
1

Lecture 7
I2C

Cris Ababei
Dept. of Electrical and Computer Engineering

COEN-4720 Embedded Systems

1

Outline

•I2C

•CAN

2

1

2

2

I2C
•I2C was created by Philips Semiconductors stands for

Inter-Integrated Circuit (inside TV sets)

•It is a simple communication protocol

•Allows communication of data between I2C devices over
two wires.

•It sends information serially using one line for data (SDA)
and one for clock (SCL).

•To communicate, a master drives a clock signal on SCL
while driving, or allowing a slave to drive SDA
 Therefore, the bit-rate of a transfer is determined by the master.

3

I2C Two Wire BUs

4

3

4

3

Single or Multi Master

5

Multi Master
•Devices need to be able to cooperate. This means:

a) Being able to follow arbitration logic. If two devices start to
communicate at the same time the one writing more zeros to the bus
(or the slower device) wins the arbitration and the other device
immediately discontinues any operation on the bus.

b) Bus busy detection. Each device must detect an ongoing bus
communication and must not interrupt it. This is achieved by
recognizing traffic and waiting for a stop condition to appear before
starting to talk on the bus.

•More info:
 http://www.i2c-bus.org/MultiMaster/

6

5

6

http://www.i2c-bus.org/MultiMaster/

4

I2C Physical Protocol
•Communication between a master and a slave consists of a sequence

of transactions where the master utilizes the SCL as a clock for serial
data driven by the master or a slave on SDA

•When the master wishes to talk to a slave, it begins by issuing a start
sequence on the I2C bus. A start sequence is one of two special
sequences defined for the I2C bus, the other being the stop sequence.
These are also referred to as Start condition (S) and Stop condition (P)

7

I2C Physical Protocol
•A transaction consists of a sequence of bytes.
• Each byte is sent as a sequence of 8 bits.
•Bits of each byte of data are placed on the SDA line starting with the

MSB. The SCL line is then pulsed high, then low.
• For every 8 bits transferred, the device receiving the data sends back

an acknowledge bit, so there are actually 9 SCL clock pulses to
transfer each 8 bit byte of data.

8

7

8

5

I2C Physical Protocol
• If the receiving device sends back a low ACK bit, then it has received the data

and is ready to accept another byte.
• If it sends back a high (Not Acknowledge, NACK) then it is indicating it cannot

accept any further data and the master should terminate the transfer by
sending a stop sequence.

9

Data transfer from master to slave

10

9

10

6

Data transfer from slave to master

11

Operation FSM

12

11

12

7

Operation FSM

•Six fundamental operations:
1) Idle,

2) Start condition,

3) Sample SDA,

4) Process Sampled SDA Bit,

5) Stop condition, and

6) Repeated Start condition

13

Speed

•Standard clock speeds:
 100kHz

 10kHz

•However, the standard lets us use clock speeds from
zero to 100kHz

•A fast mode is also available (400kHz – Fast mode)

14

13

14

8

Examples of I2C devices
• Sensors: barometric, temperature, acceleration, compass

• Real-time clocks, DACs, keyboard

• Controllers: Wii NunChuck

• Memories

• Etc.

15

Wii NunChuck

16

15

16

9

Wii NunChuck Internals

Function Hardware
Circuit board surface and

mounting

C membrane switch
daughterboard, through-
hole

Z membrane switch
daughterboard, through-
hole

Joystick X axial potentiometer, 30KΩ through-hole

Joystick Y axial potentiometer, 30KΩ through-hole

Accelerometer ST 8XRJ 3L02AE 820 MLT surface mount, top

Microcontroller
FNURVL 405 849KM (48-
pin QFP)

surface mount, bottom

http://wiibrew.org/wiki/Nunchuck#Nunchuk 17

Wii NunChuck Internals

• Joystick: axial potentiometer,
30KΩ through-hole

•Accelerometer: ST 8XRJ
3L02AE 820 MLT surface
mount, top

•Microcontroller:
FNURVL(A)-405 849KM (48-
pin QFP) surface mount,
bottom

18

17

18

10

HAL_I2C Module

19

Struct I2C_InitTypeDef

20

19

20

11

STM32L0x3

Source: Datasheet 21

Outline

•I2C

•CAN

22

21

22

12

CAN
•Controller Area Networking (CAN) is a multi-master

broadcast serial bus standard for connecting electronic
control units (ECUs).

•Each node is able to send and receive messages, but not
simultaneously.
 A message consists primarily of an ID (identifier), which represents the

priority of the message, and up to eight data bytes.
 It is transmitted serially onto the bus.

•The devices that are connected by a CAN network are
typically sensors, actuators, and other control devices.
These devices are not connected directly to the bus, but
through a host processor and a CAN controller.

23

CAN communication protocol

•The CAN communication protocol is a carrier-sense,
multiple-access protocol with collision detection and
arbitration on message priority (CSMA/CD+AMP)

•CSMA means that each node on a bus must wait for a
prescribed period of inactivity before attempting to send a
message

•CD+AMP means that collisions are resolved through a bit-
wise arbitration, based on a preprogrammed priority of
each message in the identifier field of a message

24

23

24

13

CAN
•The CAN bus was defined in the 1980’s by Bosch,

initially for use in automotive applications. It has been
found to be very useful in a wide variety distributed
industrial systems
•Characteristics:

 Uses a single terminated twisted pair cable
 Is multi master
 Maximum Signal frequency used is 1 Mbit/sec
 Length is typically 40m at 1Mbit/sec up to 10km at 5Kbits/sec
 Has high reliability with extensive error checking
 Typical maximum data rate achievable is 40KBytes/sec
 Maximum latency of high priority message <120 μsec at 1Mbit/sec

Before CAN

26

25

26

14

With CAN

27

CAN is central to automotive networks

28

27

28

15

CAN terminology

• Entities on the network are called nodes - are not given
specific addresses

• Nodes - depending on their function - transmit specific
messages and look for specific message

• Messages themselves have an identifier which also
determines the messages’ priority

29

CAN Node Requires:
•Host processor

 The host processor decides what received messages mean and which messages it
wants to transmit itself.

 Sensors, actuators and control devices can be connected to the host processor.

•CAN controller (hardware with a synchronous clock)
 Receiving: the CAN controller stores received bits serially from the bus until an

entire message is available, which can then be fetched by the host processor
(usually after the CAN controller has triggered an interrupt).

 Sending: the host processor stores its transmit messages to a CAN controller, which
transmits the bits serially onto the bus.

•Transceiver
 Receiving: it adapts signal levels from the bus to levels that the CAN controller

expects and has protective circuitry that protects the CAN controller.
 Transmitting: it converts the transmit-bit signal received from the CAN controller

into a signal that is sent onto the bus.

30

29

30

16

CAN devices

31

CAN – Bit dominance

32

31

32

17

CAN – Bit dominance

33

CAN – Bit dominance

34

33

34

18

Signal characteristics
•CAN may be implemented over a number of physical

media (most common is a twisted pair of wires) so long as
the drivers are open-collector and each node can hear
itself and others while transmitting (this is necessary for its
message priority and error handling mechanisms)

•The most popular transceiver chips:
 Philips 82C251
 TJA1040 (on MCB1700 evaluation board)

•It is necessary to terminate the bus at both ends with 120
Ohms
 prevent reflections
 unload the open collector transceiver drivers

35

CAN message format
• Start of frame (SOF)

• Message Identifier (MID)

 the Lower the value the Higher the priority of the message

 its length is either 11 or 29 bits long depending on the standard being used

• Remote Transmission Request (RTR)=0

• Control field (CONTROL)

 specifies the number of bytes of data to follow (0-8)

• Data Field (DATA) length 0 to 8 bytes

• CRC field containing a fifteen bit cyclic redundancy check code

• Acknowledge field (ACK)

 an empty slot which will be filled by any and every node that receives the frame

 it does NOT say that the node you intended the data for got it, just that at least one node on the whole
network got it.

• End of Frame (EOF) 36

35

36

19

CAN message format

See nice presentations at:
• http://marco.guardigli.it/2010/10/hacking-your-car.html
• https://www.linkedin.com/pulse/automotive-can-bus-system-explained-kiril-mucevski 37

Remote frames
• Frames that are used to request that a particular message be put on

the network - a node somewhere on the network has to be set up to
recognize the request, get the data and put out a Message frame.

• This mechanism is used in polled networks.
• The fields are:

 Start of frame (SOF)
 Message Identifier (MID) either 11 or 29 bits long depending on the chosen mode.
 Remote Transmission Request (RTR)=1
 Control field (CTRL) this specifies the number of bytes of data expected to be returned (0-

8).
 CRC field containing a fifteen bit cyclic redundancy check code.
 Acknowledge field (ACK) an empty slot which will be filled by any and every node that

receives the frame it does NOT say that the node you intended the data for got it, just that
at least one node on the whole network got it.

 End of Frame (EOF)

38

37

38

http://marco.guardigli.it/2010/10/hacking-your-car.html
https://www.linkedin.com/pulse/automotive-can-bus-system-explained-kiril-mucevski

20

Error checking
• CAN is a very reliable system with multiple error checks
• Stuffing error - a transmitting node inserts a high after five consecutive

low bits (and a low after five consecutive high). A receiving node that
detects violation will flag a bit stuffing error.

• Bit error - A transmitting node always reads back the message as it is
sending. If it detects a different bit value on the bus than the one it sent,
and the bit is not part of the arbitration field or in the acknowledgement
field, an error is detected.

• Checksum error - each receiving node checks CAN messages for checksum
errors.

• Frame error - There are certain predefined bit values that must be
transmitted at certain points within any CAN Message Frame. If a receiver
detects an invalid bit in one of these positions a Form Error (sometimes
also known as a Format Error) will be flagged.

• Acknowledgement Error - If a transmitter determines that a message has
not been ACKnowledged then an ACK Error is flagged. 39

Synchronization
• No clock sent on bus (each node has it own

oscillator and internal CAN clock)

• Receivers synchronize on recessive-to-dominant
transitions
– Hard synchronization occurs at SOF and resets clock bit

– Re-synchronization occurs at recessive-to-dominant (1-
to-0) edges and adjusts the clock bit as necessary

40

39

40

21

Bit timing
•Synchronization is done by dividing each bit of the frame

into a number of segments:
 Synchronization
 Propagation,
 Phase 1 and Phase 2

•The length of each phase segment can be adjusted based
on network and node conditions.

•The sample point falls between phase buffer segment 1
and phase buffer segment 2, which helps facilitate
continuous synchronization.

•Continuous synchronization in turn enables the receiver
to be able to properly read the messages.

41

Bit timing

http://en.wikipedia.org/wiki/CAN_bus 42

41

42

22

Abstraction or protocol layers
• CAN standardizes only the lower layers

• The CAN protocol, like many networking protocols, can be decomposed into the
following abstraction layers:

43

Examples of CAN interfaces
•National Instruments controller area network (CAN)

interfaces
•PEAK CAN Controllers

 The Peak range of CAN interfaces provides simple and cost effective
connections between PCs and CAN-networks and includes routers, extenders
and adapters to the many CAN variants.

44

43

44

23

Summary
Comm.
method

Shar
es
clock

Num.
of
wires

Speed Dist Pros Cons

UART No 2 115Kbits/
sec max

Medium, long Simple;
Widely supported;
Large range of physical standard
interfaces (TTL, RS-232, RS-422,
RS-485);

It’s asynchronous;
Requires reasonable clock accuracy at both ends;

CAN No 3 1
Mbits/sec

Long:
40m (1Mbit/sec)
up to 10km
(5Kbits/sec)

Highly reliable;
Reduces amount of wiring;
Multi-master capability;

Complex;

I2C Yes 2 100Kbits/
sec
400Kbits/
sec fast
mode

Short, medium
(< 6”)

Simple;
Multi-master capability;
Only 2 wires to support multiple
devices;
Robust in noisy or power-
up/down situations;

More complex protocol than SPI;
Harder to level-shift or opto-isolate due to
bidirectional lines;
Need for pull-up resistors can reduce power
efficiency in some cases;

SPI Yes 4 10-
20Mbits/s
ec

Short Fast, easy, simple;
A lot of support;
Self clocking;
Flexible data word sizes;

Multiple devices need multiple select lines;
No acknowledgement ability;
No inherent arbitration;
No flow control;
Single master only;

45

Credits and References
•[1] Carmine Noviello, Mastering STM32, Second Edition,

2022. (Required, Book 1). Available to purchase online.
•[2] Joseph Yiu, The Definitive Guide to ARM Cortex-M0 and

Cortex-M0+ Processors, 2nd Ed., 2015. (Book 2). Can be
found online.

•http://www.best-microcontroller-projects.com/i2c-
tutorial.html

•http://www.robot-
electronics.co.uk/acatalog/I2C_Tutorial.html

•http://marco.guardigli.it/2010/10/hacking-your-car.html
•http://www.ni.com/white-paper/2732/en

46

45

46

https://leanpub.com/mastering-stm32-2nd
https://homepages.uni-regensburg.de/~erc24492/PDFs/ARM_Cortex_M0/The_Definitive_Guide_to_ARM_CortexM0_M0+.pdf
https://homepages.uni-regensburg.de/~erc24492/PDFs/ARM_Cortex_M0/The_Definitive_Guide_to_ARM_CortexM0_M0+.pdf
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://www.ni.com/white-paper/2732/en

	Slide 1: Lecture 7 I2C
	Slide 2: Outline
	Slide 3: I2C
	Slide 4: I2C Two Wire BUs
	Slide 5: Single or Multi Master
	Slide 6: Multi Master
	Slide 7: I2C Physical Protocol
	Slide 8: I2C Physical Protocol
	Slide 9: I2C Physical Protocol
	Slide 10: Data transfer from master to slave
	Slide 11: Data transfer from slave to master
	Slide 12: Operation FSM
	Slide 13: Operation FSM
	Slide 14: Speed
	Slide 15: Examples of I2C devices
	Slide 16: Wii NunChuck
	Slide 17: Wii NunChuck Internals
	Slide 18: Wii NunChuck Internals
	Slide 19: HAL_I2C Module
	Slide 20: Struct I2C_InitTypeDef
	Slide 21
	Slide 22: Outline
	Slide 23: CAN
	Slide 24: CAN communication protocol
	Slide 25: CAN
	Slide 26: Before CAN
	Slide 27: With CAN
	Slide 28: CAN is central to automotive networks
	Slide 29
	Slide 30: CAN Node Requires:
	Slide 31
	Slide 32: CAN – Bit dominance
	Slide 33
	Slide 34
	Slide 35: Signal characteristics
	Slide 36: CAN message format
	Slide 37: CAN message format
	Slide 38: Remote frames
	Slide 39: Error checking
	Slide 40
	Slide 41: Bit timing
	Slide 42: Bit timing
	Slide 43: Abstraction or protocol layers
	Slide 44: Examples of CAN interfaces
	Slide 45: Summary
	Slide 46: Credits and References

