SimpleScalar Tutorial

(for release 4.0)

Todd Austin, Dan Emst, Eric Larson, Chris Weaver
University of Michigan

Raj Desikan, Ramadass Nagarajan, Jaehyuk Huh,
Bill Yoder, Doug Burger, Steve Keckler

University of Texas at Austin

SimpleScalar
Tutorial

Tutorial Agenda

* Introduction to SimpleScalar
- Whatis it?
— Distribution, Licensing, and Resources
+ SimpleScalar version 4.0 release
- MASE Microarchitecture Simulation Environment
- SimpleScalar ARM Target
— GPV Graphical Pipeline Viewer
- MiBench Embedded Benchmark Suite
- PowerAnalyzer Power Models
- Sim-Alpha Validated 21264 Microarchitecture Model
- ss-ppc SimpleScalar PowerPC Target
- ss-0s Full System simulator
- ss-viz SimpleScalar Visualization Tool
* Looking Ahead...

SimpleScalar
Tutorial

A Computer Architecture Simulator Primer

« What is an architectural simulator?
— Tool that reproduces the behavior of a computing device

—> System Outputs

Device
Simulator

System
Inputs

—> System Metrics

+ Why use a simulator?
— Leverage faster, more flexible S/W development cycle
+ Permits more design space exploration
+ Facilitates validation before H/W becomes available
+ Level of abstraction can be throttled to design task
+ Possible to increase/improve system instrumentation

SimpleScalar

Tutorial

A Taxonomy of Hardware Modeling Tools

Hardware Models

Architectural Micro-Architectural

| Trace-Driven | | Exec-Driven | | Scheduler | | Cycle Timers | | H/W Monitor

| Emulation | | Direct Execution |

+ Shaded tools are included in the SimpleScalar tool set

SimpleScalar

Tutorial

SimpleScalar Tool Set

+ Computer system design and analysis
infrastructure
— Processor/device (behavioral) models
— Supports many ISAs and I/O interfaces
— Portable to most modern platforms

+ Created by the SimpleScalar
development team

UM, UW-Madison, UT-Austin,

SimpleScalar LLC

Entering tenth year of development

Deployed widely in academia and industry

UM extensions generously supported by NSF and DARPA

+ Freely available for academic non-commercial use with source
simpleScalar from www.simplescalar.com

Tutorial

Application
Input/output

Performance
Results

Primary Advantages

+ Extensible
— Source included for everything: compiler, libraries, simulators
- Widely encoded, user-extensible instruction format

+ Portable
— At the host, virtual target runs on most Unix-like boxes
— At the target, simulators can support multiple ISA’s

¢ Detailed
- Execution driven simulators
— Supports wrong path execution, control and data speculation, etc...
— Many sample simulators included

+ Performance (on P4-1.7GHz)
— Sim-Fast: 10+ MIPS
— Sim-OutOrder: 350+ KIPS

SimpleScalar
Tutorial

M| ABHE LSS | S e |
SimpleScalar
Tutorial

SimpleScalar Tool Set Overview

Fortran code C cclde
[F2C H GCC ’ Assembly code
v
GAS

+ Compiler chain is GNU tools PISA, ARM, etc...
+ Fortran codes are compiled with AT&T’s f2c, or target FCC
+ Libraries are GLIBC ported to SimpleScalar

SimpleScalar
Tutorial

Running SimpleScalar Tools

+ Compiling a C program, e.g.,

sshi g-na-sstrix-gcc -g -O -0 foo foo.c -Im
+ Compiling a Fortran program, e.g.,

ssbig-na-sstrix-f77 -g -O -0 foo foo.f -Im
+ Compiling a SimpleScalar assembly program, e.g.,

ssbi g-na-sstrix-gcc -g -O -0 foo foo.s -Im
* Running a program, e.g.,

simsafe [-simopts] program[-program opts]
+ Disassembling a program, e.g.,

ssbhi g-na-sstrix-objdunp -x -d -1 foo
* Building a library, use

ssbi g-na-sstrix-{ar, ranlib}

SimpleScalar
Tutorial

Global Simulator Options
 Supported on all simulators

-h - print simulator help message

-d - enable debug message

i - start up in DLite! debugger

-q - quit immediately (use W/ - dunpconfi g)
-config <file> - read config parameters from <f i | e>

-dunpconfig <file> - Save config parameters into <fi | e>

+ Configuration files
- To generate a configuration file
+ Specify non-default options on command line
* And, include “- dunpconfi g <fi | e>"to generate configuration file
- Comments allowed in configuration files, all after “#" ignored
— Reload configuration files using “- confi g <fil e>"

SimpleScalar
Tutorial

Sim-Profile: Program Profiling Simulator
» Generates program profiles, by symbol and by address
+ Extra options
-iclass - instruction class profiling (e.g., ALU, branch)
-i prof - instruction profiling (e.g., bnez, addi, etc...)
- br pr of - branch class profiling (e.g., direct, calls, cond)
- anpr of - address mode profiling (e.g., displaced, R+R)
- segpr of - load/store segment profiling (e.g., data, heap)
-t synpr of - execution profile by text symbol (i.e., funcs)
- dsynpr of - reference profile by data segment symbol
-t addr pr of - execution profile by text address
-all - enable all of the above options
-pcstat <stat> - record statistic <st at > by text address
* NOTE: “taddrprof” == “pcstat simnum.insn”

SimpleScalar
Tutorial

Simulator Software Architecture

+ Target software (apps and OS)
runs on simulator

[Target Application and OS]

+ Performance model tracks time
— Perf core implements machine Fetch | perf | Pipeline

Predictor | COre¢ | Caches

- Standard modules speed coding
+ Simulation kernel provides event
simulation services
+ Target ISA emulation support
— PISA, Alpha, StrongARM, PPC, x86

* Target I/O support
— Syscalls, devices, I/0 traces

SimpleScalar
Tutorial

Simulator Software Architecture

* Interface programming style
- All“.c” files have an accompanying “.h" file with same base
— “h”files define public interfaces “exported” by module
+ Mostly stable, documented with comments, studying these files
“.c” files implement the exported interfaces
+ Not as stable, study these if you need to hack the functionality
+ Simulator modules
— sim-*.c files, each implements a complete simulator core

+ Reusable S/W components facilitate “rolling your own”
— System components
— Simulation components
— Additional “really useful” components

SimpleScalar
Tutorial

Machine Definition

+ Asingle file describes all aspects of the architecture

— Used to generate decoders, dependency analyzers, functional
components, disassemblers, appendices, etc.

- e.g., machine definition + 10 line main == functional simulator
— Generates fast and reliable codes with minimum effort

* Instruction definition example

opcode
DEFI NST(ADc[jDId . 91(41, . inst flags
assembly _—> addl -, S, 17,
template I nt ALU, F_1 COWP| F_I MM
FU req’ CPR(RT) , NA, GPR(RS) , NA,
reqs / SET_GPR(RT, GPR(RS)+l M\)) _
output deps input deps
semantics
SimpleScalar

Tutorial

Simulator /O

Simulated Program Simulator
write(fd, p, 4) -) resulsout (7 sys_write(fd, p, 4)
args in
e C [[]T]

+ A useful simulator must implement some form of I/0O
- 1/O implemented via SYSCALL instruction
— Supports a subset of Ultrix system calls, proxied out to host

+ Basic algorithm (implemented in syscall.c)
- Decode system call
— Copy arguments (if any) into simulator memory
— Perform system call on host
— Copy results (if any) into simulated program memory

SimpleScalar
Tutorial

Standard Modules - Simulation Components

+ Dbpred.[hc] - branch predictors

 cache.[hc] - cache module

+ eventq.[hc] - event queue module

* libcheetah/ - Cheetah cache simulator library

+ ptrace.[hc] - pipetrace module

+ res.[hc] - resource manager module

* sim.h - simulator main code interface definitions
+ textprof.pl - text segment profile view (Perl Script)

* pipeview.pl - pipetrace view (Perl script)

SimpleScalar
Tutorial

Standard Modules - System Components

+ dlite.[hc] - DLite!, the lightweight debugger

* eio.[hc] - external I/O tracing module

+ loader.[hc] - program loader

« memory.[hc] - flat memory space module

+ regs.hc] - register module

+ machine.[hc] - target and ISA-dependent routines
+ machine.def - SimpleScalar ISA definition

+ symbol.[hc] - symbol table module

+ syscall.[hc] - proxy system call implementation

SimpleScalar
Tutorial

Standard Modules - “Really Useful” Modules

+ eval[hc] - generic expression evaluator

* libexo/ - EXO(-skeletal) persistent data structure library
* misc.[nc] - everything miscellaneous

* options.[hc] - options package

* range.[hc] - range expression package

+ stats.[hc] - statistics package

SimpleScalar
Tutorial

The Zen of Hardware Model Design

Performance
Performance: speeds design cycle
Design Flexibility: maximizes design scope
Space Detail: minimizes risk
Detail Flexibility

+ Infrastructure goals will drive which aspects are optimized
+ SimpleScalar favors performance and flexibility

SimpleScalar
Tutorial

Standard Models
- 420 lines - 350 lines - 900 lines -~1000 lines - 3900 lines
- no timing - no timing - no timing - functional - performance
- 4+ MIPS - w/ checks - lot of stats - cache stats - 000 issue
- branch pred.
- mis-spec.
- ALUs
- cache
-TLB
- 150 KIPS
< Performance
Detail >
SimpleScalar
Tutorial

10

Qut-of-Order Issue Simulator

Virtual Memory

SimpleScalar
Tutorial

Distribution and Licensing

 Download from www.simplescalar.com
Code releases and updates

Cross-compilers and other tool chains
Benchmarks sources, binaries, and test inputs
User-contributed developments

+ SimpleScalar licensing

- Non-commercial academic use licenses (research or instruction) are
available free of charge

— Commercial use licenses available from SimpleScalar LLC
+ Required for any use by a for-profit business/institution
+ Two options available: Site and research participation licenses
+ Contact info@simplescalar.com for complete details

SimpleScalar
Tutorial

11

SimpleScalar Resources

* Public releases available from www.simplescalar.com
— Current public release is version 3
— Current development release is version 4

* Required reading, available from www.simplescalar.com
— The SimpleScalar Tool Set User's Guide
— The SimpleScalar Hackers Guide
— The SimpleScalar Tutorial, version 2 (MICRO30) and version 4 (MICRO34)

 Support resources
- Mailing lists
+ help@simplescalar.com, announce@simplescalar.com
+ join the lists at www.simplescalar.com
+ E-malil info@simplescalar.com for developer support

SimpleScalar

Tutorial

Tutorial Agenda

* Introduction to SimpleScalar
- Whatis it?
— Distribution, Licensing, and Resources
+ SimpleScalar version 4.0 release
- MASE Microarchitecture Simulation Environment
- SimpleScalar ARM Target
— GPV Graphical Pipeline Viewer
— MiBench Embedded Benchmark Suite
- PowerAnalyzer Power Models
- Sim-Alpha Validated 21264 Microarchitecture Model
- ss-ppc SimpleScalar PowerPC Target
- ss-0s Full System simulator
- ss-viz SimpleScalar Visualization Tool

* Looking Ahead...

SimpleScalar

Tutorial

12

+ SimpleScalar/ARM

+» MiBench
+» PowerAnalyzer
*GPV

SimpleScalar Version 4.0

+ SimpleScalar/PPC
*55-0S

SimpleScalar
Version 4.0

+ SimpleScalar/x86

* Integration services
* Online support
» Commercial licensing

+ Test releases available today from

SimpleScalar http://lwww.simplescalar.com/v4test.html

Tutorial

- What is it?

Tutorial Agenda

* Introduction to SimpleScalar

— Distribution, Licensing, and Resources

+ SimpleScalar version 4.0 release
— MASE Microarchitecture Simulation Environment

* Looking Ahead...

SimpleScalar
Tutorial

- SimpleScalar ARM Target

— GPV Graphical Pipeline Viewer

- MiBench Embedded Benchmark Suite

- PowerAnalyzer Power Models

- Sim-Alpha Validated 21264 Microarchitecture Model
- ss-ppc SimpleScalar PowerPC Target

- ss-0s Full System simulator

- ss-viz SimpleScalar Visualization Tool

13

MASE Microarchitectural Simulation Environment

+ MASE is a new performance simulation infrastructure for
SimpleScalar.
— Developed by Eric Larson, Saugata Chatterjee, and Dan Ernst

+ Features and goals of MASE:
— Checker improves validation support.
Oracle allows for “perfect” studies.
Micro-functional performance model increases accuracy.
Speculative state management facilities simplify aggressive speculation.
Callback interface permits sophisticated memory system simulation.

SimpleScalar
Tutorial
SimpleScalar 3.0 software architecture
Functional >
IF ID Units CT
A
— [[[T [[}

Reorder Buffer (ROB)
SimpleScalar
Tutorial

14

MASE software architecture

Memory
simulator

. |[Functional
Units

SimpleScalar
Tutorial

\ 4

Oracle

callback
interface

CT

A

— 1 [[[[]

[—

Reorder Buffer (ROB)

— [[[[[[T[]

[[[% Checker

Instruction State Queue (1SQ)

SimpleScalar
Tutorial

Checker and oracle

| D | F.Unitsﬂ
[,

callback
interface

A
[T T T T T 1T

A Reorder Buffer (ROB)
Oracle T T [T [T T 1

Instruction State Queue (1SQ)

4
[] FﬂChecker

Permit “perfect” studies and improved validation.

Oracle executes in fetch and places values into 1SQ.

Checker uses 1SQ values to validate core computation.
Checker will fix any core bug, reducing burden of correctness in

core.

15

SimpleScalar
Tutorial

Micro-functional performance model

callback

interface
| iF | D | F.Unitsﬂ cT
A
[T T T T T

\—N \

A Reorder Buffer (ROB) A
Oracle [T T T T T T T T T 7 Checker

Instruction State Queue (1SQ)

Trace-driven techniques cannot accurately model timing-
dependent computation.
- For example, mispeculation and shared memory race conditions.

Instructions are now executed in the core with proper timing.

Further improves validation, intertwining timing and correctness.

SimpleScalar
Tutorial

Support for aggressive speculation
bk

interface
| IF | D | F.Unitsﬂ cT
[T T T 1 I‘

L iy

A Reorder Buffer (ROB) A
Oracle [T T T T T T T T T T Checker

Instruction State Queue (1SQ)

SimpleScalar lacks arbitrary instruction restart. Only branches
can restart.

MASE allows any instruction to mispeculate and restart core.

Several data structures (such as the ROB and ISQ) were
modified to support arbitrary rollback.

16

Memory system with callback interface

interface
| IF [D | F.Unitsﬂ cT
[T T T 1 I‘

L s

A Reorder Buffer (ROB) A
Oracle L T T T T T T T T T 1 Checker
Instruction State Queue (1SQ)

+ SimpleScalar's memory system requires that instruction latency
be known at issue.
— Not representative of modern memory systems.
— For example, DRAM accesses can be reordered to increase page hit rates.
* Instructions use callback interface to asynchronously declare
simplescalar their (remaining) latency.

Tutorial

Memory system with callback interface

2. Call cache_accesswith: 4 petermine latency
1. Issue load callback = cb_fn, rid=5
3. Return mem_unknown
Performance |¢ Memory
Simulator 5. Call cb_fn with: =ystem
rid=5,lat=15
6. Schedule

completion for load

SimpleScalar
Tutorial

17

Other improvements

Algorithm for detecting when store data can be forwarded to
loads has been improved (more aggressive).

Register update unit (RUU) has been split into a reorder buffer
(ROB) and reservation stations (RS).
Added a scheduler queue.

— Scheduler predicts the latency of each instruction.

— Instructions are replayed if the prediction is too small.
Added a front-end queue.

- Improves misprediction delay accuracy.

- Can simulate additional stages in the front-end pipeline.

SimpleScalar
Tutorial

Early results and analyses

Validated MASE against SimpleScalar 3.0 sim-outorder.
- Less than 1% difference for SPEC95 integer benchmarks.
MASE is half as fast as sim-outorder, but MASE is unoptimized
(future work).
* Arbitrary speculation mechanism tested with blind load
speculation study.
- Implementation was straight-forward in MASE.
* Checker simplified implementation of store forwarding.
— Partial store forwarding logic was not implemented.
— Relied on checker to detect and correct these cases.
— Minor inaccuracy, at most 195 errors (vortex).
+ Checker proved to be a valuable debugging aid when
implementing other features of MASE.

SimpleScalar
Tutorial

18

Key Features Summary
 Checker supports validation by reducing the burden of
correctness on the core.
* Micro-functional core allows for more accurate modeling.

+ Speculative state management facilities simplify implementations
of aggressive speculation techniques.

» Memory system callback interface supports modern memory
systems.

SimpleScalar
Tutorial

Tutorial Agenda

* Introduction to SimpleScalar
- Whatis it?
— Distribution, Licensing, and Resources
+ SimpleScalar version 4.0 release
- MASE Microarchitecture Simulation Environment
- SimpleScalar ARM Target
— GPV Graphical Pipeline Viewer
- MiBench Embedded Benchmark Suite
— PowerAnalyzer Power Models
- Sim-Alpha Validated 21264 Microarchitecture Model
- ss-ppc SimpleScalar PowerPC Target
- ss-0s Full System simulator
- ss-viz SimpleScalar Visualization Tool
* Looking Ahead...

SimpleScalar
Tutorial

19

SimpleScalar/ARM Target

* ARM simulation target _ :
— Developed by Dan Ernst and SPEC, MiBench, MediaBench l

Chris Weaver
* ARMT apps run on emulator Fetch | sa-1100/ | Pipeline
— SPEC, MiBench, MediaBench XScale

. i ©
« Linux system call I/O emulator PUEIEIET | (il | CEEIES

— Supports file, network, console /O
 Multiple validated processor

models

- Intel StrongARM SA-1110

- Intel XScale 80200

- Performance and power models
validated

SimpleScalar
Tutorial

ARM Target Instruction Emulation

» ARM ISA emulation support added to SimpleScalar tool set
— ARM 7 integer instruction set support
— Floating Point Accelerator (FPA) instruction set support

* Linux/ARM system call support added
— System calls are implemented by the simulator
— Portable I/O, but does not capture OS execution

+ ARM CISC instructions required microcode support

— Needed for microarchitectural modeling

agen tmpl,r13,0
agen tmp0,tmpl,-16
stp r11,[tmp0]

agen r13,r13,-16

agen tmpO,tmpl,-12
stmdb r13! {r4-r8,r10-r15} - stp r12,[tmp0]
agen tmpO,tmp1,-8

stp r14,[tmp0]
agen tmpO,tmpl,-4

SimpleScalar
Tutorial stp r15,[tmpQ]

Processor Performance Model

+ SA-1 pipeline model implemented SA-1 Pipeline
— Pipeline used in Intel's SA-11xx
- Simple five stage pipeline
— Two level memory hierarchy
+ Challenging task due to lack of
info on SA-1 microarchitecture
— Derived many details from the

compiler writers guide
— Used directed black-box testing to fill
in the rest of the blanks

* prototype XScale model completed
- Intel's new StrongARM processor
— Based on (sparse) published details

— Validation ongoing against XScale
80200 evaluation board

SimpleScalar
Tutorial

ARM Cross-Compiler Kit

* Permits users to compile ARM binaries w/o ARM hardware
— Most users lack access to a real ARM target with a native compiler
- We use Rebel.com’s NetWinder platforms to build native binaries

GNU GCC targeted to ARM ISA
- includes soft-float support (permits compilation for non-FP hardware)

» GNU binutils targeted to ARM ISA

— GNU Id linker

— GNU binary utilies, e.g., objdump, nm, size, etc...
* Pre-built C libraries for ARM ISA

— Targeted to Linux system call interfaces

+ Portable code base

SimpleScalar
Tutorial

21

ARM Target Validation
« ARM 7 ISA validated against reference Random
implementation Instruction
- Functional validation via random testing and State
+ Using the FuzzBuster framework
— Validated against real SA-1100 H/W / \
— Validated against ARM’'s ARMulator
+ ARM FPA extensions validated against ‘
SoftFloat suite .
— ARMulator and SA-1110 reference lack FP \ /
implementations
- SoftFloat suit implements reference FP with . FuzzBuster
integer ISA
+ Large validation effort Correct?
— 500+ billion instructions tested

— 6 bugs found in the ARMulator! (reported to
SimpleScalar ~ ARM Ltd)

Tutorial

Performance Model Validation

+ Performance validation against SA-1110 platform
— Rebel.com NetWinder reference with SA-1 pipeline
— Microbenchmarks were used to reveal and test specific latencies
* e.g., branch mispredictions, cache misses, writeback stalls
- Final validation completed with macrobenchmark testing
+ Compared IPC of SA-1110 to IPCs computed by SA-1 performance model

+ H/W IPCs computed using wall clock time, clock frequency, and known
instruction counts

— Excellent IPC correlation across entire test suite

» | Benchmark SimpleScalar | SA-1110 | % Difference
’55 cache_hit 1.02 1.01 0.9
8 cache_miss 33.87 33.70 05
g |br_taken 1.04 1.02 19
2 br_nottaken 1.97 191 3.1
£ |bzip210 3.20 3.10 32
Simplescalar 8 |c€L-O cclini 2.84 2.90 21
Tuoral & [fffshortpem 145 144 01

22

Tutorial Agenda

* Introduction to SimpleScalar
- What is it?
- Distribution, Licensing, and Resources
+ SimpleScalar version 4.0 release
— MASE Microarchitecture Simulation Environment
— SimpleScalar ARM Target
— GPV Graphical Pipeline Viewer
— MiBench Embedded Benchmark Suite
— PowerAnalyzer Power Models
— Sim-Alpha Validated 21264 Microarchitecture Model
— ss-ppc SimpleScalar PowerPC Target
- 55-0s Full System simulator
— ss-viz SimpleScalar Visualization Tool
* Looking Ahead...

SimpleScalar
Tutorial

GPV: Graphical Pipeline Viewer

+ Portable pipeline visualization infrastructure
— Developed by Chris Weaver, Kenneth Barr, Eric Marsman, Dan Ernst
* Provide visual platform for locating bottlenecks
- Pipetrace view displays program slowdowns
+ Enable visual diagnosis of bottleneck causes
— Color-coded latencies identify problem delays
— Resource view reveals resource bottlenecks
+ Permit visual evaluation of program/design updates
— Multiple trace comparisons
* Allow use on multiple platforms with multiple simulators
- Portable code in Perl/TK
- Standard pipetrace input

SimpleScalar
Tutorial

23

GPV Software Architecture

i XOR
Arc_hltecwral Pipetrace Stream GPV
Simulator —* | |Screen
(SimpleScalar) Perl/TK
Pipetrace
File
SimpleScalar
Tutorial
Main Window
. i =
J —
T =1 :'.:.:: ==
B
. Instruction View —
| W
'
\ Resource View |
MHM |'I =
2 | e
SimpleScalar

Tutorial

Zoom Feature
[remimr yi——— D
\ oo

SimpleScalar
Tutorial

Zoom Feature

[SEpET———

- [—— [F——
- - I
- - i
- - =
- =
W
- - - .
- - - .
- - W -
- - [y ——
- -
- - Bt B e
e
— — Dl gl §
= -
. - -
Py - -

SimpleScalar
Tutorial

25

Pipetrace Format

The @sign marks astart of anew simulationcyde

‘/ The- signmerks therermoval o m'lrhr%tr*ugugindcaesamageimm ingruction status
@14 @1%

* 61 CT 0x000 0 OxQ00 * 76 WB 0x000 0 x000

-6l * 75 WB 0x000 0 x000

* 72 WB 0x000 0 0x000 * 78 EX 0x(001 20 (k001

* 71 WB 0x000 0 0x000 * 79 EX 0x010 29 (k001

* 74 EX (X001 30 0xQ01 *80 EX 0x000 00x001

* 75 EX (X010 30 0x001 + 86 0x12002e568 0x00000000 [internd |d/st]
* 76 EX (X000 00x00L * 86 DA (X000 00x000

+820x12002e568 0X00000000 [internal |d'st] * 83 DA (X000 00x000

* 82 DA 0x000 00x000 + 87 0x12002e568 000000000 Idqr1,0(r19)

* 79 DA 0x000 00x000 * 87 IF x000 00x00L

* 80 DA 0x000 00x000 +880x12002e55¢ 0x00000000 addd r19,8,r19
* 81 DA 0x000 00x000 * 88 IF x000 00x00L

...morelines..... <dm num_ingn> 56

<dm num_insgn> 55
<dm cycle> 154
<dmIPC 0371

A

]
Variablesthet theuser wentto track a in <withthe value

SimpleScalar
Tutorial

<am cyde> 155
<smIPC> 03613

<END VISUAL>

The* sign ind cates anew instruction

Sample Software Optimization:
Loop Unrolling

SA-110 ARM Model

- Predict not taken

— Multi-cycle mispredict per iteration
24% speed improvement using
optimization

SimpleScalar
Tutorial

for (ii=38; ii >=4; ii-=2)
{
x = (D+D+1);
w = (B+B+1);
t=x*D;
u=w*B;
t=CONST_ROTL(t, 5);
u=CONST_ROTL(u, 5);
C-={ii];
A -=g[ii+1];
C =ROTR(C, u)™t;
A =ROTR(A,) u;
if (ii==4)
{tmp=A;A=B;B=C;C=D; D=tmp;

else
{tmp=A;A=D;D=C;C=B;B=tmp,

26

Base vs. Optimized

mispredictions

SimpleScalar
Tutorial
+ RC6 does back to back multiplies per for (ii=38; ii >= 4; ii-=2)
iteration {
+ 4 cycles per multiply on SA-110 x = (D+D+1);
L w = (B+B+1);
+ Add Second Multiplier and reschedule T=xD;
code s
* 30% speed improvement using t=CONST_ROTL(t, 5);
optimization u=CONST_ROTL(u, 5);
C-=diil;
A -=gii+1];
C=ROTR(C, u)™t;
A =ROTR(A, t)u;
if (ii==4)
{tmp=A;A=B;B=C;C=D; D=tmp;
else
{tmp=A;A=D;D=C;C=B;B=tmp;
}
}
SimpleScalar
Tutorial

27

Multiplier Optimization

i i i
VL dltl.llll.l dltl.'ulLl dltb-ll.l

Ad&dn-

BAEID-

BRI

GG 0=

ECK D=

A D=

SimpleScalar
Tutorial
FRELEET LT T T T T W ITT TI I T T T T T R TT TIITITTTTTLIRIT T

THECH . i) el Al =l HElr) [P t] L1
e el 14l T - ——
el ld m -
R - = =
s aTaiald . =
T (g M- - —
oo Lk = B
CE0w v, Lol » N] N]
reo okt Lal i _= o=
R EEE k] =] .
s AT idla - .
w1 | w1 ™ oom
ruew n bl pbd, ey 3T - m
B ol k< BN
wd el o
B 1ilal L= BLTT] L=
ad il =1]

el W WD]

SimpleScalar
Tutorial

28

SimpleScalar
Tutorial

Power usage
(one multiplier top vs two multipliers bottom)

B Felan_praed_3
W Frlad_w_pra

SimpleScalar
Tutorial

Key Features Summary

Visualization speeds the process of locating and diagnosing
performance bottlenecks
- Instruction view identifies program slow downs
— Resource view can be used to locate resource bottlenecks and/or display
useful statistics for pipeline analysis
GPV realized these benefits in an easy to use and portable
package

29

SimpleScalar
Tutorial

Tutorial Agenda

Introduction to SimpleScalar

- What is it?

- Distribution, Licensing, and Resources
SimpleScalar version 4.0 release

— MASE Microarchitecture Simulation Environment

— SimpleScalar ARM Target

— GPV Graphical Pipeline Viewer

— MiBench Embedded Benchmark Suite

— PowerAnalyzer Power Models

— Sim-Alpha Validated 21264 Microarchitecture Model

— ss-ppc SimpleScalar PowerPC Target

- 55-0s Full System simulator

— ss-viz SimpleScalar Visualization Tool

Looking Ahead...

SimpleScalar
Tutorial

MiBench Embedded Benchmark Suite

Michigan embedded benchmarks

— Developed by Matthew Guthaus, Jeffrey Ringenberg, Dan Ernst, and
Chris Weaver

Benchmarking is a critical part of the design process
Embedded workloads are different than desktop workloads
Show the diversity of “typical” embedded applications

Lack of simulation options for embedded applications
Need a free benchmark suite for academic research

30

Benchmarks

Auto/Industrial | Consumer Office Network Security Telecomm.
basicmath jpeg encldec ghostscript dijkstra blowfish CRC32
encl/dec
bitcount lame ispell patricia pgp sign FFT
gsort mad rsynth (CRC32) pgp verify IFFT
susan (edges) | tiff2bw sphinx (sha) rijndael enc/dec | ADPCM
encldec
susan (corners) | tiff2rgba stringsearch (blowfish) sha GSM encl/dec
susan tiffdither
(smoothing)
tiffmedian
typeset
SimpleScalar
Tutorial
ARM Configurations
SA-1100 XScale
Fetch queue 2 4
(instructions)
Branch Predictor Not-taken 8k bimodal,
2k 4-way BTB
Fetch & Decode width | 1 1
Functional Units 1lintALU, 1 FP 1lintALU, 1 FP
mult, 1 FP ALU mult, 1 FP ALU
L1 I-cache 16k, 32-way 32k, 32-way
L1 D-cache 16k, 32-way 32k, 32-way
L2 Cache None None
Memory Bus Width 4-byte 4-byte
Memory Latency 12 cycle 12 cycle
SimpleScalar
Tutorial

31

05
0 SA-1110 @ Xscale
045
04
0.35 4
03]
0.25 4
024
0.15 4
01 - | |
005 {1 1 . |
g c o
58 ¢$3EE £ EE5 8L S EIYLELEBSOBOE
E & 3 g E § 8% £ ¢ > 5 8 8 @ QL 3 8§ 8 % 3
s -~ o ¢ £ m&@ﬂmmm%::m&g
9 c e s £ e 2 o ° © 3 @ @ =
q] o = 2 c £ 4 3 £ E
a 0 @ = 5 T 2 9 g G @
> Q @ 2 g 2 O
[= V'E 2 g
o 5 ®
Eel
SimpleScalar
Tutorial

Future Work

+ Power analysis
— Already performed preliminary runs using PowerAnalyzer
+ Continue to add representative benchmarks
- In network: IP-level applications (IP filtering, masquerading, etc)

- In Auto/Industrial: sensor applications (decimation, linear interpolation,
interrupts)

+ /O simulations
- SimpleScalar using external I/O traces in sim-EIO
+ 100% reproducible 1/0
— Devices liberally borrowed from “Boch’s” device model
+ want to simulate entire system

SimpleScalar
Tutorial

32

Tutorial Agenda

* Introduction to SimpleScalar
- What is it?
- Distribution, Licensing, and Resources
+ SimpleScalar version 4.0 release
— MASE Microarchitecture Simulation Environment
— SimpleScalar ARM Target
— GPV Graphical Pipeline Viewer
— MiBench Embedded Benchmark Suite
— PowerAnalyzer Power Models
— Sim-Alpha Validated 21264 Microarchitecture Model
— ss-ppc SimpleScalar PowerPC Target
- 55-0s Full System simulator
— ss-viz SimpleScalar Visualization Tool
* Looking Ahead...

SimpleScalar
Tutorial

PowerAnalyzer

+ Tool for early power estimates
— Concurrently with performance studies
— Based on SimpleScalar - a cycle accurate simulator
— Developed by Nam Sung Kim and Rajeev Krishna
+ Missing in current cycle-level power simulators
— Actual technology parameters
— Data sensitivity
- Interconnect, including Clock trees
— Chip I/O pads (in some cases)
+ PowerAnalyzer's solutions
— Use actual technology parameters — TSMC 0.25
— Hamming distances between consecutive inputs
— Interconnect length is input explicitly — requires early layout
— H-tree model - requires approximate chip area
— Chip I/O - parameterized by load capacitance

+ Performance impact 4x
SimpleScalar
Tutorial

T
Effective capacitance of cache = S N
(average power of access)/V2f address bus cache data bus
Power calculated with HSPICE G Cou
and CACTI Il I J_; I
(a) Flat modeling
T
cache T
N
tag tag bus
T array Z N
L
_ N
address bus wordl i nes JT_ I
decoder -
w2 .. T
N
I HE I . data bus
- - - array _/I_O)L
T 1
L
SimpIeScaIar (b) H erarchical nodeling
Tutorial

PowerAnalyzer
+ Data structure for blocks (simplified)

s
-
Y
ETA
i

SimpleScalar
Tutorial

34

+ Automatic configuration:
— Approximate layout — interconnect and clock tree
— Leakage - total gate width/block (or number of equivalent inverters)
— Gate count estimation of random logic
+ Calibrate against MARS
+ Next set of experiments
— What can we leave out vs technology
* Interconnect
* Hierarchy
+ Pads
+ Data sensitivity
+ Leakage
— Impact on performance of PowerAnalyzer
— Impact on accuracy of PowerAnalyzer
+ Future experiments

- Microarchitecture power/performance
SimpleScalar
Tutorial

Data sensitivity
8 bit ALU _
at 100 MHz :
i
1-He 4By S8 el .
e p—
P T E E [II.!.: Il.l-. s
Data sensitivity L B e)
on buses D e i
l\. .'. ~ N l .I. h’
| W W W W
SimpleScalar T R .
Tutorial
PowerAnalyzer

35

SimpleScalar
Tutorial

MARS O

+ Synthesizeable ARM4 ISA

Pipeline 4 (5)-stage

+ FETCH, DECODE, EX, ME(WB)
Branch prediction

+ Backward-Taken, Forward-Not-Taken
Technology

+ TSMC .25um

+ #0f 10 pads 115

« #ofcells 11427

+ #macro blocks 9

+ die size: 5.2mm x 5.2mm
I-cache

+ 4K (128 sets 32 hytes/ set, direct mapped)
D-cache

+ 8K (256 sets 32 bytes/set, direct mapped), write through

+ Tested with Dhrystone 2.1

SimpleScalar
Tutorial

Tutorial Agenda

* Introduction to SimpleScalar

What is it?
Distribution, Licensing, and Resources

+ SimpleScalar version 4.0 release

MASE Microarchitecture Simulation Environment
SimpleScalar ARM Target

GPV Graphical Pipeline Viewer

MiBench Embedded Benchmark Suite
PowerAnalyzer Power Models

Sim-Alpha Validated 21264 Microarchitecture Model
ss-ppc SimpleScalar PowerPC Target

ss-0s Full System simulator

ss-viz SimpleScalar Visualization Tool

* Looking Ahead...

36

sim-alpha: A Validated Alpha 21264
Simulator

SimpleScalar 4.0 Micro-34 Tutorid

Ra Desikan, Doug Burger, and Stephen W. Keckler

The University of Texas at Austin

& supported by NSF CADRE

Comparing a simulator to hardware

 Processor/Simulator complexity
progressively increasing
— Low level features can interfere with high level
study

» Useful to have atool for comparison at a
lower level

& supported by NSF CADRE

The ssm-alpha goals

 Extend the SimpleScalar tool set to model
an existing microprocessor (EV6
microarchitecture)

» Compare the ssmulator against actual
hardware for accurate modeling

» Release the ssimulator for use by researchers
studying extensions to existing
implementations

& supported by NSF CADRE

Using sim-alpha

» make will generate default simulator

* make flexible generates ssmulator with all
bells and whistles

 make functional turns on functional
debugger

» sim-alpha —config <config file> binary
 Supports EIO tracing with checkpointing

& supported by NSF CADRE

Code overview

-

T

& supported by NSF CADRE

Code structure

» Codefor each pipeline stage in a separate .c
file

» Each .c file has corresponding .h file
containing function prototypes, constants,
and extern statements for global variables

» Fileswith ss prefix used for functional
simulation and fast forwarding

«i; Supported by NSF CADRE

What is new at high level?

Execution driven

— No perfect prediction

More pipeline stages

Separate physical and architectural
registers, issue queues, and reorder buffer

L oader, EIO tracing, event queues, and
branch prediction modeling similar to SS

& supported by NSF CADRE

Microarchitectural features - 1

Line and way predictor

Alpha 21264 tournament predictor with
local, global, and choice predictors

Separate integer and floating point queues
Partitioned execution core

Static dlotting

L oad use speculation

& supported by NSF CADRE

Microarchitectural features - 2

Separate |oad and store queues

Different memory traps
— Load-Load trap

— Load-Store trap

— Mbox traps

Early instruction retire

stWait table

& supported by NSF CADRE

Non-homogenous functional units

Microbenchmark results

% Error = (Native cycles — Simulator cycles)*100

Native cycles

40 4
30 1
20 4
10 A

SUE I
202 Q@ H5Q VYO W ;a0 00qQC
oo

30 4
40

Current mean absolute error : 1.7 %

& supported by NSF CADRE

% Error

10

Integer macrobenchmarks

30 ~

07 . m [| m
_10 -

-30 4
.50 -
-70 -
-90 -
-110 -
-130 -
-150 -

gzip
vpr
gce
mcf
crafty
parser
eon
gap
bzip2
twolf

% Error

Current mean absolute error : 5.64 %
& supported by NSF CADRE 1

FP macrobenchmarks

-20 1 -

% Error

40 A

-60 -+

-80 1

-100 -

Current mean absolute error : 19.24 %
& supported by NSF CADRE 12

Portability and limitations

 Currently runs only on x86 under Linux

» Some Alpha 21264 features might be too
specific for general architectural
enhancement evaluation

» Currently functional units cannot be
increased while preserving a partitioned
architecture

& supported by NSF CADRE 13

What can be baried (High Level)?

 Line, way, and branch predictor
configuration

» Width of each individual pipeline stage
* Integer and floating point physical registers
* Integer and floating point issue queue sizes

» Reorder buffer and Load and Store queue
Size

& supported by NSF CADRE 14

What can be varied (Low Level)?

o stWait table size
» Enable and disable traps
» Speculative updates of predictors

* Load use speculation and branch target
adder

« Static slotting and early instruction retire

* Number of functional units with some
modifications

& supported by NSF CADRE

15

Still to be done ... by others

» Enhance portability
* Increase floating point accuracy

» Make number of functional units scalable
while maintaining clustering

& supported by NSF CADRE

16

Availability

 Simulator source code

www.cs.utexas.edu/~cart/code/alphasim-1.0.tgz
» Microbenchmarks
www.cs.utexas.edu/~cart/code/microbench.tgz

» Technical report

www.cs.utexas.edu/~car t/publications/tr 00-
23.ps.gz

& supported by NSF CADRE

17

SimpleScalar
Tutorial

Tutorial Agenda

Introduction to SimpleScalar

What is it?
Distribution, Licensing, and Resources

+ SimpleScalar version 4.0 release

MASE Microarchitecture Simulation Environment
SimpleScalar ARM Target

GPV Graphical Pipeline Viewer

MiBench Embedded Benchmark Suite
PowerAnalyzer Power Models

Sim-Alpha Validated 21264 Microarchitecture Model
ss-ppc SimpleScalar PowerPC Target

ss-0s Full System simulator

ss-viz SimpleScalar Visualization Tool

Looking Ahead...

SimpleScalar
Tutorial

37

SS- ppc

SimpleScalar Simulation of the PowerPC
Instruction Set Architecture

SimpleScalar 4.0 Micro34 Tutorial

Karu Sankaralingam, Ramadass Nagarajan,
Stephen W. Keckler, Doug Burger

University of Texas at Austin

& Supported by NSF CADRE

Overview

» SimpleScalar’s port to simulate PowerPC executable
files.

» Developed from Version 3.0 code base

Emulation pisa.def alpha.def arm.def powerpc.def
| //\
Specialization loader.c syscall.c regs.c sim-outorder.c
simulators

& Supported by NSF CADRE

Tools Ported

simfast functional simulator

Si m out or der micro-architecture simulator
simeio checkpointing and fastforwarding
simprofile execution profiler

si m bpred branch prediction simulatior

si m cache cache simulator

si m cheet ah advanced cache simulator

§ Supported by NSF CADRE

PowerPC ISA

e [nstructions
— 224 instructions in 15 different formats

* Reqgisters
— 32GPR, 32 FPR
— 2 control, 3 condition and exception registers

» Storage model
— Byte, half-word and word data accesses allowed
— Misaligned addresses allowed

& supported by NSF CADRE

What it takes

Add additional registers
— Define all user registers (including conditional)

Emulate each instruction
— Instructions have more register dependences

Modify loader

— Assign addresses to re-locatable references in the loader
segment

Implement system call interface

§ Supported by NSF CADRE

Floating Point Emulation

* PowerPC implements IEEE 751-1985 standard

— Supports four rounding modes
— Modifies a lot of fields in status and condition register (FPSCR)

* Native Implementation
— Machine state changes modeled precisely
— Native execution using inlined assembly code

* Non-native implementation
— Modifications to FPSCR ignored
— SPEC CPU95 programs not affected

& supported by NSF CADRE

System callls

* Implemented using corresponding calls on the host
machine

» Every syscall is the same sequence of six user
instructions

— Detect using a predecode phase and modify with a special instruction
(sc)

* ldentifying the type of the syscall
— Loader stores hooksinthe TOC

§ Supported by NSF CADRE

Timing Simulation

» SimpleScalar's RUU micro-architecture model
* simoutorder portrelatively easy

* Implementation issues
— Stores may update registers
« passed through writeback stage
— Load/Store Multiple instructions access multiple words
« Modeled as atomic operations
— Memory accesses may be mis-aligned
« Converted to aligned access(es)

& supported by NSF CADRE

Portability

Only 32-bit support provided
— Only user registers and instructions modeled

IBM AlIX on PowerPC
— Certified for all SPEC CPU95 benchmarks

Sun Solaris on UltraSparc
— Certified only for all SPEC CINT95
— SPEC CFP95 needs additional system call support

Linux on x86
— Minimally tested

§ Supported by NSF CADRE

Future plans
» Add 64-bit support
* Implement kernel registers and instructions

» Support for MP

& supported by NSF CADRE

10

Resources

* Technical report:

WWW. CS. ut exas. edu/ ~cart/ publications/tr00-04.ps.Z

* Bug reports:

simppc@s. ut exas. edu

Q Supported by NSF CADRE 11

Example (1)

DEFI NST(FIMADD, 0x3A,
"f madd", "D A C B",
Fl oat MULT, F_FCOWP,
PPC_DFPR(FD), PPC_DFPSCR, PPC_DFPR(FA), PPC_DFPR(FB), PPC_DFPR(FC),
DNA, DNA, DNA, PPC_DFPSCR, DNA)

‘@ Supported by NSF CADRE 12

Example (2)

#define FADD_I MPL {

a = PPC_FPR_DWRA); /* copy source registers to tenporary
variables */
b = PPC_FPR_DWRB);

nencpy(&oubl e_a, &a, sizeof(double));
nencpy(&doubl e_b, &b, sizeof(double));

/* inline assenbly execution */
asm (“nmtsf OxFF, 9%2; fadd %, %8, %, nffs %"

/* copy in result and FPSCR */
: “=f” (double_dest), “=f" (fpscrout)

/* give source inputs */
“f" (fpscrin), “f” (double_a), “f” (double_b)
fpl = (int *) (& pscrout);
mencpy (& fp, (fpl+l), 4);
dest = (quad_t *) (&double_dest);

PPC_SET_FPR DW FD, *dest);
PPC_SET_FPSCR(*(int *) (fpl+l));

Q Supported by NSF CADRE 13

SimpleScalar
Tutorial

Tutorial Agenda

Introduction to SimpleScalar

What is it?
Distribution, Licensing, and Resources

+ SimpleScalar version 4.0 release

MASE Microarchitecture Simulation Environment
SimpleScalar ARM Target

GPV Graphical Pipeline Viewer

MiBench Embedded Benchmark Suite
PowerAnalyzer Power Models

Sim-Alpha Validated 21264 Microarchitecture Model
ss-ppc SimpleScalar PowerPC Target

ss-0s Full System simulator

ss-viz SimpleScalar Visualization Tool

Looking Ahead...

SimpleScalar
Tutorial

38

SS-0S

SimpleScalar-OS (Sauce)
SimpleScalar 4.0 Micro-34 Tutorial

Jaehyuk Huh,
Karthikeyan Sankaralingam, Vivek Sharma,
Doug Burger, Steve Keckler

University of Texas at Austin

> Supported by
NSF CADRE

Overview

* Need for full system simulation
— Effect of kernel activity
—Disk I/0
— Effect of page and TLB faults
— Real process (thread) scheduling
» Operating system support for SimpleScalar
— Integrate ss-ppc simulator with SImOS-PPC

— Provide full system simulation, running AlX
with PowerPC ISA

Y Supported by
NSF CADRE

SImMOS-PPC

PowerPC port based on Stanford SSImOS
Developed by Rick Simpson, Pat Bohrer, Tom
Keller, and Ann Marie Maynard at IBM-ARL
Capability

— Boot and run AIX with PowerPC ISA

— 2-level cache system

— Disk (validated) and network model

— SMP support

Limitation: No timing simulation for processors

2 Supported by 3
NSF CADRE

Setting up Benchmarks

Appl. PowerPC)\ Appl.
= o] =

Si nos- sour ce
(Comand-driven)

S —

> New disk image
Disk
Image
SimOS-PPC T
SimOS-PPC :> Functional :> Checkpoint
Config Simulation Files
Mode
@ Supported by 4

NSF CADRE

2>

Timing Simulation

3
Disk Checkpoint
Image Files

SImOS-PRC |::> SimOS-PPC Emitter I:,; Collector
Config
N

<5
SimpleScalar :> SimpleScalar
Config

Supported by
NSF CADRE

N

Processor
Statistics

Cache/Memory/Disk
Statistics

2

Supported by
NSF CADRE

System Structure

EEIEEy
AIX Operating System
{'}
g8
SimpleScalar o SimOS-PPC
PPC Memory Hierarchy

SimOS-PPC disk and network system

|
=
Image

Integration

» SIMOS feeds a dynamic instruction trace to
SimpleScalar
* Instruction execution effects
— Possibly causes exceptions
— Uses /O devices (console, disk or Ethernet)
— Consumes fetch and execution cycles (ss-ppc)
» Both simulators' sources are plugged

together, compiled and run as one single
program

2 Supported by 7
NSF CADRE

SImOS-PPC Main Loop

« SImOS uses an event queue for interrupts,
exceptions.

 Entire machine state encapsulated in P
» Origina SImOS-PPC execution outline

time = 0; icount = O;

I ni t Machi neState(P);

while(l) {
tine = icount * CPI;
ProcessPendi ngEvent s(ti ne);
inst = FetchNextlnst(P);
Execut el nst (i nst, P);
i count ++;

}

2 Supported by 8
NSF CADRE

Control Transfer

time = 0; SS cycles = 0; /* Inside SinpleScalar Now */

) . - int SS_Sinulate(MachineState *P) {
I ni t Machi neState(P); while (1) {
whi |l e (1) { /* Process SS pipeline

. _ . Use Si mOS machine state */

time += SS _cycl es; commi t(P);

ProcessPendi ngEvent s(ti nme); wri teback(P);

SS_cycles = SS_Sinulate(P); ;X:;:: EET;“; P

} i ssue(P);
fetch(P);
if (QueryExceptionGenerated(M) {
/* any of the stages generated an

execption - possible candi dates

Hand control to Hand control back to Egnzxszgt 'rgl" . zagfngu't :) p?gizzs
SimpleScalar SimOS \‘excep” on */
return (SS_cycles);
}
}
- - } -
SImOS main loop main loop
2 Supported by 9
NSF CADRE

Integrated Main Loop

While (1) {
« SIMOS starts up and gives control to SimpleScalar
with the PowerPC state
« SimpleScalar starts execution at the program counter
until it hits an exception.
* Passes Control back to SimOS which schedules the
exception

2 Supported by 10

NSF CADRE

Disk Images

» Disk image keeps the content of simulated
disks as a standard UNIX files
» Disk Image Size for AlX support
— 18 GBytes
— Redl file size: ~1GBytesin sparse file format
e Linux 2.2 :

— Large disk images need to be split into smaller
files (2 GBytes each)

2 Supported by 1
NSF CADRE

| ssues

« Timing inaccuraciesin afew kernel level
Instructions

» Cache and memory system
— Use SimOS-PPC code
— No bus contentions

e TLB handling

— Hardware-based page table lookup
— Timing is not accurate

2 Supported by 12
NSF CADRE

Stability
 Platforms supported
— PowerPC/ AIX
— X86/ Linux
» Tested applications
— SPEC CPU benchmarks
* Speed
— 400 million Instructions / hour for functional simulation

— 30-40 million instructions/ hour for full-timing
simulation

Y Supported by 13
NSF CADRE

Future Extension

» Multiprocessor support
— SimpleMP processing core
— Accurate simulation of bus transaction and
cache coherence protocol (SMP-based)

— Target benchmarks: scientific parallel
application and server workloads

» 64 bit PowerPC ISA support

Y Supported by 14
NSF CADRE

SimpleScalar
Tutorial

Tutorial Agenda

Introduction to SimpleScalar

What is it?
Distribution, Licensing, and Resources

+ SimpleScalar version 4.0 release

MASE Microarchitecture Simulation Environment
SimpleScalar ARM Target

GPV Graphical Pipeline Viewer

MiBench Embedded Benchmark Suite
PowerAnalyzer Power Models

Sim-Alpha Validated 21264 Microarchitecture Model
ss-ppc SimpleScalar PowerPC Target

ss-0s Full System simulator

ss-viz SimpleScalar Visualization Tool

Looking Ahead...

SimpleScalar
Tutorial

39

SS-Vi Z

A SimpleScalar Visualizer

SimpleScalar 4.0 Micro34 Tutorial

Bill Yoder Jacob Sarvela
Doug Burger Pradeep Desai
Steve Keckler Jinhuo Liang

December 2, 2001
University of Texas at Austin

SS-Vi Z

Project Goals

Serve both researchers and students.

lllustrate resource usage and identify
bottlenecks.

Let users examine pprocessor behavior without
having to understand simulator internals.

Support tinkering with different processor
configurations.

Supported by
~ NSF CADRE

Visualizer Features

Provides an easy-to-use graphical front-end to
the SimpleScalar engine.

Loads and runs multiple benchmarks.

Provides single-stepping, discrete stepping, and
continuous execution.

Animates the activity of the IFQ, RUU, LSQ, and
arithmetic units.

Provides statistics from each execution run.
Provides real-time graphical output.
Includes on-line help.

& Supported by
: NSF CADRE

Software Design

The Visualizer back-end is the SimpleScalar out-of-order
issue superscalar processor (sim-outorder) with a 2-level
memory system and speculative execution support,
implemented in UNIX/C.

The GUI is written as an X11R6 Windows application using
the Tcl/Tk toolkit.

The Tcl/C interface probes the simulator for run-time
configuration information, statistics, and machine state.
The front-end displays this information using the Tcl
interpreter and the Tk canvas widget.

Dialogs, push buttons, and menus invoke Ul callback
functions to control application behavior (e.g., to resume
program execution) and modify settings (e.g., graph units).

Supported by
NSF CADRE

Software Block Diagram

(turns Tcl — language and interpreter
control over to Tcl) - system
* strings
* math
hooks in = unit structures
. (el it ﬁ stepping
SimpleScalar) P e

e sdb TK — windows and widgets

g = tool buttons
© OpthﬂS ols] . menuls-I

* sim_step(num_steps) = graphs
5 — - fonts, colors
© IFQ * canvas

* RUU * pop-ups
- LSQ
e FUs
X Windows

i « Display
Benchmarks and input data [f§ * Keyboard
* Mouse

(Q: Supported by
~ NSF CADRE

Feedback From Alpha Release

Spring 2001: From two dozen engineering students

=)

;”»‘»‘ o= == — Execution graphs
Ul concept

i' Statistical info
; Graphic design

I Cache

|L2Cache

Operation
Online help

L 2)

|Memory ‘

|
. [Stepped 250.0 cycies |

@ Supported by
N NSF CADRE

Today’s Status

Benchmarks Graphs. Ll

B0 0[O] s e |50 s v s s

= GUI refurbished with
better colors.

= Simplified start-up
and user interaction.

= Four units animated
(IFQ, RUU, LSQ,
FUs).

= HTML help page.
e = Various bugs fixed.

s N N
F+f F+F FsF FaF FxF
wom N
R

Supported by
NSF CADRE

Future Development

Portability
Package for Solaris/Sparc.
Port to Linux/x86.
Functionality
Animate more units, e.g., the L1 and L2 caches.

Expose more simulator resources for easy configuration (e.g., the number and
type of FUs).

Expand on-line help.
Enable back-stepping (?!)
Robustness
Improve Tk window management of graphs and window re-sizing.
Maintain GUI at benchmark termination.

(Feedback welcome!)

Supported by
NSF CADRE

Demo Notes

Use the VNC viewer on a laptop in order to connect
to the VNC display server running on a SPARCstation.
Begin with the initial display, pointing out the
components, menus, messages, and controls.

Show block stepping, single stepping, and continuous
execution.

Show cell updates, with text and color fills.
Show statistics for the various units.
Show graphs and their dynamic updates.

& Supported by
- NSF CADRE

Tutorial Agenda

* Introduction to SimpleScalar
- What is it?
- Distribution, Licensing, and Resources
+ SimpleScalar version 4.0 release
— MASE Microarchitecture Simulation Environment
— SimpleScalar ARM Target
— GPV Graphical Pipeline Viewer
— MiBench Embedded Benchmark Suite
— PowerAnalyzer Power Models
— Sim-Alpha Validated 21264 Microarchitecture Model
— ss-ppc SimpleScalar PowerPC Target
- 55-0s Full System simulator
— ss-viz SimpleScalar Visualization Tool
 Looking Ahead...

SimpleScalar
Tutorial

Looking Ahead...

+ SimpleScalar/x86
— x86 functional and performance models, with support for microcode
— Currentin limited release testing, from SimpleScalar LLC
+ SimpleScalar/Trimaran
— PlayDoh ISA emulation support plus VLIW architecture models
— In development, from University of Michigan
+ Sim-IPaq full system embedded target simulator
— StrongARM SA-1110 + serial + NIC + PCMCIA
— In debug, from University of Michigan
+ SimpleScalar/C30 DSP target
— C30 DSP interpreter and VLIW model, as main processor or peripheral
- In debug, from University of Michigan by Trevor Mudge’s research group
* ss-viz: portability enhancements
+ Memory extensions
— Memory and DRAM 32-bit/64-bit extensions
simplescalar SSMP: chip multiprocessor simulator with OS simulation
Tuterial ss-layout: floorplanning + elastic pipeline layout/performance simulator

40

SimpleScalar
Tutorial

SimpleScalar/ARM System Simulation
System simulation development
— ARMT + FPA + SA-1110 device set
- Linux + MiBench workload
Key infrastructure features

- Space manager directs 1/O using a
standard extensible interface

- Platform configuration description file
permits multiple target emulation without
code changes

- 1/0 manager supports recording and
playback of external 1/O for reproducible
real-time experiments

Status

- Processor/memory devices deployed

- VMMMU, RTC, PIC, DMA, SERO devices [Ease
completed Config @ = compltes
— 8M+ instructions into Linux boot EaEs L/

O = in development/test
. = next generation

SimpleScalar
Tutorial

SimpleScalar/C30 Target

Many embedded targets feature a DSP
- For fast processing of multimedia workloads

- e.g, signal processing, codec routines, inter-

image processing ?r:fec:j;g

— Typical embedded system architecture couples a
general purpose microprocessor with a DSP

Adding TI TMS320C30 (C30) ISA target
- Integer and floating-point ISA components
- Power control instructions
May be used as a processor or peripheral device
- Permits use of general purpose processor model
and C30 model in tandem
- Inter-processor communication implemented with
bi-directional mailbox primitives
— Requires a fairly sophisticated compiler tool chain,
e.g., GNU GCC for ARM + TI DSP target compiler

41

