COEN-4720 Embedded Systems

Lecture 10
Memory

Cris Ababei
Dept. of Electrical and Computer Engineering

m MARQUETTE

BEpL | UNIVERSITY

BE THE DIFFERENCE.

Outline

eRegisters

eMemory map

eMemory protection unit (MPU)
eDirect memory access (DMA)
eProgram memory model
eMemories — basic concepts

Cortex-M Processors

» Cortex-M processors use a load/store architecture
with three basic types of instructions

1. Register-to-register operations for processing data

2. Memory operations which move data between
memory and registers

3. Control flow operations enabling programming
language control flow such as if and while
statements and procedure calls

Processor “Register Set”

e16 user-visible registers
° RO to R15
° All processing takes place in these registers

eThree of these registers have dedicated functions
°R15 is the Program Counter (PC) - holds the address of the next
instruction to execute
°R14 is a register called Link Register (LR) - holds the address from
which the current procedure was called

°R13 is the Stack Pointer (SP) - holds the address of the current
stack top

Registers

7 0

Register bank

General Purpose Register |

General Purpose Register Special Registers

General Purpose Register

R e) Program Status Registers
Low Registers

General Purpose Register

General Purpose Register [APSR | EPSR | IPSR |

General Purpose Register Application Execution Interrupt

General Purpose Register PSR PSR PSR

General Purpose Register |

General Purpose Register Interrupt Mask Register

General Purpose Register High Registers

General Purpose Register Stack definition

General Purpose Register

Stack Pointer (SP) _

Link Register (LR)

R15 Program Counter (PC) —
Main Stack Pointer
\ Processs Stack Pointer /’

Figure 4.3

Registers in the Cortex”-M0 and Cortex-MO0+ processors.

Cortex-MO+ Processor: Memory Addressing

¢ 32-bit addressing supporting up to 4 GB of memory space.

e The system bus interface is based on an on-chip bus protocol
called (Advanced High-performance Bus) AHB-Lite, supporting 8-
bit, 16-bit, and 32-bit data transfers.

e The AHB-Lite protocol is pipelined, support high operation
frequency for the system.

e Peripherals can be connected to a simpler bus based on APB
protocol (Advanced Peripheral Bus) via an AHB to APB bus bridge.

e Cortex-MO+ processor does not contain memories and peripherals
(chip designers need to add these components to the MCU
designs).

Example of MCU that uses Cortex-MO+ Processor

Single Cycle /O
interface bus

DMA Confg.u‘::m

Interrupts Processor Trace Controller - . .

(IR, M) intedface Digital logic

System bus (AHE Lite)| |‘/ | Memaries
MTB Bus [0 oigital Peripheras

Fash .
Boot ROM Bridge .

Memary - Anzlogue [Mixed
Signal Peripherzls

Peripheral bus [APB)

10 pads)]

Figure 2.6
A system with the Cortex™ MO+ Processor and a DMA Controller.

Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-MO0 and Cortex-MO+ Processors, 2nd Ed., 2015. (Book 2). 7

Separation of main system bus and peripheral bus

Cortex-M0

Microcontroller
) 32-bit System bus (AHB Lite) |
Program M, Data Mem .
(e.;T“Hazhm}W (:AgA Sm:n? ElEi

32-bit Peripheral bus (APB) |

10

JC J¢C J°F

Peripheral
(e.g. I0)

Peripheral

Peripheral
(e.g. Watchdog timer)

(e.g. Timer)

Figure 7.1

Separation of system and peripheral bus in a simple 32-bit microcontroller.

Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-MO0 and Cortex-MO0+ Processors, 2nd Ed., 2015. (Book 2). 8

Private peripherals including
built-in interrupt controller
(NVIC) and debug
components

Mainly used for external
peripherals.

Mainly used for external
memory.

Mainly used for peripherals.

Mainly used for data memory
(e.g. static RAM.)

Mainly used for program
code. Also used for default
exception vector table

OxFFFFFFFF

0xE0000000
OxDFFFFFFF

0xADD00000
0x9F FFFFFF

0x60000000
Ox5FFFFFFF
0x40000000
0x3FFFFFFF
0x20000000
O0x1FFFFFFF
0x00000000

Cortex-MO+ Processor:

Memory Map

OxEQOFFFFF 0xEQOOEFFF
Private
System Peripheral Bus S%rstem gggfl
(PPB) pace
Private Peripheral Bus
0xE0000000 0xEO00EOOO
External Device 1GH|
External RAM 1GB
Peripherals 0.5GB
SRAM 0.5GB
CODE 0.5GB

Figure 4.10
Memory map.

Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-MO0 and Cortex-MO+ Processors, 2nd Ed., 2015. (Book 2).

Mamary map
OxFFFFFFFF
Reserved
0xEQ100000
OxEQOFFFFF | imemal Private Peripheral
0xE0000000 B
eDFFFFFFF
0:£0000000 Extemal device
OxBFFFFFFF
ox8FFFFFFF
OxBE00M0000
OXTFFFFFFF I
ox5FFFFFFF
Peripheral
4000000
0x3FFFFFFF
SRAM
ox1FFFFFFF
Code

Cortex-MO+ Processor: Memory Map

Memaory map of the
Private Penpharal Bus
T K i
o OxE0OFEFFF Debug Control oxEo00EDo0
E0DOF000 NESUET‘IUHIFECLWEE
System Control Space Intesrupt Controlien) | oy oo 100
(5CS) Resened
— Syt Tier o
BR
(Breakpoant unit)
DWT (Data
‘Watchpoint ung) 0xE00D1000 -
P— NOTE: See detailed
mapping info in
MCU Reference
Manual (Ch.3)
Figure 7.2

Architecturally defined memory map of the Cortex™-M0/M0+ processor.
Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-MO0 and Cortex-MO+ Processors, 2nd Ed., 2015. (Book 2). 10

10

STM32L053RS8 -
Datasheet

‘ ' llfe.augmented

STM32L053C6 STM32L053C8
STM32L053R6 STM32L053R8

Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0+, up to 64KB
Flash, 8KB SRAM, 2KB EEPROM, LCD, USB, ADC, DAC

Features
+ Ulfra-low-power platform
— 1.65V103.6 power supply
— -40 to 125 °C temperature range
— 0.27 pA Standby mode (2 wakeup pins)
— 0.4 pA Stop mode (16 wakeup lines)
— 0.8 pA Stop mode + RTC + 8-Kbyte RAM
retention
— 88 pAMMHz in Run mode
— 3.5 ps wakeup time (from RAM)
— 5 ps wakeup time (from Flash memory)
+ Core: Arm® 32-bit Cortex®-M0+ with MPU
— From 32 kHz up to 32 MHz max.
2 095, DMIES/MHZ
Memaories
Up to 64-Kbyte Flash memory with ECC
— 8-Kbyte RAM
— 2 Kbytes of data EEPROM with ECC
— 20-byte backup register

(
1 -
I
I

e

\ _Seclocomieclion AgansLRML Qperalion.. o’

11

Datasheet - production data

® = g

UFQFPN48
{7=7 mm}

LQFP&4 10x10 mm

LOEP4S Tx7 mm TFBGAGS 5x5 mm

— Step-up converted on board

Rich Analog peripherals

— 12-bit ADC 1.14 Msps up to 16 channels (down
to 1.65V)

— 12-bit 1 channel DAC with output buffers (down
to1.8V)

— 2x ultra-low-power comparators (window mode
and wake up capability, down to 1.65 V)

Up to 24 capacitive sensing channels supporting

touchkey, linear and rotary touch sensors

7-channel DMA controller, supporting ADC, SPI,

12C, USART, DAC, Timers

8x peripheral communication interfaces

NUCLEO-LO53R8

e Package pin count: 64 pins
eFlash memory size: 64 kB

Table 2. Codification explanation

NUCLEO-XXYYRT Description

Example: NUCLEO-L452RE

XX

MCU series in STM32 Arm
Cortex MCUs

STM32L4 Series

XY

STM32 product line in the
series

STM32L452

STM32 package pin count

64 pins

STM32 Flash memory size:
— 8 for 64 Kbytes

— B for 128 Kbytes

— C for 256 Kbytes

- E for 512 Kbytes

- G for 1 Mbyte

— Z for 192 Kbytes

512 Kbytes

Source: Board user manual

12

12

Figure 1. STM32L053x6/8 block diagram

S

BRIDGE

REGULATOR

LeTae

Anx

S0, uos|
SO NSS

LTI RTS,
crs.ck

=

2

2, b, ouT

8, L, oUT

IS

e ouT

06, 0M. O

RS SvNC,

voo_usa

ouTi

ScL soa

SuBA

SCL SOA.

SuBA

o, T, RTS,

crs, ok

LTI RTS,

cors

MoK,

wosisD,

scwioc sy

=

cous, SEGr,
LED Vicot

MsaTsV!

> Peripherals

13

3.8

Memories

The STM32L053x6/8 devices have the following features:

. 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait
states. With the enhanced bus matrix, operating the RAM does not lead to any
performance penalty during accesses to the system bus (AHB and APB buses).

« The non-volatile memory is divided into three arrays:
32 or 64 Kbytes of embedded Flash program memory
2 Kbytes of data EEPROM

Information block containing 32 user and factory options bytes plus 4 Kbytes of
system memory

The user options bytes are used to write-protect or read-out protect the memory (with
4 Kbyte granularity) and/or readout-protect the whole memory with the following options:

« Level 0: no protection

« Level 1: memory readout protected.
The Flash memory cannot be read from or written to if either debug features are
connected or boot in RAM is selected

« Level 2: chip readout protected, debug features (Cortex-M0O+ serial wire) and boot in
RAM selection disabled (debugline fuse)

The firewall protects parts of code/data from access by the rest of the code that is executed
outside of the protected area. The granularity of the protected code segment or the non-
volatile data segment is 256 bytes (Flash memory or EEPROM) against 64 bytes for the
volatile data segment (RAM).

The whole non-volatile memory embeds the error correction code (ECC) feature.

Source: MCU Datasheet

14

39 Boot modes

At startup, BOOTO pin and nBOOT 1 option bit are used to select one of three boot options:
+ Boot from Flash memory

« Boot from System memory

+« Boot from embedded RAM

The boot loader is located in System memory. It is used to reprogram the Flash memory by
using SPI1(PA4, PAS, PAB, PAT) or SPIZ (PB12, PB13, PB14, PB13), USART1(PAS,
PA10) or USARTZ(PAZ, PA3). See STM32™ microcontroller system memory boot mode

AN2606 for details.

Source: MCU Datasheet

15

Memory Attributes and Memory Access
Permission

eTo make porting of software between different
devices easier, a number of memory attribute
settings are available for each regions in the
memory map.

eMlemory attributes are characteristics of the
memory accesses; they can affect data and
instruction accesses to memory as well as accesses

to peripherals.

16

16

Memory Attributes

Executable—The executable attribute defines whether program execution is allowed in
that memory region. If a memory region is defined as nonexecutable, in ARM
documentation it is marked as eXecute Never (XN).

Bufferable—When a data write is carried out to a bufferable memory region, the write
transfer can be buffered, which means the processor can continue to execute next
instruction without waiting for the current write transfer to complete.

Cacheable—If a cache device is present on the system, it can keep a local copy of the
data during a data transfer, and reuse it next time the same memory location is accessed
to speed up the system. The cache device can be a cache memory unit, or could be a
small buffer in a memory controller.

Shareable—The shareable attribute defines whether a memory region can be accessed
by more than one processor. If a memory region is shareable, the memory system needs
to ensure coherency between memory accesses by multiple processors in this region.

17

17

Memory Attributes

could be used in each memory region

Normal memory—Normal memories can be shareable or nonshareable, and can be
either cacheable or noncacheable. For memories with cacheable, the caching behavior
can be further divided into Write Through (WT) or Write Back Write Allocate
(WBWA).

Device memory—Device memories are noncacheable. They can be shareable or
nonshareable.

Strongly Ordered (SO) memory—A memory region that is nonbufferable, noncache-
able and transfer to/from SO region takes effect immediately. Also, the orders of SO
transfers on the memory interface must be identical to the orders of the corresponding
memory access instructions (i.e., no access reordering for speed optimization—please
note that the Cortex-M0 and Cortex-M0+ processors do not have such access
reordering feature anyway). SO memory regions are always shareable in terms of
architectural definition.

e Memory attributes used to define what type of devices

L8

18

Table 7.3: Default memory attribute map defined by the architecture

Memaory

Address Region type Cache XM Shareable Descriptions

0x00000000— CODE Meormal WT - - Memory for program code

0x1FFFFFFF including vector table

x20000000— SRAM Marmal WEWA - — SRAM, typically used for

x3FFFFFFF data and stack memory

x40000000— Peripheral Device — il — Typically used for an-chip

x5FFFFFFF devices

x60000000— RAM Mermal WBWA — — Nermal memory with

0x7FFFFFFF Write Back, Write Allocate
cache attributes

Ox80000000— RAM Mormal WT - — Normal memory with

x9FFFFFFF Write Through cache
attributes

xADDOD000— Device Device — XN 5 Shareable device memory

xBFFFFFFF

xCO000000— Drevice Drvice — XM — Monshareable device

xDFFFFFFF memaory

OxE0000000— PPB Strongly — XM 5 Internal Private Peripheral

IxEQOOFFFFF ordered Bus

MEDT00000— Reserved Reserved — - — Reserved (Vendor-specific

IxFFFFFFFF usage)

Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-MO0 and Cortex-MO+ Processors, 2nd Ed., 2015. (Book 2).

19
Memory access permission for regions
Table 7.4: Memory access permission
Memory region Default permission Note
CODE, SRAM, Peripheral, Acecessible for both privileged Access permission can be
RAM, Device and unprivileged code. overridden by MPU
configurations
System Control Space Accessible for privileged code Cannot be overridden by MPU
including NVIC, MPU, SysTick only. Attempts to access these configurations
registers from unprivileged code
result in HardFault exception.
Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-MO0 and Cortex-MO+ Processors, 2nd Ed., 2015. (Book 2). 20
20

10

Memory Protection Unit (MPU)

3.3 Arm® Cortex®-M0+ core with MPU

The Cortex-MO+ processor is an entry-level 32-bit Arm Cortex processor designed for a
broad range of embedded applications. It offers significant benefits to developers, including:

+« asimple architecture that is easy to learn and program
ultra-low power, energy-efficient operation
excellent code density

upward compatibility with Cortex-M processor family

L

L

e deterministic, high-performance interrupt handling

L

+ platform security robustness, with integrated Memory Protection Unit (MPU).

Source: MCU Datasheet

21

Memory Protection Unit (MPU)

e Memory Protection Unit (MPU) is a programmable block
inside the processor that defines memory attributes and
memory access permissions.

eMPU is used to detect problems in the system

° e.g., when an application task behaves erroneously by trying to access a memory
location which is invalid or disallowed

e MPU can be used to make an embedded system more robust,
and in some cases make the system more secure by:

° Preventing application tasks from corrupting stack or data memory used by
other tasks

° Preventing unprivileged tasks from accessing certain peripherals
° Defining SRAM or RAM space as nonexecutable to prevent code injection attacks

eMPU is disabled by default)

22

3.10 Direct memory access (DMA)

reaches the end of the buffer.

source and destination are independent.

general-purpose timers, DAC, and ADC.

The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory,
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports
circular buffer management, avoiding the generation of interrupts when the controller

Each channel is connected to dedicated hardware DMA requests, with software trigger
support for each channel. Configuration is done by software and transfer sizes between

The DMA can be used with the main peripherals: SPI, 1°C, USART, LPUART,

Direct Memory Access (DMA)

Perigheral bus (APB]

Digtal logc

Memaries

Figure.
Asystem with the Cortex®-M0+ Processor and a DMA Controller

Source: MCU Datasheet 23
23
QOQOQC| sram
uint8_t buf[20];
HAL UART_ Receive (&¢huart2, buf, 20, HAL MAX DELAY) ; OOOQ UART
Figure 9.1: the flow of data during a transfer from peripheral to SRAM
e CPU will be involved during these operations, even if its role is “limited” to move data from peripheral
to SRAM
e This simplifies design of the hardware, but introduces performance penalties
e Cortex-M core is “responsible” to load data from peripheral memory to the SRAM - this is a blocking
operation
e Prevents the CPU from doing other activities
e |t also requires the CPU to wait for “slower” units completing their job
e This is the reason why high-performance MCUs provide DMA controllers
Source: [Book 1] Carmine Noviello, Mastering STM32, Second Edition, 2022.
24

12

DMA

eDirect memory access (DMA) controller is a bus master and
system peripheral.

eThe DMA is used to perform programmable data transfers
between memory-mapped peripherals and/or memories,
upon the control of an off-loaded CPU.

eThe DMA controller features a single AHB master
architecture.

eThere is one instance of DMA with 7 channels.

eEach channel is dedicated to managing memory access
requests from one or more peripherals.

eThe DMA includes an arbiter for handling the priority

between DMA requests. -

25

Figure 1. System architecture

- b'\’ MIF ’—‘
NVM memory
iGPoRY| Gt WS isambuy Mooy intriace
ABCD.EH Mo+ < - -
Busmatrix
DMA
. Controller DA,
System architecture (Channels
1t07) |
The main system consists of: P~ SYSCFG
Two masters: AHBZAPE - FIREWALL
& —» APB buses PWR
— Cortex™-M0D+ core (AHB-lite bus) GRS
- GP-DMA (gensral-purpose DMA) E Reset and il
Three slaves: = = controllar DAC
T (RCC) COMP1/2
- Intermal SRAM = — TIM2I306/7121/22
— Internal Non-valatile memory s:;ing '-‘WE""S
— AHB to APB, which connects all the APB peripherals . contraller WWDG
(TsC) RTC
DEGMCU
12C1/2/3
USART1/Z/34/LPUART1
NOTE: See lots of = ses | o
details in MCU ke RNG UngFS
Reference ~
Manual (Ch.ll) DM# request
MS3Zraove
Source: MCU Reference Manual 26

26

DMA Channels

e A channel is used to exchange data between
two memory regions in the 4GB address B Slave pot
space

Arbiter

e Peripherals are slave units: they cannot
Channel 1

access the bus independently. _

;
e A master is always needed to start a

transaction.

Channel 7

e A way to notify that the peripherals are ready
to exchange data - dedicated number of DMA = —
requests lines are available from peripherals
to the DMA controller

Figure 9.3: A representation of the DMA structure in FO/F1/F3/L0/L1/L4 MCUs

Source: [Book 1] Carmine Noviello, Mastering STM32, Second Edition, 2022.

27
typedef struct {
_DMA_C&:—:n_mal_TmeD_ef_ — _*]E‘;E”CEJ /* Register base address */
‘ DMA_InitTypeDef Init; /* DMA communication parameters 4
-M_ToﬁTﬁeEr- T m—— Ec? - /% DMA locking object */
_ 10 HAL_DMA_StateTypeDef State; /¥ DMA transfer state */
void *Parent; /* Parent object state ¥/
void (* XferCpltCallback)(struct __DMA_HandleTypeDef * hdma);
void (* XferHal fCpltCallback){ struct _DMA_HandleTypeDef * hdma);
void (# XferErrorCallback)(struct __DMA_HandleTypeDef * hdma);
_ I0 uint32_t ErrorCode; /* DMA FError code */
} DMA_HandleTypeDef;
typedef struct {
uint32_t Direction;
uint32_t Periphlnc;
uint32_t MemInc;
uint32_t PeriphDataAlignment;
uint32_t MemDataAlignment;
uint32_t Mode;
uint32_t Priority;
} DMA_InitTypeDef; 28
28

14

Perform DMA Transfers in Polling Mode

eOnce we have configured the DMA channel/stream, we

have to do few other things:
° to setup the addresses on the memory and peripheral port;
° to specify the amount of data we are going to transfer;
° to arm the DMA;
° to enable the DMA mode on the corresponding peripheral

eFirst three points by using:
° HAL_StatusTypeDef HAL DMA_Start(...);

eFourth point is peripheral dependent

29
29
Example
eSending a string over UART2 peripheral using
DMA mode
eSteps

1. UART2 is configured using the HAL _UART module
2. DMA1 channel is configured to do a memory-to-
peripheral transfer

3. Corresponding channel is armed to execute the transfer
and UART is enabled in DMA mode

eSee demo in class
30

30

15

Program Memory Model

Address
Ox3FFFFFFF

Stack grow
SRAM direction Stack space
region
SRAM
Heap grow Heap data
direction
Address Data
0x20000000

(e.g. Global variables,
static data, data
structures)

31

Program Memory Model

* RAM for an executing program is divided into three
regions:

—Data in RAM are allocated during the link process and
initialized by startup code at reset

—The (optional) heap is managed at runtime by library code
implementing functions such as the malloc and free which
are part of the standard C library

—The stack is managed at runtime by compiler generated code
which generates per-procedure-call stack frames containing
local variables and saved registers

32

16

Program Code

eProgram code can be located in:
°the Code region
°the SRAM region
°the External RAM region
eProgram code typically stored in flash memory
(i.e., code region)

33

References & Credits

[Book 1] Carmine Noviello, Mastering STM32, Second Edition, 2022.

[Book 2] Joseph Jiu, The Definitive guide to ARM Cortex-MO0 and
Cortex-MO+ Processors, 2015.

https://www.st.com/content/st com/en/arm-32-bit-
microcontrollers/arm-cortex-m0-plus.html

STM32L053R8 MCU
— Datasheet

— User Manual

NUCLEO-LO53R8 Board

— User Manual

34

17

https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers/arm-cortex-m0-plus.html
https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers/arm-cortex-m0-plus.html

Outline

eRegisters
eMemory map

eMemory protection unit (MPU)

eDirect memory access (DMA)

eProgram memory model

eMemories — basic concepts

35
35
Memory: basic concepts
* Stores large number of bits
— m x n: m words of n bits each mx_n memory
— k = Log,(m) address input signals . I I I I I
— or m = 2*words S
— e.g., 4,096 x 8 memory: ST
* 32,768 bits :
n bits per word
* 12 address input signals
* 8input/output data signals memory external view
hd Memory daccess "W " < nread and
— r/w: selects read or write enable write memory
— enable: read or write only when o —
asserted P I I II
— multiport: multiple accesses to
different locations simultaneously R
36

18

Memory: basic categories

Writable?
* Read-Only Memory (ROM):

— Can only be read; cannot be modified (written) by the processor.
Contents of ROM chip are set before chip is placed into the
system.

* Random-Access Memory (RAM):

— Read/write memory. Although technically inaccurate, term is
used for historical reasons. (ROMs are also random access.)

Permanence?
* Volatile memories

— Lose their contents when power is turned off. Typically used to
store program while system is running.

* Non-volatile memories do not.

— Required by every system to store instructions that get executed
when system powers up (boot code).

37

Memories classification

Non-volatile

Volatile Memory Memory

Random Access | Sequential Access Mask-Programmed ROM (PROM)

EPROM .
SRAM E:Eg EEPROM (nonvolatile)
FLASH
DRAM Shift Register
CAM

Volatile: need electrical power

Nonvolatile: magnetic disk, retains its stored information after the removal of power

Random access: memory locations can be read or written in a random order

EPROM: erasable programmable read-only memory

EEPROM: electrically erasable programmable read-only memory

FLASH: memory stick, USB disk

Access pattern: sequential access: (video memory streaming) first-in-first-out (buffer), last-in-first-out
(stack), shift register, content-addressable memory

= Static vs. Dynamic: dynamic needs periodic refresh but is simpler, higher density

= Key Design Metrics:
1.Memory Density (number of bits/mm?2) and Size
2.Access Time (time to read or write) and Throughput
3.Power Dissipation

38

19

Write-ability and Storage-permanence

Mask-programmed ROM Ideal memory

permanence

OTP ROM
[

Tens of EPROM EEPROM FLASH
L] L] L]

B.attery 1\ Nonvolatile N\LRAM
life (1077

years)

In-system

programmable SRAM/DRAM
°

Near

zero— — Write

| | | | | abiligy

During External External External External
fabrication programmer, programmer, programmer programmer

In-system, fast

only one time only 1,000s OR in-system, OR in-system, wr.lte:s,
f unlimited
of cycles 1,000s block-oriented cveles
of cycles writes, 1,000s i
of cycles

Write ability and storage permanence of memories,
showing relative degrees along each axis (not to scale)

39

Write-ability

Ranges of write ability

— High end
* processor writes to memory simply and quickly
* e.g.,, RAM
Middle range
* processor writes to memory, but slower
* e.g., FLASH, EEPROM
Lower range
* special equipment, “programmer”, must be used to write to memory
* e.g.,, EPROM, OTP ROM
Low end
* bits stored only during fabrication
¢ e.g., Mask-programmed ROM

In-system programmable memory

— Can be written to by a processor in the microcomputer system using
the memory
— Memories in high end and middle range of write ability

40

20

Storage-permanence

* Range of storage permanence
— Highend
* essentially never loses bits
* e.g., mask-programmed ROM
— Middle range
* holds bits days, months, or years after memory’s power source turned off
¢ e.g.,, NVRAM
— Lower range
* holds bits as long as power supplied to memory
* e.g.,, SRAM
— Lowend
* begins to lose bits almost immediately after written — refreshing needed
¢ e.g.,, DRAM
* Nonvolatile memory
— Holds bits after power is no longer supplied
— High end and middle range of storage permanence

41
Memory array
I I I]
Mem | Mem | Mem | Mem |
Cell Cell Cell Cell
I I I]

d Mem | | Mem | | Mem || |Mem/||
wor Cell Cell Cell Cell
lines

| | | | | | | |
Mem]| [Mem]] [Mem}] [|Mem]]
Cell Cell Cell Cell

| | |]
Mem | | Mem | | Mem | | Mem | |
Cell Cell Cell Cell

NV
bit lines
42

21

Support circuitry

N
AO 9]

T
Al S | memory
A2 2 array

< ™ 16 bits (4x4)
A3 2

N

b 1]

4:1 mux/demux

OE#
cs# —3 E

WE#

Control signals: DO
¢ Control read/write of array
¢ Map internal physical array to external configuration (4x4 - 16x1)

43

Interface (1/2)

e Physical configurations are typically square.
° Minimize length word + bit line = minimize access delays.

eExternal configurations are “tall and narrow”. The
narrower the configuration, the higher the pin
efficiency. (Adding one address pin cuts data pinsin
half.)

° Several external configurations available for a given capacity.
° 64Kbits may be available as 64Kx1, 32Kx2, 16Kx4,...

44

Interface (2/2)

oChip Select (CS#): Enables device. If not asserted,
device ignores all other inputs (sometimes entering
low-power mode).

e\Write Enable (WE#): Store DO at specified address.

eQutput Enable (OE#): Drive value at specified
address onto DO.

45

Memory timing: Reads

trRe

tav

A A
y

ADDR X .

: \ toe /S

OE#

DATA

e Access time: Time required from start of a read access to valid data output.

© Access time specified for each of the three conditions required for valid data output (valid address,
chip select, output enable)

e Time to valid data out depends on which of these is on critical path.

e tz: Minimum time required from start of one access to start of next.
° For most memories equal to access time.

46

23

Memory timing: Writes

twc

taw

pooR) X
CS# _—\‘ i >

_—lu twe r——
WE# tas '\ 4

DATA >€

A4
A

e Write happens on rising edge of WE#
e Separate access times t,, tews twe specified for address valid, CS#, WE#.

o Tylpdically, tas =0, meaning that WE# may not be asserted before address is
valid.

e Setup and hold times required for data.
e Write cycle time ty is typically in the order of t,,.

47
Memory Comparison grid

Memory Read | Write Volatility | density | power rewrite
type speed |speed
SRAM +++ +++ - - ++
DRAM + + -- ++ - ++
EPROM |+ - + + -
EEPROM |+ - + + +
Flash + + + + +

48

24

ROM: “Read-Only” Memory

* Nonvolatile
e Can be read from but not written to

External view

enable —| 2¥xnROM

* Uses —

— Store software program for general-purpose
processor

b

— Store constant data (parameters) needed by
system

— Implement combinational circuits (e.g., decoders)

Q. Q

49

Example: 8 x 4 ROM

* Horizontal lines = words
* Vertical lines = data Internal view

* Lines connected only at circles 84 ROM

word 0
word 1

J

QA2 ALY

* Decoder sets word 2’s line to 1if enabie [38
address input is 010 A —Ls
Ay —
* Datalines Q3 and Q1 are set to 1 e —>
because there is a “programmed”

connection with word 2’s line programmable

connection

] word 2

QAL 3280

Jaarad

<— word line

Rc— data line

0.
&

* Word 2 is not connected with data % a G
lines Q2 and Qo

* Qutputis 1010

50

25

Mask-programmed ROM

* Connections “programmed” at fabrication
— set of masks
* Lowest write ability
— only once
* Highest storage permanence
— bits never change unless damaged
» Typically used for final design of high-volume systems
— spread out NRE (non-recurrent engineering) cost for a low unit cost

51

OTP ROM: One-time programmable ROM

* Connections “programmed” after manufacture by user

— user provides file of desired contents of ROM

— file input to machine called ROM programmer

— each programmable connection is a fuse

— ROM programmer blows fuses where connections should not exist
* Very low write ability

— typically written only once and requires ROM programmer device
* Very high storage permanence

— bits don’t change unless reconnected to programmer and more fuses
blown

* Commonly used in final products
— cheaper, harder to inadvertently modify

52

26

EPROM: UV Erasable programmable ROM

Programmable component is a MOS transistor

<),
— Transistor has “floating” gate surrounded by an insulator //@ w S 33
— (a) Negative charges form a channel between source and drain o | Jd3
)) 990 T
storing a logic 1 [SXela)
— (b) Large positive voltage at gate causes negative charges to J333
move out of channel and get trapped in floating gate storing a (a)
logic 0
— (c) (Erase) Shining UV rays on surface of floating-gate causes
negative charges to return to channel from floating gate 415V
restoring the logic 1 Slseeles)]
— (d) An EPROM package showing quartz window through which (b) o) 6

UV light can pass

Better write ability
— can be erased and reprogrammed thousands of times
Reduced storage permanence

— program lasts about 10 years but is susceptible to
radiation and electric noise

Typically used during design development (d) e

Héij»)/ 5-30 min

53

Sample EPROM components

-

¥20L10 ®

54

27

Sample EPROM programmers

N |EDP-17003
([SUN egmes] PORTABLE EFRON PROGRAMER

55

EEPROM: Electrically erasable
programmable ROM

* Programmed and erased electronically
— typically by using higher than normal voltage
— can program and erase individual words

* Better write ability
— can be in-system programmable with built-in circuit to provide higher
than normal voltage

¢ built-in memory controller commonly used to hide details from memory
user

— writes very slow due to erasing and programming
¢ “busy” pin indicates to processor EEPROM still writing
— can be erased and programmed tens of thousands of times

* Similar storage permanence to EPROM (about 10 years)
* Far more convenient than EPROMs, but more expensive

56

28

FLASH

* Extension of EEPROM

— Same floating gate principle

— Same write ability and storage permanence
* Fast erase

— Large blocks of memory erased at once, rather than one
word at a time

— Blocks typically several thousand bytes large
* Writes to single words may be slower

— Entire block must be read, word updated, then entire
block written back

57

FLASH applications

e Flash technology has made rapid advances in recent
years.

° cell density rivals DRAM; better than EPROM; much better than EEPROM.

o

multiple gate voltages can encode 2 bits per cell.
° many-GB devices available

e ROMs and EPROM s rapidly becoming obsolete.

e Replacing hard disks in some applications.
° smaller, lighter, faster
° more reliable (no moving parts)

cost effective

o

e PDAs, cell phones, laptops, iPods, etc...

58

29

RAM: Random-Access Memory

external view

¢ Typically volatile memory o]
— bits are not held without power supply enable memory
+ Read and written to easily by microprocessor i
during execution Bex I I II
* Internal structure more complex than ROM N 4
-1
— aword consists of several memory cells, each
. . internal view
storing 1 bit Hohh L
— each input and output data line connects to each oa A I
cell in its column
enable__> 2x4
— rd/wr connected to every cell
Ay —>
— when row is enabled by decoder, each cell has a—l
logic that stores input data bit when rd/wr ""i:‘lf"’
indicates write or outputs stored bit when rd/wr /W —e1o every cell
Lo vy YV
indicates read Q, Q,Q; Q

59
e SRAM Cell e DRAM Cell
addr raw select raw enable
bit line bit line
bit line
e Larger cell = lower density, higher e Smaller cell = higher density, lower
cost/bit cost/bit
* No dissipation ¢ Needs periodic refresh, and refresh
¢ Read non-destructive after read
« No refresh required e Complex read = longer access time
« Simple read = faster access e Special IC process = difficult to
integrate with logic circuits
e Standard IC process = natural for
integration with logic
60

30

RAM variations

PSRAM: Pseudo-static RAM
— DRAM with built-in memory refresh controller
— Popular low-cost high-density alternative to SRAM

NVRAM: Nonvolatile RAM

— Holds data after external power removed

— Battery-backed RAM
* SRAM with own permanently connected battery
* writes as fast as reads
* no limit on number of writes unlike nonvolatile ROM-based memory

— SRAM with EEPROM or FLASH
* stores complete RAM contents on EEPROM or FLASH before power turned off

61
Dual-port RAM (DPRAM)
* Usually a Static RAM circuit with two address
and data bus connections
— Shared RAM for two independent users
* Flexible communication link between two
processors
— Master/slave| .= |
i !
62

31

DDR1 SDRAM, DDR2, ...

e Double Data Rate synchronous dynamic random
access memory (DDR1 SDRAM) is a class of
memory integrated circuits used in computers.

e The interface uses double pumping (transferring
data on both the rising and falling edges of the
clock signal) to lower the clock frequency

¢ One advantage of keeping the clock frequency
down is that it reduces the signal integrity
requirements on the circuit board connecting the
memory to the controller

e DDR2 memory is fundamentally similar to DDR
SDRAM

e DDR2 SDRAM can perform four transfers per clock
using a multiplexing technique

63

32

	Slide 1: Lecture 10 Memory
	Slide 2: Outline
	Slide 3
	Slide 4: Processor “Register Set”
	Slide 5
	Slide 6: Cortex-M0+ Processor: Memory Addressing
	Slide 7: Example of MCU that uses Cortex-M0+ Processor
	Slide 8: Separation of main system bus and peripheral bus
	Slide 9
	Slide 10
	Slide 11: STM32L053R8 - Datasheet
	Slide 12: NUCLEO-L053R8
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Memory Attributes and Memory Access Permission
	Slide 17: Memory Attributes
	Slide 18: Memory Attributes
	Slide 19
	Slide 20: Memory access permission for regions
	Slide 21: Memory Protection Unit (MPU)
	Slide 22: Memory Protection Unit (MPU)
	Slide 23: Direct Memory Access (DMA)
	Slide 24: Need for DMA
	Slide 25: DMA
	Slide 26
	Slide 27: DMA Channels
	Slide 28: HAL_DMA Module
	Slide 29: Perform DMA Transfers in Polling Mode
	Slide 30: Example
	Slide 31
	Slide 32
	Slide 33: Program Code
	Slide 34
	Slide 35: Outline
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Memory timing: Reads
	Slide 47: Memory timing: Writes
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: DDR1 SDRAM, DDR2, …

