COEN-4730 Computer Architecture
Lecture 12
Testing and Design for Testability

Cristinel Ababei
Dept. of Electrical and Computer Engineering
Marquette University

Outline

• Testing
• Design for Testability (DFT)
• Microprocessors
Quality of VLSI Circuits

Unclustered defects
Wafer yield = 12/22 = 0.55

Clustered defects (VLSI)
Wafer yield = 17/22 = 0.77

What is Testing?

• Testing
 – Experiment to detect if the operation of the fabricated physical circuit is affected by manufacturing defects

• Vs. Verification
 – Predictive analysis to ensure correctness of the synthesized circuit; when manufactured, the circuit will perform the given I/O function
Why do we do Testing? – Roles of Testing

- **Detection**: Determination whether or not the device under test (DUT) has some fault.
- **Diagnosis**: Identification of a specific fault that is present on DUT.
- **Device characterization**: Determination and correction of errors in design and/or test procedure.
- **Failure mode analysis (FMA)**: Determination of manufacturing process errors that may have caused defects on the DUT.

Typical Design Flow of VLSI Circuits

- **Customer**
 - Write specifications
 - VHDL, Verilog
 - Synthesis, Verification
 - Netlist
 - Test development (test vectors generation)
 - Place and Route
 - Layout
 - Manufacturing
 - Manufacturing testing
 - Good chips to customer

Faulty chips

Failure Mode Analysis

```
process(CLK, RST)
if (RST = '1')
  Q <= '0';
else if rising_edge(CLK) then
  Q <= A and B and c nand D;
```
How do we do Testing? – Principle of Testing

- **Test vectors (input patterns):**
 - 0 0 0
 - 0 0 1
 - 1 0 1

- **1st test vector:**
 - Time: ..., 3, 2, 1

- **Design Under Test (DUT):**
 - Output responses:
 - ...0 0 0
 - ...1 0 1

- **Comparator:**
 - Stored correct responses:
 - ...0 1 0
 - ...1 0 1
 - Test result: PASS / FAIL

Defect, Fault, Error

- **Defect:** in an electronic system, is the unintended difference between the implemented hardware and its intended design
- **Fault:** a representation of a defect at the abstracted functional level
- **Error:** a wrong output signal produced by a defective system; is an effect whose cause is some defect
Single Stuck-at Fault Model

- Three properties define a single stuck-at fault
 - Only one line is faulty
 - The faulty line is permanently set to 0 or 1
 - The fault can be at an input or output of a gate
- Example: XOR circuit has 12 fault sites () and 24 single stuck-at faults

![Diagram of an XOR circuit with points marked as faulty or good circuit values.](image)

Test vector for h s-a-0 fault

Single Stuck-at Fault Model

- How effective is this model?
 - Empirical evidence supports the use of this model (justified by the frequent testing strategy)
 - Has been found to be effective to detect other types of faults
 - Easy to use
• Rule of 10x: It costs 10 times more to test a device as we move to higher levels
Memories

- Semiconductor memories are about 35% of the entire semiconductor market
- **Memories are the most numerous IPs used in SoC designs**
- Number of bits per chip continues to increase exponentially and fault sensitivity increases; faults become more complex
- Less charge stored per memory cell, cells are smaller and closer → cell coupling faults
- Traditional tests require long test-times, which increases a lot with the increase of the memory size
- Test cost per memory chip must not increase significantly

Memory Testing

- Levels: Chip, Array, Board
- **March tests:** family of tests called “marches”
- Neighborhood tests
Outline

• Testing
• Design for Testability (DFT)
• Microprocessors

Motivation for Design For Testability (DFT)

• Design for Testability (DFT)
 – Goal: improve controllability and/or observability of internal nodes of a chip or PCB
 – Design techniques to add testability features to a design
 » Testing activities moved to on-chip and on-board!
 – These added features make it easier to develop and apply manufacturing tests

• Benefits:
 – Reduced ATE cost due to self-test, decreased test times, inexpensive alternatives to burn-in test, reduced field repair cost, high quality of products delivered to customer

• Costs:
 – Reduced yield due to area overhead, increased power dissipation
Benefit/Cost of DFT

- If we consider life-cycle cost → DFT on chip lowers the costs at board and system levels!

<table>
<thead>
<tr>
<th>Level</th>
<th>Design and Test</th>
<th>Fabrication</th>
<th>Manuf. test</th>
<th>Diagnosis and repair</th>
<th>Maintenance test</th>
<th>Service interruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System (rack)</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

LEGEND:
- + Cost increase
- - Cost saving (i.e., reduction)
- +/- Cost increase may balance cost reduction

DFT 1 - Scan Path Design

- **Scan design**
 - Replace all selected storage elements with scan cells
 - Connect scan cells into scan chains (shift register)
 - Scan mode facilitates
 - Shifting in test vectors
 - Shifting out responses

- **Good CAD tool support**
 - Transforming flip-flops to shift register
 - ATPG
Scan Path Design

Not shown: CLK signal feeds all SFFs

DFT 2 - Built-In Self-Test (BIST)

Cores have to be tested on chip
Built-In Self-Test (BIST)

• Motivation for BIST:
 – *Need for a cost-efficient testing* (general motivation)
 – Increasing difficulties with TPG (Test Pattern Generation)
 – Growing volume of test pattern data
 – Cost of ATE (Automatic Test Equipment)
 – Test application time
 – Gap between tester and DUT (Design Under Test) speeds

• Drawbacks of BIST:
 – *Additional pins* and silicon area needed
 – Decreased reliability due to increased silicon area
 – *Performance impact* due to additional circuitry
 – Additional design time and cost

Built-In Self-Test (BIST)

• Incorporates test pattern generator (TPG) and output response analyzer (ORA) internal to design
 – Chip can test itself!

• Can be used at all levels of testing
 – Device → PCB → system → field operation
System-on-Chip (SoC) BIST

- testing time ↓
- memory cost ↓
- power consumption ↓
- hardware cost ↓
- test quality ↑

Outline

- Testing
- Design for Testability (DFT)
- Microprocessors
Challenges in Microprocessor Testing

- Today's microprocessors consist of billions of transistors operating at extraordinarily high speeds
- Large number of registers
- Large number of small buffers or queues
- Different sizes of memories
- Complex random logic (control path & datapath)
- Board level testing
- Test integration & scheduling
- CAD tool support

Part1: Systems with Microprocessors

- A system is an organization of components (hardware/software parts and subsystems) with capability to perform useful functions
- Systems with a microprocessor can use it to implement testing strategies for the whole system. The uP can self-test itself too
- **Functional testing**: verifies integrity of system
 - *Without fault models* (heuristic): simply exercise the functions of the system
 » Check existence and responsiveness of subsystems
 » Check system specifications
 » Check/executes selected critical functions of the system
 - *Using specific fault models*, that attempt to represent the effect of physical faults on the operation of the functionally modeled system
 » Explicit model: should define a reasonably small fault universe
 » Implicit model: identifies classes of faults with "similar" properties
Part2: Microprocessors Testing

• Structural testing
 – Faults defined in conjunction with a structural model: structural fault models. Main types of structural faults are shorts and opens and they are mapped into stuck-at and bridging faults
 – Test generation methods are based on the structural model of a system under test: produce tests for structural faults. Examples: PODEM, CONTEST, etc.
 – Test generation difficulty increases with the increase of processor complexity. Addressed partially by DFT techniques.

• Functional testing
 – Functional fault model at Register Transfer Level (RTL): represent the effect of physical faults on the operation of a functionally modeled system. Example: addressing fault affecting register-decoding
 – Difficult to automate

Functional Testing

• Functional testing reduces the complexity of the test generation problem by approaching it at higher levels of abstraction → higher efficiency in test time
• The process of test generation is difficult to automate. It is often a manual process – time consuming, prone to errors
• The applicability of a functional testing method is limited to systems described via a particular modeling technique
• 1. Testing without a fault model
 – Quality of the functional tests is unknown
 – Typically does not check that unintended operations do not occur (e.g., In addition to a correct transfer of data into register R1, the presence of a fault may cause the same data to be written into register R2)
• 2. Using specific fault models
 – We do not know the comprehensiveness of a functional fault model → functional fault coverage is not meaningful
1. Without fault models

- Develop test programs that can be executed on the processor
- Method:
 - Test each instruction
 - Test each subunit such as ALU
 - Test buses, register file and decoders
 - Test sequencing of instructions
- Key idea: Start small – test components and instructions that are easy to test and then use the tested parts to test other parts

2. Using specific fault models

- Graph model for microprocessors: based on architecture and instruction set
- Fault classes:
 - Addressing faults affecting the register-decoding function, instruction-decoding, and instruction sequencing
 - Faults in the data-storage, data-transfer, data-manipulation functions
- Fault model development
 - Determine which instructions are “easy” to execute – such as uses fewest resources, fewest cycles – easy to control and observe
 - Use such instructions to read and write register file to test register file and address decoding logic
 - Test buses by moving different types of data on buses
 - Test ALU by executing ALU related instructions such as ADD, SUB, ...
 - Buses: stuck-at and bridging faults
 - ALU, register file: stuck-at
 - Instruction decoder:
 - No instruction is executed
 - Different instruction is executed
 - An additional instruction is also executed
- Algorithm development
 - Develop simple sub-programs for each sub-unit testing
 - Put them together
“Snapshot” of Selected Microprocessor Testing and DFT Research Papers

• Intel

• AMD

• SUN Microsystems

• IBM

1. Intel

• Intel high performance 3GHz uProcessor, multiple clock domains, multi-cycle paths, domino logic
• Concerns: silicon area, leakage power, scan performance impact
• DFT uses a Hierarchical Scan Architecture ("divide and conquer" strategy)
 – Design partitioned into clusters (e.g., floating point execution cluster)
 – A cluster contains more units
 – Each cluster has one cluster test controller (CTC) and at least one unit test controller (UTC)
• Each CTC has 36 scan chains that allow testing of partitions formed by selected clusters, units or combinations
-- Intel --

- Scan chains not in partition under test can be bypassed
- ATPG patterns are generated using the scan-based ATPG tools

- Skip scan methodologies
 - Skip scan technique or Data Path Interleaved Scan (DI-Scan)
 - Follow a set of DI-Scan rules: DI-Scan used only in datapath pipelines, control logic is full scan, etc.

- Cache/memory testing
 - Programmable built-in self-testing (PBIST)
 - Access to all portions of PBIST is available through the JTAG TAP controller
 - Direct access testing (DAT): 100 times faster production test
 - Programmable weak-write test mode (PWWTM): to detect stability types of defects in memory cells

-- Intel --

- Integrated test controller (ITC) includes the TAP logic
 - Complies with JTAG (IEEE 1149.1)
 - Provides access to testability and debug features:
 » Micro-breakpoints
 » Control register bus access
 » Scan, Scanout, Signature mode
 » Thermal sensor control
 » Fuse programming, DAT mode
 » Boundary scan register

- Full chip ATPG methodology with a very low scan overhead
- On-chip weighted random patterns BIST structure including a test compression structure
2. AMD

- 33-element partitioning \rightarrow 80% reduction in test time compared to a flat model
- Advantages of modular test:
 - Reduced ATPG run-time
 - Greater test reuse
 - Simplified verification and scan chain failure debug
 - Reduced test time
- Note that this is similar to the Intel approach as divide-and-conquer

AMD

- Partitioning in three major steps:
 - Disposition of partition boundaries – done by surrounding each test module with a core test wrapper
 - Connect partition module to the test resources – known as providing a test access mechanism (TAM). Use 40 scan chains
 - Test boundaries are selected considering:
 » Maximizing test coverage
 » Minimizing pattern count
 » Using the shortest possible scan chains
 » Minimizing routing overhead
 » Re-using existing scan registers at partition boundaries
 » Allowing parallel module testing if desired
AMD Athlon Chip

- Design partitioned into 10 top-level modules and 33 second-level modules
- Test time is reduced with 38% compared to the non-modular approach. Attributed to reduction in the scan chain lengths in each module compared to the length of 4000 in the flat case
- Number of flops increased with 5% (due to wrapper cells)
- The cumulative pattern count of the modules 370% higher

3. SUN

- Niagara2 SPARC:
 - 8 processor cores, 1.4GHz, 4MB on-chip L2 cache, 65nm technology
 - 8 clock domains, mixture of full custom, semi-custom, and ASIC design styles, 300 SRAMs
- Level sensitive scan architecture
- Every SRAM tested with at-speed MBIST
- Scan chains
 - More than 1 million flops are organized as 32 scan chains
 - 84 JTAG scan chain configurations, 2 manufacturing scan chains
 - 35 MBIST chains for rapid programming of MBIST configuration registers
SUN

- Stuck-at test coverage: 98.5%
- Transition test coverage: 82%
- Path delay testing
 - 15,000 paths in each core tested at-speed
- SRAM access
 - Each SRAM is equipped with scanable input flops
 - Micro Test: process used to access the SRAM during debug from the JTAG port
- Memory BIST: at-speed testing
 - 80 MBIST engines
 - March C- forms the basis of the test algorithm
 - Read after write worst case (RAWWC) test
- FIFO memories (200Kbits): equipped with custom clock MUX
- CAM, Double-pumped memories (network interface unit): March tests
- Direct Memory Observe test: combination of MBIST with direct pin access to facilitate embedded SRAM bitmapping
- Support for JTAG 1149.1 boundary scan testing

4. IBM

- Timing uncertainty comprised of:
 - PLL jitter
 - Clock distribution skew
 - Across chip variations
 - Power supply noise
- On-chip measurement macro called SKITTER (skew + jitter): measures timing uncertainty from all combined sources; 5-8ps resolution
- Very sensitive monitor of power supply noise, as dominant factor of timing uncertainty
IBM

- SKITTER used in IBM microprocessors: PPC970MP, XBOX360, CELL broadband engine, POWER6

![Diagram of Skitter sampling latches and associated circuitry](image)

Fig 1: Basic edge-capture circuit using latch-tapped delay line

IBM

- Changing location of the edges in the Skitter sampling latches is a good indicator of the variations in chip timing
- The Skitter itself can be self-monitoring and trigger a readout if an edge is detected in a bin where it is not expected
- Measurements can be converted from bin counts into picoseconds
- The shift in an edge bin can be converted into mV of VDD noise
- Duty cycle measurements useful
- Multiple Skitters on chip: for each core, at different locations on chip, in the front side bus, etc.
Summary

- Design hierarchy & circuit partitioning - Divide-and-conquer seems to be a successful testing strategy
- (M)BIST for large memories/arrays
- Special BIST for small buffers
- Scan for random logic
- Full chip testing employs multiple scan chains, MBIST, boundary scan, transition and path delay tests
- Other design for testability and debug/diagnosis: Skitter, software based defect detection and diagnosis
- Fault tolerance techniques: self repairing microprocessor arrays