
1

SimpleScalarSimpleScalar
TutorialTutorial

SimpleScalar TutorialSimpleScalar Tutorial

(for release 4.0)(for release 4.0)

Todd Austin, Dan Ernst, Eric Larson, Chris Weaver
University of Michigan

Raj Desikan, Ramadass Nagarajan, Jaehyuk Huh,
Bill Yoder, Doug Burger, Steve Keckler

University of Texas at Austin

SimpleScalarSimpleScalar
TutorialTutorial

Tutorial AgendaTutorial Agenda
• Introduction to SimpleScalar

– What is it?
– Distribution, Licensing, and Resources

• SimpleScalar version 4.0 release
– MASE Microarchitecture Simulation Environment
– SimpleScalar ARM Target
– GPV Graphical Pipeline Viewer
– MiBench Embedded Benchmark Suite
– PowerAnalyzer Power Models
– Sim-Alpha Validated 21264 Microarchitecture Model
– ss-ppc SimpleScalar PowerPC Target
– ss-os Full System simulator
– ss-viz SimpleScalar Visualization Tool

• Looking Ahead…



2

SimpleScalarSimpleScalar
TutorialTutorial

• What is an architectural simulator?
– Tool that reproduces the behavior of a computing device

• Why use a simulator?
– Leverage faster, more flexible S/W development cycle

• Permits more design space exploration

• Facilitates validation before H/W becomes available

• Level of abstraction can be throttled to design task
• Possible to increase/improve system instrumentation

A Computer Architecture Simulator PrimerA Computer Architecture Simulator Primer

Device
Simulator

System
Inputs

System Outputs

System Metrics

SimpleScalarSimpleScalar
TutorialTutorial

A Taxonomy of Hardware Modeling ToolsA Taxonomy of Hardware Modeling Tools
Hardware Models

Micro-ArchitecturalArchitectural

Cycle TimersSchedulerExec-Driven

Direct ExecutionEmulation

• Shaded tools are included in the SimpleScalar tool set

H/W MonitorTrace-Driven



3

SimpleScalarSimpleScalar
TutorialTutorial

Application
Input/output

Performance
Results

SimpleScalar Tool SetSimpleScalar Tool Set
• Computer system design and analysis 

infrastructure
– Processor/device (behavioral) models

– Supports many ISAs and I/O interfaces

– Portable to most modern platforms

• Created by the SimpleScalar 
development team
– UM, UW-Madison, UT-Austin, 

SimpleScalar LLC

– Entering tenth year of development

– Deployed widely in academia and industry

– UM extensions generously supported by NSF and DARPA

• Freely available for academic non-commercial use with source
from www.simplescalar.com

ApplicationApplication

SimpleScalar
Simulators

SimpleScalar
Simulators

Host
Machine

Host
Machine

SimpleScalarSimpleScalar
TutorialTutorial

Primary AdvantagesPrimary Advantages
• Extensible

– Source included for everything: compiler, libraries, simulators
– Widely encoded, user-extensible instruction format

• Portable
– At the host, virtual target runs on most Unix-like boxes

– At the target, simulators can support multiple ISA’s

• Detailed
– Execution driven simulators

– Supports wrong path execution, control and data speculation, etc...

– Many sample simulators included

• Performance (on P4-1.7GHz)
– Sim-Fast: 10+ MIPS

– Sim-OutOrder: 350+ KIPS



4

SimpleScalarSimpleScalar
TutorialTutorial

SimpleScalarSimpleScalar
TutorialTutorial

SimpleScalar Tool Set OverviewSimpleScalar Tool Set Overview

• Compiler chain is GNU tools PISA, ARM, etc…
• Fortran codes are compiled with AT&T’s f2c, or target FCC
• Libraries are GLIBC ported to SimpleScalar

F2C GCC

GAS

GLD
libf77.a

libm.a
libc.a

Simulators

Binutils

Fortran code C code

Assembly code

object files

Executables



5

SimpleScalarSimpleScalar
TutorialTutorial

Running SimpleScalar ToolsRunning SimpleScalar Tools
• Compiling a C program, e.g.,

ssbig-na-sstrix-gcc -g -O -o foo foo.c -lm

• Compiling a Fortran program, e.g.,
ssbig-na-sstrix-f77 -g -O -o foo foo.f -lm

• Compiling a SimpleScalar assembly program, e.g.,
ssbig-na-sstrix-gcc -g -O -o foo foo.s -lm

• Running a program, e.g.,
sim-safe [-sim opts] program [-program opts]

• Disassembling a program, e.g.,
ssbig-na-sstrix-objdump -x -d -l foo

• Building a library, use
ssbig-na-sstrix-{ar,ranlib}

SimpleScalarSimpleScalar
TutorialTutorial

Global Simulator OptionsGlobal Simulator Options
• Supported on all simulators

-h - print simulator help message
-d - enable debug message
-i - start up in DLite! debugger
-q - quit immediately (use w/ -dumpconfig)
-config <file> - read config parameters from <file>
-dumpconfig <file> - save config parameters into <file>

• Configuration files
– To generate a configuration file

• Specify non-default options on command line
• And, include “-dumpconfig <file>” to generate configuration file

– Comments allowed in configuration files, all after “#” ignored
– Reload configuration files using “-config <file>”



6

SimpleScalarSimpleScalar
TutorialTutorial

SimSim--Profile: Program Profiling SimulatorProfile: Program Profiling Simulator
• Generates program profiles, by symbol and by address
• Extra options

-iclass - instruction class profiling (e.g., ALU, branch)
-iprof - instruction profiling (e.g., bnez, addi, etc...)
-brprof - branch class profiling (e.g., direct, calls, cond)
-amprof - address mode profiling (e.g., displaced, R+R)
-segprof - load/store segment profiling (e.g., data, heap)
-tsymprof - execution profile by text symbol (i.e., funcs)
-dsymprof - reference profile by data segment symbol
-taddrprof - execution profile by text address
-all - enable all of the above options 
-pcstat <stat> - record statistic <stat> by text address

• NOTE: “-taddrprof” == “-pcstat sim_num_insn”

SimpleScalarSimpleScalar
TutorialTutorial

Simulator Software ArchitectureSimulator Software Architecture
• Target software (apps and OS) 

runs on simulator
• Performance model tracks time

– Perf core implements machine

– Standard modules speed coding

• Simulation kernel provides event 
simulation services

• Target ISA emulation support
– PISA, Alpha, StrongARM, PPC, x86

• Target I/O support
– Syscalls, devices, I/O traces

Target Application and OSTarget Application and OS

Hardware ModelHardware Model
Fetch Pipeline

Predictor Caches

Perf
Core

Simulation KernelSimulation Kernel

Target
ISA

Target
ISA

Target
I/O Interface

Target
I/O Interface

Host PlatformHost Platform



7

SimpleScalarSimpleScalar
TutorialTutorial

Simulator Software ArchitectureSimulator Software Architecture
• Interface programming style

– All “.c” files have an accompanying “.h” file with same base
– “.h” files define public interfaces “exported” by module

• Mostly stable, documented with comments, studying these files

– “.c” files implement the exported interfaces
• Not as stable, study these if you need to hack the functionality

• Simulator modules
– sim-*.c files, each implements a complete simulator core

• Reusable S/W components facilitate “rolling your own”
– System components

– Simulation components

– Additional “really useful” components

SimpleScalarSimpleScalar
TutorialTutorial

Machine DefinitionMachine Definition
• A single file describes all aspects of the architecture

– Used to generate decoders, dependency analyzers, functional 
components, disassemblers,  appendices, etc.

– e.g., machine definition + 10 line main == functional simulator

– Generates fast and reliable codes with minimum effort

• Instruction definition example

DEFINST(ADDI, 0x41,
“addi”, “t,s,i”,
IntALU, F_ICOMP|F_IMM,
GPR(RT),NA, GPR(RS),NA,NA
SET_GPR(RT, GPR(RS)+IMM))

opcode

assembly
template

FU req’s

output deps input deps

semantics

inst flags



8

SimpleScalarSimpleScalar
TutorialTutorial

Simulator I/OSimulator I/O

• A useful simulator must implement some form of I/O
– I/O implemented via SYSCALL instruction
– Supports a subset of Ultrix system calls, proxied out to host

• Basic algorithm (implemented in syscall.c)
– Decode system call

– Copy arguments (if any) into simulator memory

– Perform system call on host
– Copy results (if any) into simulated program memory

write(fd, p, 4)

Simulated Program Simulator

sys_write(fd, p, 4)

args in

results out

SimpleScalarSimpleScalar
TutorialTutorial

Standard Modules Standard Modules -- Simulation ComponentsSimulation Components
• bpred.[hc] - branch predictors
• cache.[hc] - cache module
• eventq.[hc] - event queue module
• libcheetah/ - Cheetah cache simulator library
• ptrace.[hc] - pipetrace module
• res.[hc] - resource manager module
• sim.h - simulator main code interface definitions
• textprof.pl - text segment profile view (Perl Script)
• pipeview.pl - pipetrace view (Perl script)



9

SimpleScalarSimpleScalar
TutorialTutorial

Standard Modules Standard Modules -- System ComponentsSystem Components
• dlite.[hc] - DLite!, the lightweight debugger
• eio.[hc] - external I/O tracing module
• loader.[hc] - program loader
• memory.[hc] - flat memory space module
• regs.[hc] - register module
• machine.[hc] - target and ISA-dependent routines
• machine.def - SimpleScalar ISA definition
• symbol.[hc] - symbol table module
• syscall.[hc] - proxy system call implementation

SimpleScalarSimpleScalar
TutorialTutorial

Standard Modules Standard Modules -- “Really Useful” Modules“Really Useful” Modules
• eval.[hc] - generic expression evaluator
• libexo/ - EXO(-skeletal) persistent data structure library
• misc.[hc] - everything miscellaneous
• options.[hc] - options package
• range.[hc] - range expression package
• stats.[hc] - statistics package



10

SimpleScalarSimpleScalar
TutorialTutorial

The Zen of Hardware Model DesignThe Zen of Hardware Model Design

• Infrastructure goals will drive which aspects are optimized
• SimpleScalar favors performance and flexibility

Performance

Detail Flexibility

Design
Space

Performance: speeds design cycle

Flexibility: maximizes design scope

Detail: minimizes risk

SimpleScalarSimpleScalar
TutorialTutorial

Standard ModelsStandard Models

Performance

Detail

- 420 lines
- no timing
- 4+ MIPS

- 350 lines
- no timing
- w/ checks

- ~1000 lines
- functional
- cache stats 

- 900 lines
- no timing
- lot of stats

- 3900 lines
- performance
- OoO issue
- branch pred.
- mis-spec.
- ALUs
- cache
- TLB
- 150 KIPS

Sim-Fast Sim-Safe Sim-Profile
Sim-Cache

Sim-Cheetah
Sim-Outorder



11

SimpleScalarSimpleScalar
TutorialTutorial

OutOut--ofof--Order Issue SimulatorOrder Issue Simulator

Fetch Dispatch Scheduler

Memory
Scheduler

Writeback CommitExec

Mem

D-Cache
(DL1)

I-Cache
(IL1)

Virtual Memory

D-TLBI-TLB

I-Cache
(IL2)

D-Cache
(DL2)

SimpleScalarSimpleScalar
TutorialTutorial

Distribution and LicensingDistribution and Licensing
• Download from www.simplescalar.com

– Code releases and updates
– Cross-compilers and other tool chains

– Benchmarks sources, binaries, and test inputs

– User-contributed developments

• SimpleScalar licensing
– Non-commercial academic use licenses (research or instruction) are 

available free of charge
– Commercial use licenses available from SimpleScalar LLC

• Required for any use by a for-profit business/institution

• Two options available: Site and research participation licenses

• Contact info@simplescalar.com for complete details



12

SimpleScalarSimpleScalar
TutorialTutorial

SimpleScalar ResourcesSimpleScalar Resources
• Public releases available from www.simplescalar.com

– Current public release is version 3
– Current development release is version 4

• Required reading, available from www.simplescalar.com
– The SimpleScalar Tool Set User’s Guide

– The SimpleScalar Hackers Guide

– The SimpleScalar Tutorial, version 2 (MICRO30) and version 4 (MICRO34)

• Support resources
– Mailing lists

• help@simplescalar.com, announce@simplescalar.com

• join the lists at www.simplescalar.com

• E-mail info@simplescalar.com for developer support

SimpleScalarSimpleScalar
TutorialTutorial

Tutorial AgendaTutorial Agenda
• Introduction to SimpleScalar

– What is it?
– Distribution, Licensing, and Resources

• SimpleScalar version 4.0 release
– MASE Microarchitecture Simulation Environment
– SimpleScalar ARM Target
– GPV Graphical Pipeline Viewer
– MiBench Embedded Benchmark Suite
– PowerAnalyzer Power Models
– Sim-Alpha Validated 21264 Microarchitecture Model
– ss-ppc SimpleScalar PowerPC Target
– ss-os Full System simulator
– ss-viz SimpleScalar Visualization Tool

• Looking Ahead…



13

SimpleScalarSimpleScalar
TutorialTutorial

SimpleScalar Version 4.0SimpleScalar Version 4.0

• Test releases available today from
http://www.simplescalar.com/v4test.html

SimpleScalar
Version 4.0

University of Texas

SimpleScalar LLC

• Sim-Alpha
• ss-viz
• SimpleScalar/PPC
• ss-os

• SimpleScalar/x86
• Integration services
• Online support
• Commercial licensing

• MASE
• SimpleScalar/ARM
• MiBench
• PowerAnalyzer
• GPV

University of Michigan

SimpleScalarSimpleScalar
TutorialTutorial

Tutorial AgendaTutorial Agenda
• Introduction to SimpleScalar

– What is it?
– Distribution, Licensing, and Resources

• SimpleScalar version 4.0 release
– MASE Microarchitecture Simulation Environment
– SimpleScalar ARM Target
– GPV Graphical Pipeline Viewer
– MiBench Embedded Benchmark Suite
– PowerAnalyzer Power Models
– Sim-Alpha Validated 21264 Microarchitecture Model
– ss-ppc SimpleScalar PowerPC Target
– ss-os Full System simulator
– ss-viz SimpleScalar Visualization Tool

• Looking Ahead…



14

SimpleScalarSimpleScalar
TutorialTutorial

MASE Microarchitectural Simulation EnvironmentMASE Microarchitectural Simulation Environment
• MASE is a new performance simulation infrastructure for 

SimpleScalar.
– Developed by Eric Larson, Saugata Chatterjee, and Dan Ernst

• Features and goals of MASE:
– Checker improves validation support.

– Oracle allows for “perfect” studies.

– Micro-functional performance model increases accuracy.
– Speculative state management facilities simplify aggressive speculation.

– Callback interface permits sophisticated memory system simulation.

SimpleScalarSimpleScalar
TutorialTutorial

SimpleScalar 3.0 software architectureSimpleScalar 3.0 software architecture

Functional
UnitsIF ID CT

Reorder Buffer (ROB)



15

SimpleScalarSimpleScalar
TutorialTutorial

MASE software architectureMASE software architecture

Instruction State Queue (ISQ)

Functional
Units

Memory
simulator

IF ID

Oracle

CT

Checker

Reorder Buffer (ROB)

callback
interface

SimpleScalarSimpleScalar
TutorialTutorial

Checker and oracleChecker and oracle

• Permit “perfect” studies and improved validation.
• Oracle executes in fetch and places values into ISQ.
• Checker uses ISQ values to validate core computation.
• Checker will fix any core bug, reducing burden of correctness in

core.

Instruction State Queue (ISQ)

F. Units

Memory Sim

IF ID

Oracle

CT

Checker
Reorder Buffer (ROB)

callback
interface



16

SimpleScalarSimpleScalar
TutorialTutorial

MicroMicro--functional performance modelfunctional performance model

• Trace-driven techniques cannot accurately model timing-
dependent computation.
– For example, mispeculation and shared memory race conditions.

• Instructions are now executed in the core with proper timing.
• Further improves validation, intertwining timing and correctness.

Instruction State Queue (ISQ)

F. Units

Memory Sim

IF ID

Oracle

CT

Checker
Reorder Buffer (ROB)

callback
interface

SimpleScalarSimpleScalar
TutorialTutorial

Support for aggressive speculationSupport for aggressive speculation

• SimpleScalar lacks arbitrary instruction restart.  Only branches
can restart.

• MASE allows any instruction to mispeculate and restart core.
• Several data structures (such as the ROB and ISQ) were 

modified to support arbitrary rollback.

Instruction State Queue (ISQ)

F. Units

Memory Sim

IF ID

Oracle

CT

Checker
Reorder Buffer (ROB)

callback
interface



17

SimpleScalarSimpleScalar
TutorialTutorial

Memory system with callback interfaceMemory system with callback interface

• SimpleScalar’s memory system requires that instruction latency 
be known at issue.

– Not representative of modern memory systems.

– For example, DRAM accesses can be reordered to increase page hit rates.

• Instructions use callback interface to asynchronously declare 
their (remaining) latency.

Instruction State Queue (ISQ)

F. Units

Memory Sim

IF ID

Oracle

CT

Checker
Reorder Buffer (ROB)

callback
interface

SimpleScalarSimpleScalar
TutorialTutorial

Memory system with callback interfaceMemory system with callback interface

Performance
Simulator

Memory
System

1. Issue load
2. Call cache_access with:
callback = cb_fn, rid = 5

3. Return mem_unknown

4. Determine latency

5. Call cb_fn with:
rid = 5, lat = 15

6. Schedule
completion for load



18

SimpleScalarSimpleScalar
TutorialTutorial

Other improvementsOther improvements
• Algorithm for detecting when store data can be forwarded to 

loads has been improved (more aggressive). 
• Register update unit (RUU) has been split into a reorder buffer 

(ROB) and reservation stations (RS).
• Added a scheduler queue.

– Scheduler predicts the latency of each instruction.  

– Instructions are replayed if the prediction is too small.

• Added a front-end queue.
– Improves misprediction delay accuracy. 

– Can simulate additional stages in the front-end pipeline.

SimpleScalarSimpleScalar
TutorialTutorial

Early results and analysesEarly results and analyses
• Validated MASE against SimpleScalar 3.0 sim-outorder.

– Less than 1% difference for SPEC95 integer benchmarks.

• MASE is half as fast as sim-outorder, but MASE is unoptimized 
(future work).

• Arbitrary speculation mechanism tested with blind load 
speculation study.
– Implementation was straight-forward in MASE.

• Checker simplified implementation of store forwarding.
– Partial store forwarding logic was not implemented.  

– Relied on checker to detect and correct these cases.  

– Minor inaccuracy, at most 195 errors (vortex).

• Checker proved to be a valuable debugging aid when 
implementing other features of MASE.



19

SimpleScalarSimpleScalar
TutorialTutorial

Key Features SummaryKey Features Summary
• Checker supports validation by reducing the burden of 

correctness on the core.
• Micro-functional core allows for more accurate modeling.
• Speculative state management facilities simplify implementations

of aggressive speculation techniques.
• Memory system callback interface supports modern memory 

systems.

SimpleScalarSimpleScalar
TutorialTutorial

Tutorial AgendaTutorial Agenda
• Introduction to SimpleScalar

– What is it?
– Distribution, Licensing, and Resources

• SimpleScalar version 4.0 release
– MASE Microarchitecture Simulation Environment
– SimpleScalar ARM Target
– GPV Graphical Pipeline Viewer
– MiBench Embedded Benchmark Suite
– PowerAnalyzer Power Models
– Sim-Alpha Validated 21264 Microarchitecture Model
– ss-ppc SimpleScalar PowerPC Target
– ss-os Full System simulator
– ss-viz SimpleScalar Visualization Tool

• Looking Ahead…



20

SimpleScalarSimpleScalar
TutorialTutorial

SimpleScalar/ARM TargetSimpleScalar/ARM Target
• ARM simulation target

– Developed by Dan Ernst and
Chris Weaver

• ARM7 apps run on emulator
– SPEC, MiBench, MediaBench

• Linux system call I/O emulator
– Supports file, network, console I/O

• Multiple validated processor 
models
– Intel StrongARM SA-1110

– Intel XScale 80200

– Performance and power models 
validated

SPEC, MiBench, MediaBenchSPEC, MiBench, MediaBench

Power/Performance ModelPower/Performance Model

Fetch Pipeline

Predictor Caches

SA-1100/
XScale
Core

Simulation KernelSimulation Kernel

ARM7 ISA
ARM FPA

ARM7 ISA
ARM FPA

Linux/ARM
System Calls

Linux/ARM
System Calls

Host PlatformHost Platform

SimpleScalarSimpleScalar
TutorialTutorial

ARM Target Instruction EmulationARM Target Instruction Emulation
• ARM ISA emulation support added to SimpleScalar tool set

– ARM 7 integer instruction set support
– Floating Point Accelerator (FPA) instruction set support

• Linux/ARM system call support added
– System calls are implemented by the simulator

– Portable I/O, but does not capture OS execution

• ARM CISC instructions required microcode support
– Needed for microarchitectural modeling

agen  tmp1,r13,0
agen  tmp0,tmp1,-16
stp  r11,[tmp0]
agen  r13,r13,-16
agen  tmp0,tmp1,-12
stp  r12,[tmp0]
agen  tmp0,tmp1,-8
stp  r14,[tmp0]
agen  tmp0,tmp1,-4
stp  r15,[tmp0]

stmdb  r13!,{r4-r8,r10-r15}



21

SimpleScalarSimpleScalar
TutorialTutorial

Processor Performance ModelProcessor Performance Model
• SA-1 pipeline model implemented

– Pipeline used in Intel’s SA-11xx
– Simple five stage pipeline
– Two level memory hierarchy

• Challenging task due to lack of 
info on SA-1 microarchitecture
– Derived many details from the 

compiler writers guide
– Used directed black-box testing to fill 

in the rest of the blanks

• prototype XScale model completed
– Intel’s new StrongARM processor
– Based on (sparse) published details
– Validation ongoing against XScale 

80200 evaluation board

IF ID EX MEM WB

I$ D$IMMU DMMU

Physical
Memory

SA-1 Pipeline

SimpleScalarSimpleScalar
TutorialTutorial

ARM CrossARM Cross--Compiler KitCompiler Kit
• Permits users to compile ARM binaries w/o ARM hardware

– Most users lack access to a real ARM target with a native compiler
– We use Rebel.com’s NetWinder platforms to build native binaries

• GNU GCC targeted to ARM ISA
– includes soft-float support (permits compilation for non-FP hardware)

• GNU binutils targeted to ARM ISA
– GNU ld linker
– GNU binary utilies, e.g., objdump, nm, size, etc…

• Pre-built C libraries for ARM ISA
– Targeted to Linux system call interfaces

• Portable code base



22

SimpleScalarSimpleScalar
TutorialTutorial

ARM Target ValidationARM Target Validation
• ARM 7 ISA validated against reference 

implementation
– Functional validation via random testing

• Using the FuzzBuster framework
– Validated against real SA-1100 H/W
– Validated against ARM’s ARMulator

• ARM FPA extensions validated against 
SoftFloat suite
– ARMulator and SA-1110 reference lack FP 

implementations
– SoftFloat suit implements reference FP with 

integer ISA

• Large validation effort
– 500+ billion instructions tested

– 6 bugs found in the ARMulator! (reported to 
ARM Ltd)

ARM
Target

Ref
Impl

Random
Instruction
and State

=

Correct?

- ARMulator
- SA-1100 H/W

FuzzBuster

SimpleScalarSimpleScalar
TutorialTutorial

Performance Model ValidationPerformance Model Validation
• Performance validation against SA-1110 platform

– Rebel.com NetWinder reference with SA-1 pipeline

– Microbenchmarks were used to reveal and test specific latencies
• e.g., branch mispredictions, cache misses, writeback stalls

– Final validation completed with macrobenchmark testing

• Compared IPC of SA-1110 to IPCs computed by SA-1 performance model
• H/W IPCs computed using wall clock time, clock frequency, and known 

instruction counts

– Excellent IPC correlation across entire test suite

2.12.902.84cc1 -O cc1in.i
3.23.103.20bzip2 10

0.11.441.45fft short.pcm

3.11.911.97br_nottaken
1.91.021.04br_taken
0.533.7033.87cache_miss
0.91.011.02cache_hit

% DifferenceSA-1110SimpleScalarBenchmark

m
ic

ro
be

nc
hm

ar
ks

m
ac

ro
be

nc
hm

ar
ks



23

SimpleScalarSimpleScalar
TutorialTutorial

Tutorial AgendaTutorial Agenda
• Introduction to SimpleScalar

– What is it?
– Distribution, Licensing, and Resources

• SimpleScalar version 4.0 release
– MASE Microarchitecture Simulation Environment
– SimpleScalar ARM Target
– GPV Graphical Pipeline Viewer
– MiBench Embedded Benchmark Suite
– PowerAnalyzer Power Models
– Sim-Alpha Validated 21264 Microarchitecture Model
– ss-ppc SimpleScalar PowerPC Target
– ss-os Full System simulator
– ss-viz SimpleScalar Visualization Tool

• Looking Ahead…

SimpleScalarSimpleScalar
TutorialTutorial

GPV: Graphical Pipeline ViewerGPV: Graphical Pipeline Viewer
• Portable pipeline visualization infrastructure

– Developed by Chris Weaver, Kenneth Barr, Eric Marsman, Dan Ernst

• Provide visual platform for locating bottlenecks
– Pipetrace view displays program slowdowns

• Enable visual diagnosis of bottleneck causes
– Color-coded latencies identify problem delays

– Resource view reveals resource bottlenecks

• Permit visual evaluation of program/design updates
– Multiple trace comparisons

• Allow use on multiple platforms with multiple simulators
– Portable code in Perl/TK
– Standard pipetrace input



24

SimpleScalarSimpleScalar
TutorialTutorial

GPV Software ArchitectureGPV Software Architecture

Architectural
Simulator

(SimpleScalar)

Pipetrace
File

+
GPV

Perl/TK
Screen

Pipetrace Stream
XOR

SimpleScalarSimpleScalar
TutorialTutorial

Main WindowMain Window

Instruction View

Resource View



25

SimpleScalarSimpleScalar
TutorialTutorial

Zoom FeatureZoom Feature

SimpleScalarSimpleScalar
TutorialTutorial

Zoom FeatureZoom Feature



26

SimpleScalarSimpleScalar
TutorialTutorial

Pipetrace FormatPipetrace Format

@ 154
* 61 CT 0x000 0 0x000
- 61
* 72 WB 0x000 0 0x000
* 71 WB 0x000 0 0x000
* 74 EX 0x001 30 0x001
* 75 EX 0x010 30 0x001
* 76 EX 0x000 0 0x001
+ 82 0x12002e558 0x00000000 [internal ld/st]
* 82 DA 0x000 0 0x000
* 79 DA 0x000 0 0x000
* 80 DA 0x000 0 0x000
* 81 DA 0x000 0 0x000
....more lines.....
<sim_num_insn>          55
<sim_cycle>         154
<sim_IPC>      0.3571

@ 155
* 76 WB 0x000 0 0x000
* 75 WB 0x000 0 0x000
* 78 EX 0x001 29 0x001
* 79 EX 0x010 29 0x001
* 80 EX 0x000 0 0x001
+ 86 0x12002e558 0x00000000 [internal ld/st]
* 86 DA 0x000 0 0x000
* 83 DA 0x000 0 0x000
+ 87 0x12002e558 0x00000000 ldq r1,0(r19)
* 87 IF 0x000 0 0x001
+ 88 0x12002e55c 0x00000000 addq r19,8,r19
* 88 IF 0x000 0 0x001
<sim_num_insn>          56
<sim_cycle>         155
<sim_IPC>      0.3613

<END VISUAL>

The @ sign marks a start of a new simulation cycle
The - sign marks the removal of an instruction

The * sign indicates a change in the instruction status

Variables that the user want to track at in <> with the value The + sign indicates a new instruction

SimpleScalarSimpleScalar
TutorialTutorial

Sample Software Optimization:Sample Software Optimization:
Loop UnrollingLoop Unrolling

• SA-110 ARM Model
– Predict not taken

– Multi-cycle mispredict per iteration

• 24% speed improvement using 
optimization

for (ii=38; ii >= 4; ii-=2)

{

x = (D+D+1);

w = (B+B+1);

t = x*D;

u = w*B;

t = CONST_ROTL(t, 5);
u = CONST_ROTL(u, 5);
C -= S[ii];
A -= S[ii+1];
C = ROTR(C, u)^t;
A = ROTR(A, t)^u;
if (ii==4)
{ tmp = A; A = B; B = C; C = D; D = tmp; 

}
else
{ tmp = A; A = D; D = C; C = B; B = tmp; 

}
}



27

SimpleScalarSimpleScalar
TutorialTutorial

Base vs. OptimizedBase vs. Optimized

}

}

mispredictions

SimpleScalarSimpleScalar
TutorialTutorial

Sample H/W OptimizationSample H/W Optimization
Add a MultiplierAdd a Multiplier

• RC6 does back to back multiplies per 
iteration

• 4 cycles per multiply on SA-110
• Add Second Multiplier and reschedule 

code

• 30% speed improvement using 
optimization

for (ii=38; ii >= 4; ii-=2)

{

x = (D+D+1);

w = (B+B+1);

t = x*D;
u = w*B;
t = CONST_ROTL(t, 5);
u = CONST_ROTL(u, 5);

C -= S[ii];
A -= S[ii+1];
C = ROTR(C, u)^t;
A = ROTR(A, t)^u;
if (ii==4)
{ tmp = A; A = B; B = C; C = D; D = tmp; 

}
else
{ tmp = A; A = D; D = C; C = B; B = tmp; 

}
}



28

SimpleScalarSimpleScalar
TutorialTutorial

Multiplier OptimizationMultiplier Optimization

SimpleScalarSimpleScalar
TutorialTutorial

Multiplier Optimization (zoom)Multiplier Optimization (zoom)



29

SimpleScalarSimpleScalar
TutorialTutorial

Power usagePower usage
(one multiplier top vs two multipliers bottom)(one multiplier top vs two multipliers bottom)

SimpleScalarSimpleScalar
TutorialTutorial

Key Features SummaryKey Features Summary
• Visualization speeds the process of locating and diagnosing 

performance bottlenecks
– Instruction view identifies program slow downs

– Resource view can be used to locate resource bottlenecks and/or display 
useful statistics for pipeline analysis

• GPV realized these benefits in an easy to use and portable 
package



30

SimpleScalarSimpleScalar
TutorialTutorial

Tutorial AgendaTutorial Agenda
• Introduction to SimpleScalar

– What is it?
– Distribution, Licensing, and Resources

• SimpleScalar version 4.0 release
– MASE Microarchitecture Simulation Environment
– SimpleScalar ARM Target
– GPV Graphical Pipeline Viewer
– MiBench Embedded Benchmark Suite
– PowerAnalyzer Power Models
– Sim-Alpha Validated 21264 Microarchitecture Model
– ss-ppc SimpleScalar PowerPC Target
– ss-os Full System simulator
– ss-viz SimpleScalar Visualization Tool

• Looking Ahead…

SimpleScalarSimpleScalar
TutorialTutorial

MiBench Embedded Benchmark SuiteMiBench Embedded Benchmark Suite
• Michigan embedded benchmarks

– Developed by Matthew Guthaus, Jeffrey Ringenberg, Dan Ernst, and
Chris Weaver

• Benchmarking is a critical part of the design process
• Embedded workloads are different than desktop workloads
• Show the diversity of “typical” embedded applications
• Lack of simulation options for embedded applications
• Need a free benchmark suite for academic research



31

SimpleScalarSimpleScalar
TutorialTutorial

BenchmarksBenchmarks

typeset

tiffmedian

tiffdithersusan 
(smoothing)

GSM enc/decsha(blowfish)stringsearchtiff2rgbasusan (corners)

ADPCM 
enc/dec

rijndael enc/dec(sha)sphinxtiff2bwsusan (edges)

IFFTpgp verify(CRC32)rsynthmadqsort

FFTpgp signpatriciaispelllamebitcount

CRC32blowfish 
enc/dec

dijkstraghostscriptjpeg enc/decbasicmath

Telecomm.SecurityNetworkOfficeConsumerAuto/Industrial

SimpleScalarSimpleScalar
TutorialTutorial

ARM ConfigurationsARM Configurations

12 cycle12 cycleMemory Latency

4-byte4-byteMemory Bus Width

NoneNoneL2 Cache

32k, 32-way16k, 32-wayL1 D-cache

32k, 32-way16k, 32-wayL1 I-cache

1 int ALU, 1 FP 
mult, 1 FP ALU

1 int ALU, 1 FP 
mult, 1 FP ALU

Functional Units

11Fetch & Decode width

8k bimodal, 

2k 4-way BTB

Not-takenBranch Predictor

42Fetch queue 
(instructions)

XScaleSA-1100



32

SimpleScalarSimpleScalar
TutorialTutorial

Achieved IPCAchieved IPC

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
b
a
s
ic

m
a
th

q
s
o
rt

s
u
s
a
n
.e

d
g
e
s

jp
e
g
.e

n
c
o
d
e

m
a
d

ti
ff

2
rg

b
a

ti
ff

m
e
d
ia

n

p
a
tr

ic
ia

g
h
o
s
ts

c
ri
p
t

rs
y
n
th

s
tr

in
g
s
e
a
rc

h

b
lo

w
fi
s
h
.d

e
c
o
d
e

p
g
p
.d

e
c
o
d
e

ri
jn

d
a
e
l.
d
e
c
o
d
e

s
h
a

C
R

C
3
2

F
F

T

a
d
p
c
m

.e
n
c
o
d
e

g
s
m

.e
n
c
o
d
e

g
c
c
0
0

m
c
f0

0

tw
o
lf
0
0

SA-1110 Xscale

SimpleScalarSimpleScalar
TutorialTutorial

Future WorkFuture Work
• Power analysis

– Already performed preliminary runs using PowerAnalyzer

• Continue to add representative benchmarks
– In network: IP-level applications (IP filtering, masquerading, etc)

– In Auto/Industrial: sensor applications (decimation, linear interpolation, 
interrupts)

• I/O simulations
– SimpleScalar using external I/O traces in sim-EIO

• 100% reproducible I/O

– Devices liberally borrowed from “Boch’s” device model

• want to simulate entire system



33

SimpleScalarSimpleScalar
TutorialTutorial

Tutorial AgendaTutorial Agenda
• Introduction to SimpleScalar

– What is it?
– Distribution, Licensing, and Resources

• SimpleScalar version 4.0 release
– MASE Microarchitecture Simulation Environment
– SimpleScalar ARM Target
– GPV Graphical Pipeline Viewer
– MiBench Embedded Benchmark Suite
– PowerAnalyzer Power Models
– Sim-Alpha Validated 21264 Microarchitecture Model
– ss-ppc SimpleScalar PowerPC Target
– ss-os Full System simulator
– ss-viz SimpleScalar Visualization Tool

• Looking Ahead…

SimpleScalarSimpleScalar
TutorialTutorial

PowerAnalyzerPowerAnalyzer
• Tool for early power estimates

– Concurrently with performance studies
– Based on SimpleScalar – a cycle accurate simulator
– Developed by Nam Sung Kim and Rajeev Krishna

• Missing in current cycle-level power simulators
– Actual technology parameters
– Data sensitivity
– Interconnect, including Clock trees
– Chip I/O pads (in some cases)

• PowerAnalyzer’s solutions
– Use actual technology parameters – TSMC 0.25
– Hamming distances between consecutive inputs
– Interconnect length is input explicitly – requires early layout 
– H-tree model – requires approximate chip area
– Chip I/O – parameterized by load capacitance

• Performance impact 4x



34

SimpleScalarSimpleScalar
TutorialTutorial

Modeling Modeling µµ architectural Blocksarchitectural Blocks

cache

CDL

data bus

CAL

address bus

CAL

address bus

data
array

decoder

CWL

wordlines

tag
array

CTL

tag bus

CDL

data bus

cache

(a) Flat modeling

(b) Hierarchical modeling

Effective capacitance of cache = 
(average power of access)/V2f

Power calculated with HSPICE 
and CACTI II

SimpleScalarSimpleScalar
TutorialTutorial

PowerAnalyzerPowerAnalyzer
• Data structure for blocks (simplified)



35

SimpleScalarSimpleScalar
TutorialTutorial

Data sensitivityData sensitivity

8 bit ALU 
at 100 MHz

Data sensitivity 
on buses

SimpleScalarSimpleScalar
TutorialTutorial

PowerAnalyzerPowerAnalyzer
• Automatic configuration:

– Approximate layout – interconnect and clock tree
– Leakage – total gate width/block (or number of equivalent inverters)
– Gate count estimation of random logic

• Calibrate against MARS
• Next set of experiments

– What can we leave out vs technology
• Interconnect
• Hierarchy
• Pads
• Data sensitivity
• Leakage

– Impact on performance of PowerAnalyzer
– Impact on accuracy of PowerAnalyzer

• Future experiments
– Microarchitecture power/performance



36

SimpleScalarSimpleScalar
TutorialTutorial

MARSMARS
• Synthesizeable ARM4 ISA

– Pipeline 4 (5)-stage
• FETCH, DECODE, EX, ME(WB) 

– Branch prediction
• Backward-Taken, Forward-Not-Taken

– Technology
• TSMC .25um
• # of IO pads 115
• # of cells 11427 
• # macro blocks 9
• die size: 5.2mm x 5.2mm

– I-cache
• 4K (128 sets 32 bytes/ set,  direct mapped) 

– D-cache
• 8K (256 sets 32 bytes/set, direct mapped), write through

• Tested with Dhrystone 2.1

SimpleScalarSimpleScalar
TutorialTutorial

Tutorial AgendaTutorial Agenda
• Introduction to SimpleScalar

– What is it?
– Distribution, Licensing, and Resources

• SimpleScalar version 4.0 release
– MASE Microarchitecture Simulation Environment
– SimpleScalar ARM Target
– GPV Graphical Pipeline Viewer
– MiBench Embedded Benchmark Suite
– PowerAnalyzer Power Models
– Sim-Alpha Validated 21264 Microarchitecture Model
– ss-ppc SimpleScalar PowerPC Target
– ss-os Full System simulator
– ss-viz SimpleScalar Visualization Tool

• Looking Ahead…



1

1Supported by NSF CADRE

sim-alpha: A Validated Alpha 21264 
Simulator 

SimpleScalar 4.0 Micro-34 Tutorial

Raj Desikan, Doug Burger, and Stephen W. Keckler

The University of Texas at Austin

2Supported by NSF CADRE

Comparing a simulator to hardware

• Processor/Simulator complexity 
progressively increasing
– Low level features can interfere with high level 

study 

• Useful to have a tool for comparison at a 
lower level



2

3Supported by NSF CADRE

The sim-alpha goals

• Extend the SimpleScalar tool set to model 
an existing microprocessor (EV6 
microarchitecture)

• Compare the simulator against actual 
hardware for accurate modeling

• Release the simulator for use by researchers 
studying extensions to existing 
implementations  

4Supported by NSF CADRE

Using sim-alpha

• make will generate default simulator

• make flexible generates simulator with all 
bells and whistles

• make functional turns on functional 
debugger

• sim-alpha –config <config file> binary
• Supports EIO tracing with checkpointing



3

5Supported by NSF CADRE

Code overview

alpha.def

resource.cloader.c regs.c

sim-alpha

cache*.csyscall.c memory.c map.cfetch.c slot.c

commit.cissue.c writeback.c
eio.c bpred.c

simulate.calpha.c dram.c

6Supported by NSF CADRE

Code structure

• Code for each pipeline stage in a separate .c
file

• Each .c file has corresponding .h file 
containing function prototypes, constants, 
and extern statements for global variables

• Files with ss prefix used for functional 
simulation and fast forwarding



4

7Supported by NSF CADRE

What is new at high level?

• Execution driven 
– No perfect prediction

• More pipeline stages

• Separate physical and architectural 
registers, issue queues, and reorder buffer 

• Loader, EIO tracing, event queues, and 
branch prediction modeling similar to SS

8Supported by NSF CADRE

Microarchitectural features - 1

• Line and way predictor 

• Alpha 21264 tournament predictor with 
local, global, and choice predictors

• Separate integer and floating point queues

• Partitioned execution core

• Static slotting

• Load use speculation



5

9Supported by NSF CADRE

Microarchitectural features - 2

• Separate load and store queues
• Non-homogenous functional units 
• Different memory traps

– Load-Load trap
– Load-Store trap
– Mbox traps

• Early instruction retire
• stWait table

10Supported by NSF CADRE

Microbenchmark results

-50

-40

-30

-20

-10

0

10

20

30

40

50

C
-C

a

C
-C

b

C
-R

C
-S

1

C
-S

2

C
-S

3

C
-C

0

E
-I

E
-F

E
-D

1

E
-D

2

E
-D

3

E
-D

4

E
-D

5

E
-D

6

E
-D

M
1

M
-I

M
-D

M
-L

2

M
-M I-P%

 E
rr

or

Current mean absolute error : 1.7 %

% Error = (Native cycles – Simulator cycles)*100
Native cycles



6

11Supported by NSF CADRE

Integer macrobenchmarks

-150

-130

-110

-90

-70

-50

-30

-10

10

30

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

ga
p

bz
ip

2

tw
ol

f

%
 E

rr
or

Current mean absolute error : 5.64 %

12Supported by NSF CADRE

FP macrobenchmarks

-100

-80

-60

-40

-20

0

20

40

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

k
e

fa
ce

re
c

am
m

p

lu
ca

s

ap
si

%
 E

rr
or

Current mean absolute error : 19.24 %



7

13Supported by NSF CADRE

Portability and limitations

• Currently runs only on x86 under Linux

• Some Alpha 21264 features might be too 
specific for general architectural 
enhancement evaluation

• Currently functional units cannot be 
increased while preserving a partitioned 
architecture

14Supported by NSF CADRE

What can be baried (High Level)?

• Line, way, and branch predictor 
configuration

• Width of each individual pipeline stage

• Integer and floating point physical registers

• Integer and floating point issue queue sizes

• Reorder buffer and Load and Store queue 
size



8

15Supported by NSF CADRE

What can be varied (Low Level)?

• stWait table size
• Enable and disable traps
• Speculative updates of predictors
• Load use speculation and branch target 

adder 
• Static slotting and early instruction retire
• Number of functional units with some 

modifications

16Supported by NSF CADRE

Still to be done … by others

• Enhance portability

• Increase floating point accuracy

• Make number of functional units scalable 
while maintaining clustering



9

17Supported by NSF CADRE

Availability

• Simulator source code

www.cs.utexas.edu/~cart/code/alphasim-1.0.tgz

• Microbenchmarks

www.cs.utexas.edu/~cart/code/microbench.tgz

• Technical report
www.cs.utexas.edu/~cart/publications/tr00-
23.ps.gz



37

SimpleScalarSimpleScalar
TutorialTutorial

Tutorial AgendaTutorial Agenda
• Introduction to SimpleScalar

– What is it?
– Distribution, Licensing, and Resources

• SimpleScalar version 4.0 release
– MASE Microarchitecture Simulation Environment
– SimpleScalar ARM Target
– GPV Graphical Pipeline Viewer
– MiBench Embedded Benchmark Suite
– PowerAnalyzer Power Models
– Sim-Alpha Validated 21264 Microarchitecture Model
– ss-ppc SimpleScalar PowerPC Target
– ss-os Full System simulator
– ss-viz SimpleScalar Visualization Tool

• Looking Ahead…

SimpleScalarSimpleScalar
TutorialTutorial



1

Supported by NSF CADRE 1

ss-ppc

SimpleScalar Simulation of the PowerPC 
Instruction Set Architecture

SimpleScalar 4.0 Micro34 Tutorial

Karu Sankaralingam, Ramadass Nagarajan, 

Stephen W. Keckler, Doug Burger

University of Texas at Austin

Supported by NSF CADRE 2

Overview

• SimpleScalar’s port to simulate PowerPC executable 
files.

• Developed from Version 3.0 code base

simulators

alpha.defpisa.def arm.def powerpc.def

sim-outorder.cregs.cloader.c syscall.cSpecialization

Emulation



2

Supported by NSF CADRE 3

Tools Ported

sim-fast functional simulator
sim-outorder micro-architecture simulator
sim-eio checkpointing and fastforwarding
sim-profile execution profiler
sim-bpred branch prediction simulatior
sim-cache cache simulator
sim-cheetah advanced cache simulator                         

Supported by NSF CADRE 4

PowerPC ISA

• Instructions
– 224 instructions in 15 different formats

• Registers
– 32 GPR, 32 FPR

– 2 control, 3 condition and exception registers

• Storage model
– Byte, half-word and word data accesses allowed

– Misaligned addresses allowed



3

Supported by NSF CADRE 5

What it takes

• Add additional registers
– Define all user registers (including conditional) 

• Emulate each instruction
– Instructions have more register dependences

• Modify loader
– Assign addresses to re-locatable references in the loader 

segment

• Implement system call interface

Supported by NSF CADRE 6

Floating Point Emulation

• PowerPC implements IEEE 751-1985 standard
– Supports four rounding modes
– Modifies a lot of fields in status and condition register (FPSCR)

• Native Implementation
– Machine state changes modeled precisely

– Native execution using inlined assembly code

• Non-native implementation
– Modifications to FPSCR ignored

– SPEC CPU95 programs not affected



4

Supported by NSF CADRE 7

System calls

• Implemented using corresponding calls on the host 
machine

• Every syscall is the same sequence of six user 
instructions
– Detect using a predecode phase and modify with a special instruction 

(sc)

• Identifying the type of the syscall
– Loader stores hooks in the TOC

Supported by NSF CADRE 8

Timing Simulation

• SimpleScalar’s RUU micro-architecture model
• sim-outorder port relatively easy

• Implementation issues
– Stores may update registers

• passed through writeback stage

– Load/Store Multiple instructions access multiple words
• Modeled as atomic operations

– Memory accesses may be mis-aligned
• Converted to aligned access(es)



5

Supported by NSF CADRE 9

Portability

• Only 32-bit support provided
– Only user registers and instructions modeled

• IBM AIX on PowerPC
– Certified for all SPEC CPU95 benchmarks

• Sun Solaris on UltraSparc
– Certified only for all SPEC CINT95

– SPEC CFP95 needs additional system call support

• Linux on x86
– Minimally tested

Supported by NSF CADRE 10

Future plans

• Add 64-bit support

• Implement kernel registers and instructions

• Support for MP



6

Supported by NSF CADRE 11

Resources

• Technical report:

www.cs.utexas.edu/~cart/publications/tr00-04.ps.Z

• Bug reports: 

sim-ppc@cs.utexas.edu

Supported by NSF CADRE 12

Example (1)

DEFINST(FMADD,                        0x3A,

"fmadd",                      "D,A,C,B",

FloatMULT,           F_FCOMP,

PPC_DFPR(FD), PPC_DFPSCR,     PPC_DFPR(FA), PPC_DFPR(FB), PPC_DFPR(FC),

DNA, DNA, DNA,                PPC_DFPSCR, DNA)



7

Supported by NSF CADRE 13

Example (2)
#define FADD_IMPL {

a = PPC_FPR_DW(RA);  /* copy source registers to temporary  
variables */ 

b = PPC_FPR_DW(RB);    

memcpy(&double_a, &a, sizeof(double) );
memcpy(&double_b, &b, sizeof(double) );

/* inline assembly execution */
asm (“mtsf 0xFF, %2; fadd %0, %3, %4; mffs %1”

/* copy in result and FPSCR */
: “=f” (double_dest), “=f” (fpscrout)

/* give source inputs */
: “f” (fpscrin), “f” (double_a), “f” (double_b)

fp1 = (int *) (&fpscrout);
memcpy(&_fp, (fp1+1), 4);
dest = (quad_t *) (&double_dest);

PPC_SET_FPR_DW(FD, *dest);
PPC_SET_FPSCR( *(int *) (fp1+1));

}



38

SimpleScalarSimpleScalar
TutorialTutorial

Tutorial AgendaTutorial Agenda
• Introduction to SimpleScalar

– What is it?
– Distribution, Licensing, and Resources

• SimpleScalar version 4.0 release
– MASE Microarchitecture Simulation Environment
– SimpleScalar ARM Target
– GPV Graphical Pipeline Viewer
– MiBench Embedded Benchmark Suite
– PowerAnalyzer Power Models
– Sim-Alpha Validated 21264 Microarchitecture Model
– ss-ppc SimpleScalar PowerPC Target
– ss-os Full System simulator
– ss-viz SimpleScalar Visualization Tool

• Looking Ahead…

SimpleScalarSimpleScalar
TutorialTutorial



1

1Supported by Supported by 
NSF CADRENSF CADRE

SimpleScalar-OS (Sauce)

Jaehyuk Huh,

Karthikeyan Sankaralingam, Vivek Sharma,

Doug Burger, Steve Keckler

University of Texas at Austin

SimpleScalar 4.0 Micro-34 Tutorial

ss-os

2Supported by Supported by 
NSF CADRENSF CADRE

Overview
• Need for full system simulation

– Effect of kernel activity
– Disk I/O 
– Effect of page and TLB faults
– Real process (thread) scheduling

• Operating system support for SimpleScalar
– Integrate ss-ppc simulator with SimOS-PPC
– Provide full system simulation, running AIX 

with PowerPC ISA



2

3Supported by Supported by 
NSF CADRENSF CADRE

SimOS-PPC
• PowerPC port based on Stanford SimOS

• Developed by Rick Simpson, Pat Bohrer, Tom 
Keller, and Ann Marie Maynard at IBM-ARL

• Capability
– Boot and run AIX with PowerPC ISA

– 2-level cache system

– Disk (validated) and network model

– SMP support

• Limitation: No timing simulation for processors

4Supported by Supported by 
NSF CADRENSF CADRE

Setting up Benchmarks

PowerPC
Compiler

PowerPC
Compiler

Appl.
Source

Appl.
Source ExecutableExecutable Appl.

Data

Appl.
Data

Disk
Image

Disk
Image

Simos-source
(Comand-driven)

New disk image

Simos-source
(Comand-driven)

New disk image

SimOS-PPC
Functional 
Simulation 

Mode

SimOS-PPC
Functional 
Simulation 

Mode

SimOS-PPC
Config

SimOS-PPC
Config

Checkpoint
Files

Checkpoint
Files



3

5Supported by Supported by 
NSF CADRENSF CADRE

Timing Simulation

Disk
Image

Disk
Image

Checkpoint
Files

Checkpoint
Files

SimOS-PPCSimOS-PPC

SimpleScalarSimpleScalar

SimOS-PPC
Config

SimOS-PPC
Config

SimpleScalar
Config

SimpleScalar
Config

EmitterEmitter

Processor 
Statistics

Processor 
Statistics

CollectorCollector

Cache/Memory/Disk
Statistics

Cache/Memory/Disk
Statistics

6Supported by Supported by 
NSF CADRENSF CADRE

System Structure

SimpleScalar
PPC

SimpleScalar
PPC

SimOS-PPC
Memory Hierarchy

SimOS-PPC
Memory Hierarchy

SimOS-PPC disk and network systemSimOS-PPC disk and network system

AIX Operating SystemAIX Operating System

AppApp AppApp AppApp AppApp

Disk
Image

Disk
Image



4

7Supported by Supported by 
NSF CADRENSF CADRE

Integration
• SimOS feeds a dynamic instruction trace to 

SimpleScalar
• Instruction execution effects

– Possibly causes exceptions
– Uses I/O devices (console, disk or Ethernet)
– Consumes fetch and execution cycles (ss-ppc)

• Both simulators’ sources are plugged 
together, compiled and run as one single 
program 

8Supported by Supported by 
NSF CADRENSF CADRE

SimOS-PPC Main Loop
• SimOS uses an event queue for interrupts, 

exceptions.
• Entire machine state encapsulated in P
• Original SimOS-PPC execution outline

time = 0; icount = 0;
InitMachineState(P);
while(1) {
time = icount * CPI;
ProcessPendingEvents(time);
inst = FetchNextInst(P);
ExecuteInst(inst, P);
icount++;

}



5

9Supported by Supported by 
NSF CADRENSF CADRE

Control Transfer
time = 0; SS_cycles = 0;

InitMachineState(P);

while (1) {

time += SS_cycles;

ProcessPendingEvents(time);

SS_cycles = SS_Simulate(P);

}

/* Inside SimpleScalar Now */

int SS_Simulate(MachineState *P) {

while (1) {

/* Process SS pipeline 

Use SimOS machine state */

commit(P);

writeback(P);

execute_mem(P);

dispatch(P);

issue(P);

fetch(P);

if (QueryExceptionGenerated(M)) {

/* any of the stages generated an 
execption - possible candidates -
FP execption, page fault. Break

hand control to SimOS to process

exception */

return (SS_cycles);

}

}

}

SimOS main loop SimpleScalar main loop

Hand control to 
SimpleScalar

Hand control to 
SimpleScalar

Hand control back to 
SimOS

Hand control back to 
SimOS

10Supported by Supported by 
NSF CADRENSF CADRE

Integrated Main Loop

While (1) {
• SimOS starts up and gives control to SimpleScalar

with the PowerPC state

• SimpleScalar starts execution at the program counter 
until it hits an exception.

• Passes Control back to SimOS which schedules the 
exception

}



6

11Supported by Supported by 
NSF CADRENSF CADRE

Disk Images
• Disk image keeps the content of simulated 

disks as a standard UNIX files

• Disk Image Size for AIX support
– 18 GBytes

– Real file size: ~1GBytes in sparse file format

• Linux 2.2 : 
– Large disk images need to be split into smaller 

files (2 GBytes each)

12Supported by Supported by 
NSF CADRENSF CADRE

Issues
• Timing inaccuracies in a few kernel level 

instructions 

• Cache and memory system
– Use SimOS-PPC code 

– No bus contentions

• TLB handling
– Hardware-based page table lookup

– Timing is not accurate



7

13Supported by Supported by 
NSF CADRENSF CADRE

Stability
• Platforms supported

– PowerPC / AIX
– X86 / Linux

• Tested applications
– SPEC CPU benchmarks

• Speed
– 400 million Instructions / hour for functional simulation
– 30-40 million instructions / hour for full-timing 

simulation

14Supported by Supported by 
NSF CADRENSF CADRE

Future Extension
• Multiprocessor support

– SimpleMP processing core

– Accurate simulation of bus transaction and 
cache coherence protocol (SMP-based)

– Target benchmarks: scientific parallel 
application and server workloads

• 64 bit PowerPC ISA support



39

SimpleScalarSimpleScalar
TutorialTutorial

Tutorial AgendaTutorial Agenda
• Introduction to SimpleScalar

– What is it?
– Distribution, Licensing, and Resources

• SimpleScalar version 4.0 release
– MASE Microarchitecture Simulation Environment
– SimpleScalar ARM Target
– GPV Graphical Pipeline Viewer
– MiBench Embedded Benchmark Suite
– PowerAnalyzer Power Models
– Sim-Alpha Validated 21264 Microarchitecture Model
– ss-ppc SimpleScalar PowerPC Target
– ss-os Full System simulator
– ss-viz SimpleScalar Visualization Tool

• Looking Ahead…

SimpleScalarSimpleScalar
TutorialTutorial



1

Supported by Supported by 
NSF CADRENSF CADRE

ssss--vizviz

A SimpleScalar VisualizerA SimpleScalar Visualizer

SimpleScalar 4.0 Micro34 TutorialSimpleScalar 4.0 Micro34 Tutorial

December 2, 2001December 2, 2001
University of Texas at AustinUniversity of Texas at Austin

Bill YoderBill Yoder
Doug BurgerDoug Burger
Steve KecklerSteve Keckler

Jacob SarvelaJacob Sarvela
Pradeep DesaiPradeep Desai

Jinhuo LiangJinhuo Liang

22

Supported by Supported by 
NSF CADRENSF CADRE

ssss--vizviz

Project GoalsProject Goals
!! Serve both researchers and students.Serve both researchers and students.
!! Illustrate resource usage and identify Illustrate resource usage and identify 

bottlenecks.bottlenecks.
!! Let users examine Let users examine µµprocessor behavior without processor behavior without 

having to understand simulator internals.having to understand simulator internals.
!! Support tinkering with different processor Support tinkering with different processor 

configurations.configurations.



2

33

Supported by Supported by 
NSF CADRENSF CADRE

Visualizer FeaturesVisualizer Features
!! Provides an easyProvides an easy--toto--use graphical frontuse graphical front--end to end to 

the SimpleScalar engine.the SimpleScalar engine.
!! Loads and runs multiple benchmarks.Loads and runs multiple benchmarks.
!! Provides singleProvides single--stepping, discrete stepping, and stepping, discrete stepping, and 

continuous execution.continuous execution.
!! Animates the activity of the IFQ, RUU, LSQ, and Animates the activity of the IFQ, RUU, LSQ, and 

arithmetic units.arithmetic units.
!! Provides statistics from each execution run.Provides statistics from each execution run.
!! Provides realProvides real--time graphical output. time graphical output. 
!! Includes onIncludes on--line help.line help.

44

Supported by Supported by 
NSF CADRENSF CADRE

Software DesignSoftware Design
!! The Visualizer backThe Visualizer back--end is the SimpleScalar outend is the SimpleScalar out--ofof--order order 

issue superscalar processor (simissue superscalar processor (sim--outorder) with a 2outorder) with a 2--level level 
memory system and speculative execution support, memory system and speculative execution support, 
implemented in UNIX/C.implemented in UNIX/C.

!! The GUI is written as an X11R6 Windows application using The GUI is written as an X11R6 Windows application using 
the Tcl/Tk toolkit.the Tcl/Tk toolkit.

!! The Tcl/C interface probes the simulator for runThe Tcl/C interface probes the simulator for run--time time 
configuration information, statistics, and machine state.configuration information, statistics, and machine state.

!! The frontThe front--end displays this information using the Tcl end displays this information using the Tcl 
interpreter and the Tk canvas widget.interpreter and the Tk canvas widget.

!! Dialogs, push buttons, and menus invoke UI callback Dialogs, push buttons, and menus invoke UI callback 
functions to control application behavior (e.g., to resume functions to control application behavior (e.g., to resume 
program execution) and modify settings (e.g., graph units).program execution) and modify settings (e.g., graph units).



3

55

Supported by Supported by 
NSF CADRENSF CADRE

Software Block DiagramSoftware Block Diagram

sim-outorder.c
• sdb
• options db
• sim_step(num_steps)
• IFQ
• RUU
• LSQ
• FUs

Ss_Init.c (hooks into 
SimpleScalar)

main.c """" sswish.c (turns 
control over to Tcl)

X Windows
• Display
• Keyboard
• Mouse

Tcl – language and interpreter
• system 
• strings 
• math
• unit structures
• stepping
• stats

Tk – windows and widgets
• tool buttons
• menus
• graphs
• fonts, colors
• canvas
• pop-ups

Benchmarks and input data

66

Supported by Supported by 
NSF CADRENSF CADRE

Feedback From Alpha ReleaseFeedback From Alpha Release
Spring 2001: From two dozen engineering studentsSpring 2001: From two dozen engineering students

## Execution graphs Execution graphs 
## UI concept UI concept 
## Statistical infoStatistical info
$$ Graphic designGraphic design
$$ OperationOperation
$$ Online helpOnline help



4

77

Supported by Supported by 
NSF CADRENSF CADRE

Today’s StatusToday’s Status
!! GUI refurbished with GUI refurbished with 

better colors.better colors.
!! Simplified startSimplified start--up up 

and user interaction.and user interaction.
!! Four units animated Four units animated 

(IFQ, RUU, LSQ, (IFQ, RUU, LSQ, 
FUs).FUs).

!! HTML help page.HTML help page.
!! Various bugs fixed.Various bugs fixed.

88

Supported by Supported by 
NSF CADRENSF CADRE

Future DevelopmentFuture Development
!! PortabilityPortability

!! Package for Solaris/Sparc.Package for Solaris/Sparc.
!! Port to Linux/x86.Port to Linux/x86.

!! FunctionalityFunctionality
!! Animate more units, e.g., the L1 and L2 caches.Animate more units, e.g., the L1 and L2 caches.
!! Expose more simulator resources for easy configuration (e.g., thExpose more simulator resources for easy configuration (e.g., the number and e number and 

type of FUs).type of FUs).
!! Expand onExpand on--line help.line help.
!! Enable backEnable back--stepping (?!)stepping (?!)

!! RobustnessRobustness
!! Improve Improve TkTk window management of graphs and window rewindow management of graphs and window re--sizing.sizing.
!! Maintain GUI at benchmark termination.Maintain GUI at benchmark termination.

(Feedback welcome!)(Feedback welcome!)



5

99

Supported by Supported by 
NSF CADRENSF CADRE

Demo NotesDemo Notes

1.1. Use the VNC Use the VNC viewer on a laptop in order to connect viewer on a laptop in order to connect 
to the VNC display server running on a SPARCstation.to the VNC display server running on a SPARCstation.

2.2. Begin with the initial display, pointing out the Begin with the initial display, pointing out the 
components, menus, messages, and controls.components, menus, messages, and controls.

3.3. Show block stepping, single stepping, and continuous Show block stepping, single stepping, and continuous 
execution.execution.

4.4. Show cell updates, with text and color fills.Show cell updates, with text and color fills.
5.5. Show statistics for the various units.Show statistics for the various units.
6.6. Show graphs and their dynamic updates.Show graphs and their dynamic updates.



40

SimpleScalarSimpleScalar
TutorialTutorial

Tutorial AgendaTutorial Agenda
• Introduction to SimpleScalar

– What is it?
– Distribution, Licensing, and Resources

• SimpleScalar version 4.0 release
– MASE Microarchitecture Simulation Environment
– SimpleScalar ARM Target
– GPV Graphical Pipeline Viewer
– MiBench Embedded Benchmark Suite
– PowerAnalyzer Power Models
– Sim-Alpha Validated 21264 Microarchitecture Model
– ss-ppc SimpleScalar PowerPC Target
– ss-os Full System simulator
– ss-viz SimpleScalar Visualization Tool

• Looking Ahead…

SimpleScalarSimpleScalar
TutorialTutorial

Looking Ahead…Looking Ahead…
• SimpleScalar/x86

– x86 functional and performance models, with support for microcode
– Current in limited release testing, from SimpleScalar LLC

• SimpleScalar/Trimaran
– PlayDoh ISA emulation support plus VLIW architecture models
– In development, from University of Michigan

• Sim-IPaq full system embedded target simulator
– StrongARM SA-1110 + serial + NIC + PCMCIA
– In debug, from University of Michigan

• SimpleScalar/C30 DSP target
– C30 DSP interpreter and VLIW model, as main processor or peripheral
– In debug, from University of Michigan by Trevor Mudge’s research group

• ss-viz: portability enhancements
• Memory extensions

– Memory and DRAM 32-bit/64-bit extensions
• ss-mp: chip multiprocessor simulator with OS simulation
• ss-layout: floorplanning + elastic pipeline layout/performance simulator 



41

SimpleScalarSimpleScalar
TutorialTutorial

SimpleScalar/ARM System SimulationSimpleScalar/ARM System Simulation
• System simulation development

– ARM7 + FPA + SA-1110 device set
– Linux + MiBench workload

• Key infrastructure features
– Space manager directs I/O using a 

standard extensible interface
– Platform configuration description file 

permits multiple target emulation without 
code changes

– I/O manager supports recording and 
playback of external I/O for reproducible 
real-time experiments

• Status
– Processor/memory devices deployed
– VM MMU, RTC, PIC, DMA, SER0 devices 

completed
– 8M+ instructions into Linux boot

SA-1110
Integer
Pipeline

I-cache

D-cache

IMMU

DMMU

RAM

Flash
RTC

PIC

DMA

SER0

console

PCMCIA

= completed

= in development/test

= next generation

GPIOI/O Mgr

Sp
ac

e 
M

an
ag

er

Platform
Config

FPA

SimpleScalarSimpleScalar
TutorialTutorial

SimpleScalar/C30 TargetSimpleScalar/C30 Target
• Many embedded targets feature a DSP

– For fast processing of multimedia workloads

– e.g., signal processing, codec routines,
image processing

– Typical embedded system architecture couples a 
general purpose microprocessor with a DSP

• Adding TI TMS320C30 (C30) ISA target
– Integer and floating-point ISA components

– Power control instructions

• May be used as a processor or peripheral device
– Permits use of general purpose processor model 

and C30 model in tandem
– Inter-processor communication implemented with 

bi-directional mailbox primitives

– Requires a fairly sophisticated compiler tool chain, 
e.g., GNU GCC for ARM + TI DSP target compiler

ARM
Core

C30
Core

Shared
Memory

inter-
processor
interrupts


