
Using Hybrid Branch Predictors to Improve Branch Prediction

Accuracy in the Presence of Context Switches

Marius Evers Po-Yung Chang Yale N. Patt

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, Michigan 48109-2122

email: {olaf ,pychang,patt}@ eecs. umich. edu

Abstract

Pipeline stalls due to conditional branches represent

one of the most significant impediments to realizing the

performance potential of deeply pipelined, supers calar

processors. Many branch predictors have been proposed

to help aileviate this problem, including the Two-Level

Adaptive Branch Predictor, and more recently, two-

component hybrid branch predictors.

In a less idealized environment, such as a time-shared

system, code of interest involves context switches. Con-

text switches, even at fairly large intervals, can seriously

degrade the performance of many of the most accurate

branch prediction schemes. In this paper, we introduce

a new hybrid branch predictor and show that it is more

accurate (for a given cost) than any previously published

scheme, especially if the branch histories are periodically

jlushed due to the presence of contezt switches.

Keywords: branch prediction, context switch, super-

sca!ar, speculative execution

1 Introduction

Branch prediction accuracy is a major performance

factor in superscalar processor design. To improve

branch prediction, various branch prediction strategies

have been studied [13, 14]. These sophisticated branch

predictors use branch history to achieve higher perfor-

mance.

Recently, several hybrid branch predictors have been

proposed that combine multiple prediction strategies

into a single predictor [7, 2, 1]. These predictors use

a selection mechanism to determine the most suitable

Permissionto make digitakrd copy of part or all of U-k work for personal
or ciaesroomuse ia ranted without fee provided that copies are not made

1or distributed for pro t or commercial advants e, the copyright notioe, the
3title of the ublie.ationand its date appear, an notiss is given that

[oopying is y permission of ACM, Inc. To copy otherwise, to republish, to
post on servers,or to redistribute to lists, requires prior specific permission
andlor a fee.

ISCA ‘9S5/96 PA, USA
O 1996 ACM Q-69791-7653t9610005...$5050

component predictor for predicting each branch. Hy-

brid branch predictors have achieved higher prediction

accuracies than single-scheme predictors by exploiting

the strengths of each of their component predictors.

For hybrid branch predictors to achieve high predic-

tion accuracy, they must be able to apply the most ap-

propriate component branch predictor to each branch.

Effective dynamic selection mechanisms have been pro-

posed for hybrid branch predictors that consist of only

two components [7]. For predictors with larger numbers

of predictor components, a static selection mechanism,

Branch Classification, has been proposed [2]. However,

the effectiveness of this mechanism is limited because of

its inability to adapt to changes during program execu-

tion.

Previous studies [9, 11] have shown that the per-

formance of single-scheme predictors deteriorates when

the branch history information is periodically destroyed.

During the execution of programs, context switches may

occur for various reasons, including 1/0, page faults,

end of time quantum, etc. Context switches can de-

stroy the branch histories associated with particular

processes; thus, the performance of branch predictors

can significantly deteriorate,

This paper proposes a new dynamic selection mecha-

nism for hybrid branch predictors with more than two

single-scheme predictors. Increasing the number of dif-

ferent prediction schemes incorporated into the hybrid

branch predictor increases the number of branches that

it can accurately predict. In addition, the new selec-

tion mechanism allows us to also include predictors with

shorter training times to assist the otherwise more ac-

curate predictors during their warm-up phases. This

allows the hybrid branch predictor to maintain a high

prediction accuracy even after a loss of branch histories

due to context switches.

This paper shows that the resulting hybrid predic-

tor, the Multi-Hybrid, outperforms previously reported

predictors.

3

This paper is divided into five sections. Section 2 de-

scribes previously proposed branch prediction schemes.

Section 3 describes the Multi-Hybrid predictor. Sec-

tion4presents simulation results, comparing the Multi-

Hybrid to other hybrid branch prediction schemes. Sec-

t ion 5 provides some concluding remarks.

2 Previous Work
To improve prediction accuracy, various branch pre-

diction strategies have been studied. These prediction

schemes can be divided into two groups: static and dy-

namic predictors.

Static branch prediction schemes use information

gathered before program execution, such as branch op-

codes or profiles, to predict branch direction. The sim-

plest of these predicts that all conditional branches are

always taken as in Stanford MIPS-X [4], or always not-

taken as in Motorola MC88000 [8]. With additional

hint bits in the branch opcodes, some processors [10]

allow the compiler to pass prediction information to the

hardware. The profile guided branch predictor bases its

prediction on the direction the branch most frequently

takes, which is determined by profiling the program on

a training input data set [5].

Dynamic branch prediction algorithms use informa-

tion gathered at run-time to predict branch direction.

Smith [13] proposed a branch prediction scheme which

uses a table of 2-bit saturating up-down counters to keep

track of the direction a branch is more likely to take,

Each branch is mapped via its address to a counter.

The branch is predicted taken if the the most signifi-

cant bit of the associated counter is set; otherwise, it is

predicted not-taken. These counters are updated based

on the branch outcomes. When a branch is taken, the

2-bit value of the associated counter is incremented by

one; otherwise, the value is decremented by one.

By keeping more history information, a higher level

of branch prediction accuracy can be attained [14]. Yeh

and Patt proposed the Two-Level Branch Predictor

which uses two levels of history to make branch pre-

dictions; the first-level history records the outcomes of

the most recently executed branches and the second-

level history keeps track of the more likely direction of

a branch when a particular pattern is encountered in

the first level history, The Two-Level Branch Predic-

tor uses one or more k-bit shift registers, called branch

history registers, to record the branch outcomes of the
most recent k branches. It uses one or more arrays of

2-bit saturating up-down counters, called Pattern His-

tory Tables, to keep track of the more-likely direction for

branches. The lower bits of the branch address are used

to select the appropriate Pattern History Table(PHT)

and the contents of the branch history register select the

appropriate 2-bit counter to use within that PHT.

Several variations of the Two-Level Branch Predic-

tor have been proposed [15]. McFarling [7] introduced

gshare, a variation of the global-history Two-Level

Branch Predictor which XORS the global branch history

with the branch address to index into the PHT, Since

the same global history patterns can occur for differ-

ent branches during program execution, the global his-

tory pattern can be less efficient at identifying the cur-

rent branch than the branch address itself. The gshare

scheme tries to better identify the machine execution

states by using both the branch address and the branch

history. Lee and Smith [6] proposed a scheme where

the value of each Pattern History Table entry is deter-

mined statically, using profile information; this scheme

is referred to as the PSg scheme by Yeh and Patt [16].

Sechrest et al. [12] introduced another method, PSg

(algo), of statically determining the values in the PHT

and showed that a statically determining table could

perform nearly as well as an adaptive PHT for short

branch histories. Since the contents of PHT are deter-

mined statically, the PSg scheme trades the benefits of

having the ability to adapt for the benefits of having no

PHT warm-up time and simpler implementation.

To further improve prediction accuracy, hybrid

branch predictors have recently been proposed [7, 2, 1,

3]. A hybrid branch predictor is composed of two or

more single-scheme predictors and a mechanism to se-

lect among these predictors. A hybrid branch predictor

can exploit the different strengths of its single-scheme

component predictors, enabling it to achieve a predic-

tion accuracy greater than that achieved by any of its

components alone. McFarling [7] proposed a selection

mechanism that combines two branch predictors using

an array of 2-bit saturating up-down counters to keep

track of which predictor is currently more accurate for

each branch; each branch is mapped to a counter via

its address. The counter is incremented based on the

rule shown in Table 1. The most significant bit of the

counter determines which one of the two predictors to

use.

Predictor 1 Predictor 2 Update to Counter

Correct Correct No Change

Correct Incorrect Increment

Incorrect Correct Decrement

Incorrect Incorrect No Change

Table 1: Counter Update Rules

Chang et al. [2] proposed branch classification as an-

other method to construct hybrid branch predictors.

Branch classification allows an individual branch in-

struction to be associated with the branch predictor

best suited to predict its direction. Using this ap-

proach, a hybrid branch predictor can be constructed

such that each component branch predictor predicts

4

those branches for which it is best suited. By classifying

branches based ontheir dynamic taken-rates, they pro-

posed a hybrid branch predictor which uses the profile-

guided predictor for branches that aremostly-takenor

mostly-not-taken and McFarling’s hybrid predictor for

the remaining branches.

Chang and Banerjee[l] proposed the AVG predictor

which can accurately predict loop branches. The AVG

predictor keeps track of the average number of iterations

executed for each loop. A branch is then predicted to

exit the loop on the ith occurrence of that branch, where

i is the average number of iterations associated with this

loop, With branch classification, this predictor can be

used to handle loop branches.

In this study, our hybrid branch predictor attempts to

combine the advantages of previously described single-

scheme predictors. We compare its performance with

previously known hybrid branch predictors.

3 Multiple Component Hybrid Branch

Predictor

Researchers have shown that the most effective single-

scheme predictors use a large amount of branch his-

tory information and that two such predictors combined

can outperform a single predictor at the same imple-

mentation cost. Furthermore, if you take into account

context switches, some branch predictors that keep a

large amount of history will periodically go through a

warm-up phase in which they do not predict very accu-

rately. In this warm-up phase, predictors with a smaller

amount of history maybe more accurate. The benefit of

having multiple large predictors as well as small predic-

tors argues for the need to include more than two com-

ponent predictors in a hybrid branch prediction scheme.

Thus, we propose using a multiple component hybrid

predictor(Multi-Hybrid).

3.1 Selection Mechanism

Previous dynamic selection mechanisms are limited

to selecting between at most two single-scheme predic-

tors. To implement the selection mechanism for a IV

component Multi-Hybrid predictor, we propose adding

N 2-bit up-down counters to each entry in the branch

target buffer(BTB). These counters, the Predictor Se-

lection Counters, keep track of the most accurate com-

ponent predictor for each branch. Figure 1 shows the

structure of the predictor selection mechanism using 2-

bit up-down counters. Each of these counters is associ-

ated with a particular single-scheme branch predictor.

They are updated in the following way:

For a new entry in the BTB, all the counters are

initialized to 3.

All the predictors will generate a prediction. The

prediction from the predictor which has the value 3

in its corresponding Predictor Selection Counter is

Branch Target Buffer

Predictor Selection Countm

m F?

Prediction

Figure 1: Predictor Selection Mechanism.

used. When more than 2 selection counters contain

the value 3, a priority encoder is used to decide

which of the predictions to use.

● The counters get updated when the branch is re-

solved; if one of the predictors that had the value

3 in its selection counter was correct, the selection

counters for all the incorrect predictors are decre-

mented. Otherwise, the selection counters for all

the correct predictors are incremented.

Using this updating strategy guarantees that at least

one of the Predictor Selection Counters will be 3, sim-

plifying our predictor selection mechanism. Our predic-

tor selection mechanism also captures more information

than saturating counters because it can better differen-

tiate which of the component predictors are currently

more accurate for each branch. For example, given the

same initial counter values, the selection mechanism can

differentiate a predictor that has been correct for the

last 5 times from a predictor that has been correct for

the last 4 times, while saturating counters can not.

If the selection mechanism is on the critical path, a

variation can be implemented to reduce the time re-

quired to make a prediction. The priority encoding can

be computed before the branch is fetched and stored in

the BTB. Thus, when the branch is fetched, the previ-

ously calculated priority encoding is used to select the

appropriate prediction; the resulting selection mecha-

nism will require only one extra mux delay for choosing

the appropriate prediction from the component predic-

tors.

3.2 Component Predictors

Chang et al [3] showed that the gshare and PAs com-

bination effectively exploits both inter-branch and intra-

branch correlation. The gshare component is ahl. to
accurately predict branches whose outcomes are depen-

dent on the outcomes of other static branches. The

PAs component is able to accurately predict branches

5

whose outcomes are dependent on previous outcomes

of the same static branch. Because of their different

strengths, variations of both the global and per-address

Two-Level Branch Predictors are used as components

in the Multi-Hybrid. Instead of using PAs as our per-

address predictor, we use pshare, a variation of the PAs

scheme. This is because our initial results indicated that

pshare is more suitable for the Multi-Hybrid.

However, one disadvantage of using large Two-Level

Branch Predictors with long branch history registers is

the long predictor warm-up time. Since context switches

periodically destroy the histories maintained by such

predictors, their performance can deteriorate signifi-

cantly if context switches occur frequently.

To tolerate the effect of context switches, we propose

the addition of static predictors and small dynamic pre-

dictors to the Multi-Hybrid. Since static predictors do

not require any history information, their prediction ac-

curacy is independent of context switches. This enables

them to achieve a higher prediction accuracy than the

large predictors shortly after the occurrence of context

switches. As the number of branches executed after a

context switch increases, the large dynamic predictors

will become more accurate. The small dynamic predic-

tors are included to provide a smooth transition from

the static schemes to the large dynamic branch predic-

tors.

Chang and Banerjee [1] showed that the AVG pre-

dictor is particularly effective in capturing the behavior

of regular loop branches. The Multi-Hybrid includes

the AVG predictor because of its superior accuracy in

predicting these branches.

4 Experiments

We simulated the Multi-Hybrid and other relevant
predictors for various predictor sizes and context switch
intervals. We will first describe our simulation method-
ology and predictor model. We will then present our
experimental results in two parts: the performance of
alternative implementations of the Multi-Hybrid, and
the performance of the Multi-Hybrid versus that of ex-
isting branch predictors.

4.1 Simulation Met hodology

The performance of each hybrid predictor configura-

tion was measured by trace-driven simulations, using a
Motorola MC8S110 instruction level simulator. The re-

sults presented in this paper are for the six SPECint92

benchmarks. Each benchmark was simulated until com-

pletion. For each benchmark, Table 2 lists the reference

data set that was used and the exact number of instruc-

tions and conditional branches simulated.

1 Abbreviat ed version of the S P ECint reference input set

int -pri-3.eqn. It consists of 15 boolean equations with 39 different

variables.

Benchmark

espresso

xlisp

eqntott

compress

Sc

Kcc

of Cond

Input # of Instrs Branches

bca.in 354645678 74622690

7 queens 218806680 32765434

int I.eqnl 192782895 26099824

in 86445440 11178108

loadal 143176494 30484852

stint. i 107163324 17252822

Table 2: Summary of the SPECint92 Benchmarks along

with the input data sets.

4.2 Predictor Model
Our branch predictor model assumes that during con-

text switches, all history information associated with

the hybrid branch predictor is lost. To model this,

the counters for the predictor selection mechanism, the

branch history table, and the pattern history tables are

all reinitialized. We believe flushing the branch history

information is a reasonable model of context switches

on a moderately to a heavily loaded system.

For our selection mechanism, if a branch misses in

the BTB, the gshare predictor is used to predict this

branch.

4.3 Predictor Configurations

For a given hardware cost, the hybrid predictor con-

figuration is specified by the single-scheme predictors

used, the amount of hardware devoted to each scheme,

and the predictor selection mechanism. In this section,

we will examine the performance impact of each com-

ponent predictor, the priority ordering scheme, and the

selection counters.

4.3.1 Component Predictor Selection

The most accurate single-scheme predictors use a

large amount of history information. Predictors with

shorter warm-up times, such as static predictors and

small dynamic predictors, can achieve a higher predic-

tion accuracy than the large predictors immediately af-

ter the occurrence of a context switch. In our Multi-

Hybrid, we therefore allocate resources for implement-

ing both classes of predictors.

Since the most accurate predictors use a larger
amount of hardware, we allocate approximately 2/3 to

3/4 of the hardware budget for these predictors. Per-

address and global variations of the Two-Level Branch

Predictor have been shown to be an effective combi-

nation; therefore, we allocate approximately half of our

tot al budget for gshare, the most accurate single-scheme

predictor, and a quarter of the total budget for pshare,

The static predictors, always taken and always not-

taken, and the small dynamic schemes, 2bC and PSg,

6

are included because of their small implementation costs

and their ability to more accurately predict branches

immediately after flushing of the branch histories.

When the gshare scheme is of a moderate or large

implement ation cost requiring a long warm-up time, a

smaller global history scheme is included to provide a

smooth transition between the small and the large pre-

dictors. We use GAs for this smaller predictor.

Although the loop predictor addresses a separate class

of branches, it is only included for the three larger con-

figurations due to its implementation cost.

The initial configurations for the Multi-Hybrid are

determined using the above model. To improve the

cost /performance of the Multi-Hybrid, we examined the

contribution of each component predictor to the overall

performance of the Multi-Hybrid. We measured and

compared the performance of the Multi-Hybrid with

and without each component predictor. The results of

these experiments showed that the component predic-

tors described above, with the exception of PSg and

Always Not-taken, contribute to the performance of the

Multi-Hybrid for one or more of the benchmarks. Be-

cause the PSg and Always Not-taken predictors only

contribute marginally, they are not included in the

Multi-Hybrid for the following experiments.

Table 3 shows the resulting Multi-Hybrid configura-

tions. Each column shows the approximate hybrid pre-

dictor size and the sizes of each of its components. The

cost models for, and short explanations of, the single-

scheme predictors are given in Table 4. Since a 2K en-

try BTB is used in this study, the cost of the selection

mechanism is estimated to be 211 x c x 2 bits, where

c is the number of component predictors in the Multi-

Hybrid. For hybrid predictors with implementation cost

18 KBytes or less, some of the smaller predictors had to

be excluded to fit our hardware budget, as indicated in

Table 3 with a ‘-’.

Since we have not exhaustively studied all predictor

configurations, our configurations are not guaranteed to

be optimal. However, our choices are sufficiently con-

strained to allow significant investigation of the Multi-

Hybrid. Future work will expand on these choices.

4.3.2 Priority Ordering

The performance of the selection mechanism may de-

pend on the priority ordering of the component predic-

tors of the Multi-Hybrid. To determine the impact of

the priority ordering of the branch predictors on the

performance of the Multi-Hybrid, we simulated the 6!

possible priority orderings for those predictors with six

components and the 5! possible priority orderings for

those predictors with five components. We measured

the prediction accuracy over all 6 benchmarks for three

context switch intervals (16000, 256000 and no context

switches). Table 5 shows the performance of both the

I Hybrid Predictor Size (KBytes)

I -11 I N18 I -33 I z64 I *116
I 1 1 I 1 1 I

Cost of each comDonent I

Selection

Mechanism
2 2.5 3 3 3

2bC .5 .5 .5 .5 .5

GAs - 2 2 4 8

mhare 4 8 16 32 64

pshare 4 5.25 7.5 20 36.25

loop 4 4 4

Always taken o 0 0 0 0

Table 3: Multi-Hybrid Configurations

optimal priority ordering and the priority ordering used

in our experiments. We considered the optimal priority

ordering to be that which had the highest average pre-

diction accuracy over the 18 runs. Our priority ordering

is shown in Table 3 where the component predictors are

listed based on their priority, starting with the predic-

tor of the highest priority. That is, the 2bC scheme has

the highest priority and the Always taken scheme has

the lowest priority. Our priority ordering yields a negli-

gible decrease in performance compared to the optimal

ordering.

Predictor Size Actual Optimal

-18 KB 95.22 95.22

w64 KB 95.65 95.65

Table 5: Impact of Priority Ordering

4.3.3 Predictor Selection Counters

The performance of the selection mechanism also de-

pends on the type of Predictor Selection Counters used

to keep track of the most accurate component predic-

tor for each branch. In addition to using 2-bit up-down

counters in the selection mechanism as discussed in sec-

tion 3.1, we also measured the performance of the Multi-

Hybrid when using 3-bit up-down counters. Table 6

compares the performance of 2-bit counters with that of

the 3-bit counters for a Multi-Hybrid of size 18 KByte

when no context switches are modeled. With the ex-

ception of compress, 2-bit up-down counters perform

comparably to 3-bit up-down counters in capturing the

most accurate predictor for each branch. The results

for a Multi-Hybrid of size 64 KByte also show that the
performance for 2-bit and 3-bit up-down counters is sim-

ilar. For the following experiments, we only consider the

Multi-Hybrid using 2-bit up-down counters.

[Predictor

~

GAs(rn,n)

IrPSg(m)

r
T

pshare(m)

rloop(m)

Algorithm Cost (bits)

the two bit counter predictor [13] consisting of an 2K entry array 212

of two bit counters.

the global variation of the Two-Level Adaptive Branch Predictor m+2m+1n

[15] consisting of a single m-bit global branch history and n pattern I

history tables.

a modified version of the per-address variation of the Two-Level 211m + 2m

Adaptive Branch Predictor [16, 12] consisting of 2K m-bit branch

history registers and a single pattern history table (each PHT en-

try uses one statically determined hint bit instead of a 2bC). The

version of PSg used in this study is the PSg(algo) [12].

a modified version of the global variation of the Two-Level Adap- m + 2m+l

tive Branch Predictor [7] consisting of a single m-bit global branch I

history and a single pattern history table.

a modified version of the per-address variation of the Two-Level 211m + 2~+1

Adaptive Branch Predictor [15] consisting of 2K m-bit branch his-

tory registers and one pattern history table. As in the gshare

scheme, the branch history is XORed with the branch address to

select the appropriate PHT entry.

an AVG predictor[l] where the prediction of a loop’s exit is based

on the iteration count of the previous run of this loop. A 2K entry

array of two m-bit counters is used to keep the iteration counts of
loops. In this study, m = 8.

I-d&%%=
Table 4: Hardware costs for the single-scheme predictors.

212m

Predictor Size \ Benchmark I 2-bit 3-bit

~
Sc 98.13 98.14

xlisp 98.15 98.21

Table 6: Predictor Selection Counters

4.4 Performance of the Multi-Hybrid

In this section, we compare the performance of the
Multi-Hybrid to that of the PAs/gshare and 2bC/gshare

schemes. The PAs/gshare and the 2bC/gshare schemes

are hybrid branch predictors that combine gshare with

PAs and gshare with 2bC (the 2-bit counter scheme) re-

spectively [7]. For these two schemes, 2048 2-bit coun-

ters are used for selecting the more accurate component

predictor at run-time.

We first analyze performance for the branch predic-

tors when no context switches are modeled. We then

show how periodically flushing the branch histories due

to context switches affects the branch prediction

racy.

accu-

4.4.1 Prediction Accuracy Without Context

Switches

Figure 2 compares the prediction accuracies of the

three hybrid branch predictors at various implementa-

tion costs. For illustration purposes, the figure also in-

cludes the prediction accuracy of the best single-scheme

predictor, gshare. The Multi-Hybrid proposed in this

paper outperforms the other hybrid predictors for all

predictor sizes that were examined. For an implement a-

tion cost of approximately 64 KBytes, the Multi-Hybrid
achieves a 97.1370 prediction accuracy, as compared to

96.63% for the PAs/gshare scheme.

Figure 2 also shows that the performance of the 33

KByte Multi-Hybrid predictor is significantly better

than that of its 18 KByte counterpart. For predictors
with sizes of 18 KBytes or smaller, the loop predictor

was not included as part of the Multi-Hybrid predictor

because of the smaller hardware budget. For predic-

tors with implementation costs of 33 KBytes or larger,

the addition of the loop predictor resulted in a large

8

o 0.07
z

1%

A---A gshare

g 0.06 ❑ — 0 2bC/gshare

‘~ — O PAslgsbare

~ 0.05 — A Multi-Hybrid

‘: --’

0.02

0.01
I

(). ~
8 16 32 64 128

Predictor Size (K bytes)

Figure2: Prediction Accuracy averaged overall bench-

marks when Context Switches are not Modeled.

[%

‘\ \
‘&. A---A

‘. ❑ —D

‘A. o —o
-.

‘A A —A

0.03
t

0.02

0.01
[

(). ~
8 16 32 64 128

Predictor Size (K bytes)

eshare

2bUgshare

PAsJgshme

Multi-Hybrid

Figure 3: Prediction Accuracy of gcc when Context

Switches are not Modeled.

increase in performance, in particular for the eqntott

benchmark.

Our results for the individual benchmarks show sim-

ilar trends.

Figure 3 shows the prediction accuracies of these

branch predictors for the gcc benchmark. At an imple-

mentation cost of approximately 64 KBytes, the Multi-

Hybrid outperforms the PAs/gshare scheme, improving

prediction accuracy from 95.04% to 95.36%.

4.4.2 The Effect of Context Switches on Pre-

diction Accuracy

Since context switches periodically destroy the his-

tory maintained by predictors, the performance of

history-based predictors can deteriorate significantly if

context switches occur frequently. Figures 4 and 5 show

how context switches as modeled by periodic flushings

affect hybrid predictors with implementation costs of

approximately 18 and 64 KBytes respectively. The solid

o 0.14
s
c 0.12
‘z
~ 0.10

~ 0.08
z

0.06

0.04

0.02

0.00

\
\ A---A 2bC

-A ‘k, D---E GAs
\

\
X---X pshare

k

\ \ A-––A gshare
--\ \

\
s--k ---.>

— ❑ 2bC/gshare

\
.

*%___ -A; — O PAdgshare

.:x. ‘.. A— A Multi-Hybrid

‘m:;. -K

-’-B ------
9

I I I [
16 64 256 1024

Context Switch Interval (K instructions)

Figure 4: The Effect of Periodic Flushing on Hybrid

Predictors with Implementation Cost 17 to 19 KBytes

averaged aver all benchmarks.

rJ 0.14

z
G 0.12
‘:
~ 0.10

~ 0.08
z

0.06

0.04

0.02

0.00

\
A

\

.\ x \
\ \

\ \

L
\ \\ \-,+-----‘x

A.
-kk<–.- - +

.~
‘. ‘ .x

‘.

:<

-....A

‘B:==. m

I 1 I I

A---A

❑ -––u
x--–x
A-––A

❑ — u

o— 0

A— A

2hc

GAs

psbare

gsbare

2bC/gshare

PAs/gshwe

Multi-Hybrid

16 64 256 1024
Context Switch Interval (K instructions)

Figure 5: The Effect of Periodic Flushing on Hybrid

Predictors with Implementation Cost 64 to 67 KBytes

averaged aver all benchmarks.

lines show the performance of hybrid branch predictors

as a function of context switch interval.

These graphs also show the performance of the single-

scheme predictors that are used as component predic-

tors in the Multi-Hybrid. Their performance as a func-

tion of context switch interval is shown by the dotted

lines. The size of each component predictor is shown in

Table 4 of Section 4.3. The loop predictor is not shown

in Figures 4 and 5 because it was not designed to be

used as a single-scheme predictor by itself but as a com-

ponent in a hybrid predictor with other single-scheme

predictors.

As shown in Figures 4 and 5, the Multi-Hybrid out-

performs the other prediction schemes for all context

switch intervals examined. With context switch in-

tervals of” 256,000 instructions and a predictor size of

approximately 64 KBytes, the Multi-Hybrid predic-

tor achieves a prediction accuracy of 96.22% whereas

9

0.06 [\

‘y.’:.-

,\ -+ ----+

‘x%----- -x
‘.

‘%

+---+
x- –-x
A-––A

u— u

o— 0

A— A

2bc

GAs

gshare

2bUgshare

PA&Qshare

Multi-Hybrid

0.04
t

000 ~
16 64 256 1024

Context Switch Interval (K instructions)

Figure 6: The Effect of Periodic Flushing on Hybrid

Predictors with Implementation Cost 17 to 19 KBytes.

(gCc)

d) 0.14
3
G 0.12
$
~ 0.10

.% 0.08
z

0.06

0.04
t

:Lu_L
16 64 256 1024

+---+
x-––x
A---A

❑ — u

0 —0

A— A

Zbc

G&

gshare

2bCfgshare

PAs/gshare

Muki-Hybtid

Context Switch Interval (K instructions)

Figure 7: The Effect of Periodic Flushing on Hybrid

Predictors with Implementation Cost 64 to 67 KBytes.

(gCc)

PAs/gshare and 2bC/gshare achieve 95.22% and 95.26%

respectively, reducing the number of mispredictions by

over 2070. For smaller predictors with implementation

costs around 18 KBytes, the corresponding reduction in

mispredictions is approximately 1270.

Figures 6 and 7 show how context switches affect hy-

brid predictors with implementation costs of approxi-

mately 18 and 64 KBytes respectively on the gcc bench-

mark. With context switch intervals of 256,000 instruc-

tions and a predictor size of approximately 64 KBytes,

the Multi-Hybrid predictor achieves a prediction accu-

racy of 93.31% whereas PAs/gshare and 2bC/gshare

achieve 9 1,6’%0 and 92 ,82Y0 respectively, reducing the

number of mispredictions by 20.36% and 6.82’ZO. For

smaller predictors with implementation costs around 18

KBytes, the corresponding reduction in mispredictions

are approximately 16.67% and 4.38$Z0.

Figures 4 through 7 also show that the performance

of the single-scheme 2bC is better than that of the Two-

Level Branch Predictors for context switch intervals of

16,000 instructions. In addition, the performance of

2bC is less sensitive to the length of the context switch

intervals. Extrapolating from these graphs, the perfor-

mance advantage of 2bC over the Two-Level Branch

Predictors increases as the length of the context switch

intervals decreases; for very short context switch inter-

vals when the predictors have little or no time time to

warm up, the 2bC scheme can outperform the Two-

Level Branch Predictors. Since the 2bC/gshare scheme

utilizes the 2bC scheme, it was able to outperform the

PAs/gshare scheme when context switch intervals are

below 256,000 instructions.

On the other hand, the PAs/gshare scheme outper-

forms the 2bC/gshare scheme when the context switch

intervals are above 256,000 instructions. Because the

PAs/gshare scheme uses both the PAs and the gshare

schemes, it is more effective than 2bC/gshare in exploit-

ing both the inter-branch and intra-branch correlation.

Finally, our Multi-Hybrid branch predictor is able to

combine the advantages of all three single-scheme pre-

dictors, using 2bC to tolerate context switch and gshare

with pshare to achieve higher prediction accuracy. In

addition, the Multi-Hybrid can also include other single-

scherne predictors, such as the loop predictor, allowing

it to better handle special classes of branches.

5 Conclusions

In this paper, we have introduced a new hybrid

branch predictor, the Multi-Hybrid. By combining

branch predictors with different characteristics, we pro-

duced a hybrid predictor that predicts a wider range of

branches correctly while being less sensitive to periodic

flushing of the history information.

When context switches were modeled,

the Multi-Hybrid predictor significantly outperformed

the PAs/gshare and the 2bC/gshare schemes. At a con-

text switch rate of 1 per every 256,000 instructions, the

Multi-Hybrid shows a reduction of 12.5% and 20.6% in

mispredictions for 18 KByte and 64 KByte predictor

sizes respectively on the SPECint92 benchmarks.

When context switches were not modeled, the Multi-

Hybrid predictor also achieved an average reduction

of 9% in branch mispredictions over the PAs/gshare

scheme and 20% over the 2bC/gshare scheme for 1 lKB

to 64KB predictor sizes on the SPEC benchmarks.

We also showed that the PAs/gshare scheme that was

closest to the Multi-Hybrid when not accounting for

context switches is very vulnerable to periodic flushing

of the history information due to context switches, even

when those context switches happen at large intervals.

10

6 Acknowledgments
We gratefully acknowledge the support of our indus-

trial partners, without which it would not have been

possible to undertake this work, in particular Intel Cor-

poration and NCR Corporation.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

,:

[8]

[9]

P. Chang and U. Banerjee, “Profile-guided Multi-

heuristic Branch Prediction”, Proceedings of the In-

ternational Conference on Parallel Processing, July,

1995.

P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y.N. Patt,

“Branch Classification: a New Mechanism for

Improving Branch Predictor Performance”, Z?lh

ACM/IEEE International Symposium on Microar-

chitecture, Nov. 1994.

P,-Y. Chang, E. Hao, and Y.N. Patt, “Alternative

Implementations of Hybrid Branch Predictors”, 28th

ACM/IEEE International Symposium on Microar-

chitecture, Nov. 1995.

P. Chow and M, Horowitz, “Architecture tradeoffs

in the design of MIPS-X,” Proceedings of the lJth

Annual International Symposium on Computer Ar-

chitecture, June 1987.

J. A. Fisher and S. M. Freudenberger, “Predicting

Conditional Branch Directions from Previous Runs

of a Program”, 5th International Conference on Ar-

chitectural Support for Programming Languages and

Operating Systems, 1992.

J.K.F. Lee and A.J. Smith, “Branch Prediction

StrategiesBranch Target Buffer Design,” IEEE

Computer, PP.6-22, January 1984.

S. McFarling, “Combining Branch Predictors”,

WRL Technical Note TN-36, Digital Equipment

Corporation, June 1993.

C. Melear, “The design of the 88000 RISC family,”

IEEE MICRO, pp.26-38, April 1989.

R. Nair, “Dynamic Path-Based Branch Correla-

tion”, 28th ACM/IEEE International Symposium

on Microarchitecture, Nov. 1995.

[10] The PowerPC Architecture: A Specification for a

New Family of RISC Processors, Ed. C. May et al,

Morgan Kaufmann Publishers, Inc., San Francisco,

CA, 1994.

[11] C. Perleberg and A.J. Smith, “Branch Target

Buffer Design and Optimization,” IEEE Transac-

tions on Computers, 42(4):396-412, Apr. 1993.

28th ACM/IEEE International Symposium on Mi-

croarchitecture, Nov. 1995.

[12] S. Sechrest, C.-C. Lee, and Trevor Mudge, “The

Role of Adaptivity in Two-Level Adaptive Branch

Prediction,” 28th ACM/IEEE International Sympo-

sium on Microarchitecture, Nov. 1995.

[13] J.E. Smith, “A Study of Branch Prediction Strate-

gies,” 8th International Symposium on Computer

Architecture, June 1981.

[14] T.-Y. Yeh and Y.N. Patt, “Two-level Adaptive

Branch Prediction,” 2Jth ACM/IEEE International

Symposium on Microarchitecture, Nov. 1991.

[15] T.-Y. Yeh and Y.N. Patt, “Alternative Implemen-

tations of Two-level Adaptive Branch Prediction,”

19th Annual International! Symposium on Computer

Architecture, May 1992.

[16] T.-Y. Yeh and Y.N. Patt, “A Comparison of Dy-

namic Branch Predictors that Use Two Levels of

Branch History”, 20th Annual International Sym-

posium on Computer Architecture, May 1993.

11

