word TIM6_DAC_IRQHandler /* TIM6 and DAC */

•“Exported” inside: Core/Inc/stm32l0xx_it.h 
 void TIM6_DAC_IRQHandler(void);

•Defined inside: Core/Src/stm32l0xx_it.c
 void TIM6_DAC_IRQHandler(void)

35

extern TIM_HandleTypeDef htim6;
…
void TIM6_DAC_IRQHandler(void)
{

HAL_TIM_IRQHandler(&htim6);
}

HAL_TIM_IRQHandler()

36

• Declared inside: Drivers/STM32L0xx_HAL_Driver/Inc/stm32l0xx_hal_tim.h

 void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim);

• Defined inside: Drivers/STM32L0xx_HAL_Driver/Src/stm32l0xx_hal_tim.c

void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
{

…
/* TIM Update event */
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET)
{

if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET)
{

__HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
 htim->PeriodElapsedCallback(htim);
#else
 HAL_TIM_PeriodElapsedCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */

}
}
…

}

35

36



19

HAL_TIM_PeriodElapsedCallback()
• Declared inside: Drivers/STM32L0xx_HAL_Driver/Inc/stm32l0xx_hal_tim.h

 void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim);

• Defined inside: main.c

37

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{

// this routine should be called every 0.5 seconds based on how we configured TIM6 timer;
// first toggle the pin driving the green LED:
if (htim->Instance == TIM6) {

HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5); 
// NOTE: the above could also be: HAL_GPIO_TogglePin(LD2_GPIO_Port, LD2_Pin);

}

// then, increment my global counter;
if (tim6_counter >= 20) { // 20 x 0.5 sec = 10 sec

message_was_sent = false; // set false so user-message not printed multiple times inside main()
tim6_counter = 0; // reset global counter;

}
tim6_counter++;

}

TIM6 Summary

38

MX_TIM6_Init()

main():

HAL_NVIC_EnableIRQ(TIM6_DAC_IRQn);

TIM6_DAC_IRQHandler()

main()
thread of 
execution

HAL_TIM_IRQHandler(&htim6);

HAL_TIM_PeriodElapsedCallback(htim);

if (htim->Instance == TIM6) {
HAL_GPIO_TogglePin(GPIOA, 
GPIO_PIN_5); 

}

ISR

37

38



20

Outline

•Introduction

•NVIC and Interrupt Control

•Program Image and Start-up 
Sequence

39

Program Image
•The program image for the Cortex-M0/M0+ 

processor is located from address 0x00000000.

40

39

40



21

Reset Sequence

Credits and references

•[1] Carmine Noviello, Mastering STM32, Second 
Edition, 2022. (Required, Book 1). Available to purchase 
online.

•[2] Joseph Yiu, The Definitive Guide to ARM Cortex-M0 
and Cortex-M0+ Processors, 2nd Ed., 2015. (Book 2). 
Can be found online.

41

42

https://leanpub.com/mastering-stm32-2nd
https://leanpub.com/mastering-stm32-2nd
https://homepages.uni-regensburg.de/~erc24492/PDFs/ARM_Cortex_M0/The_Definitive_Guide_to_ARM_CortexM0_M0+.pdf

	Slide 1: Lecture 5 Interrupts
	Slide 2: Outline
	Slide 3: How Does it Work?
	Slide 4: Some Questions
	Slide 5: Interrupts
	Slide 6: Interrupts
	Slide 7: Cortex-M Interrupts
	Slide 8: List of System Exceptions
	Slide 9: List of External Interrupts
	Slide 10: Outline
	Slide 11: NVIC
	Slide 12: NVIC
	Slide 13
	Slide 14: Interrupt Programming
	Slide 15: Interrupt Programming
	Slide 16: Priority Levels 
	Slide 17: Priority Levels 
	Slide 18: Basic Interrupt Configuration
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: The SYSTICK Timer
	Slide 25: The SYSTICK Timer
	Slide 26: SYSTICK Timer Control and Status Registers
	Slide 27: Simplified Procedure for Working with an Interrupt
	Slide 28: Interrupt Service Routine (ISR)
	Slide 29: Example 1 - Toggle LD2 with User Button 
	Slide 30: Configure and Enable EXTI Interrupt
	Slide 31: ISR associated with IRQ for EXTI4_15_IRQn line
	Slide 32: Example 2 - Toggle LD2 with User Button 
	Slide 33: Example 3 – TIM6 Timer to Blink LD2
	Slide 34: Configure and Enable TIM6 Interrupt
	Slide 35: ISR for TIM6 Interrupt: TIM6_DAC_IRQHandler
	Slide 36: HAL_TIM_IRQHandler()
	Slide 37: HAL_TIM_PeriodElapsedCallback()
	Slide 38: TIM6 Summary
	Slide 39: Outline
	Slide 40: Program Image
	Slide 41: Reset Sequence
	Slide 42: Credits and references

