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Abstract— In traditional FPGA placement methods, there is 

virtually no coupling between placement and routing. 
Performing simultaneous placement and detailed routing has 
been shown to generate much better placement qualities, but at 
the expense of significant runtime penalties [19]. We propose a 
routing-aware partitioning-based placement algorithm for 
FPGAs in which a looser but effective coupling between the 
placement and routing stages is used. The placement engine 
incorporates a more accurate FPGA delay model and employs 
effective heuristics that minimize circuit delay. Delay estimations 
are obtained from routing profiles of selected circuits that are 
placed and routed using the timing-driven versatile place and 
route (TVPR) [6][7]. As a result, the delay predictions during 
placement more accurately resemble those observed after 
detailed routing, which in turn leads to better delay optimization. 
An efficient terminal alignment heuristic for delay minimization 
is applied during placement to further optimize the delay of the 
circuit. These two techniques help maintain harmony between 
placement and routing delay optimization stages. Simulation 
results show that the proposed partitioning-based placement 
combined with more accurate delay models and the alignment 
heuristic can achieve post-routing circuit delays comparable to 
those obtained from TVPR while achieving a 4-fold speedup in 
total placement runtime. In another experiment, we augmented 
the original TVPR algorithm with the terminal alignment 
heuristic, and achieved on average 5% improvement in circuit 
delay with negligible runtime penalty. 
 

Index Terms— Field programmable gate arrays (FPGA), 
FPGA placement, timing-driven placement, partitioning-based 
placement, delay estimation. 
 

I. INTRODUCTION 
ield Programmable Gate Arrays (FPGAs) have become 
important implementation platforms because of their  

flexibility and cost benefits. Changes to design can be made 
late in the design cycle or even after the chip is employed in 
the final consumer product, hence increasing design flexibility 
and helping reduce time-to-market windows. Furthermore, 
mask and fabrication costs can be amortized over a wide range 
of applications that use the same FPGA architecture [22]. 

On the other hand, the increasing capacity and complexity 
of the FPGAs resulted in new challenges for CAD developers. 
Recent FPGAs can accommodate more than 16 times larger 
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circuits than their predecessors as a result of new hierarchical 
architectures, more advanced routing structures, and dedicated 
on-chip circuitry (e.g., adder carry chains and multipliers). 
This significant increase in size and complexity of the FPGA 
chips demands much more efficient CAD tools that can 
deliver shorter compilation times.  

In the last decade, there have been significant 
improvements in placement and routing algorithms for 
standard cell and full custom designs. Traditionally, these 
algorithms have been adopted for FPGAs, although they have 
not been well-tuned to account for the special and limited 
routing resources on FPGAs. In standard cell routing, channel 
width inflation and over-the-cell routing can be employed to 
resolve congestion. Neither of these techniques is available in 
FPGAs where the number of wires, channel capacity, and the 
internal structure of switching boxes are fixed. As a result, 
placement and routing for FPGAs is more challenging. 

High quality FPGA placement tools are based on Simulated 
Annealing (SA), which has the ability to escape from local 
optima [7][10]. This ability allows SA-based tools to explore 
larger regions of the solution space. As a result, high quality 
solutions are obtained, but at the expense of longer runtimes. 
However, considering the exponential increase in FPGA size, 
SA-based methods are becoming unsustainable. To avoid long 
runtimes, partitioning-based placement approaches have been 
proposed for standard cell placement [11][13]. However, its 
limited search space makes the partitioning-based placement 
approach inferior. It is desirable to achieve the lower 
computational complexities of divide-and-conquer methods 
(e.g., partitioning-based / hierarchical) while obtaining the 
high quality of SA-based placement techniques. There have 
been many efforts that target developing fast placement and 
routing tools for FPGAs [8][9]. However, quality of 
placement is often sacrificed in such methods: they can 
achieve 50-fold speedup with a 33% quality degradation 
penalty [9]. Other approaches have tried to parallelize the 
placement or to develop a dedicated hardware implementation 
[3][4]. Our goal in this paper is to develop a fast placement 
method for FPGAs without losing placement quality or using 
more processing power. 

Traditional FPGA placement methods suffer from two 
shortcomings: (a) the placement stage is not tightly coupled to 
the routing phase, which could result in the routing algorithm 
to partly nullify optimizations done at the placement level, and 
(b) routing delay models used in FPGA tools are inherited 
from their ASIC counterparts. The half perimeter bounding 
box model for the delay of a net is well suited for ASIC 
designs, but is not an accurate representation of the 
segmented-routing architecture employed in modern FPGAs 
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[15][16]. This makes the router behavior harder to predict 
compared to the ASIC case. Therefore, a placement algorithm, 
which does not take the router behavior into account, tends 
not to exploit the high performance capability of modern 
FPGAs.  

To deal with the first shortcoming, both placement and 
routing can be concurrently considered. Such merging creates 
a comprehensive view of the problem and is shown to provide 
better results [14][18][19]. In these approaches, the circuit 
performance is improved by up to 15%, however the runtime 
is 6 to 11 times longer compared to TVPR [7].  

A direct comparison between previous approaches cannot 
be made due to the differences in their assumptions and 
settings. However, we can depict a rough graphical 
comparison in Fig. 1. Note that the comparison to [9] is in 
terms of wire-length only. Also note that the authors in [4] 
report the same critical delay while using wirelength 
optimization for both TVPR (although in the “–fast” mode) 
and their proposed parallel placement method as well as using 
35% more tracks than TVPR. They achieve 980x speedup 
using 2645 LUTs forming a systolic array to perform the 
placement optimization. As seen in Fig. 1, the existing 
placement algorithms can provide speedups at the expense of 
circuit quality. In this paper, we propose a looser coupling 
between placement and routing (e.g., compared to [19]) to 
improve the performance in a partitioning-based formulation 
and still achieve speedup. To the best of our knowledge, our 
placement is the first placement that can provide both speedup 
and slightly better circuit performance compared to TVPR.  

 
Our contributions can be summarized as follows: 

• Use routing profiles to derive a model for estimating the 
routing resource usage as a function of net criticality and 
terminal distance. The devised model has to accurately 

capture routing delay and congestion of a placement and 
also has to be fast to evaluate so that it can be used within 
placement iterations. 

• Use a net terminal alignment technique to minimize 
critical path delay. The alignment is used within the 
placement engine to provide a loose coupling between 
placement and routing in such a way that the small 
computation time of traditional design flow is maintained 
while benefiting from simultaneously considering both 
placement and routing.  

• Determine the order in which partitions in a partitioning-
based placement algorithm are placed to minimize 
placement constraints on terminals that belong to critical 
nets. 

The rest of this paper is organized as follows. Section II 
cites some relevant works and summarizes the assumptions 
used in the discussions throughout the rest of the paper. In 
Section III our algorithm is presented by describing each step 
in detail. Then, simulation results are presented in Section IV. 
We conclude our paper and present directions for further work 
in the last section.  

II. PRELIMINARIES 
Timing-driven placement for FPGAs can be classified into 

two main categories: net-based and path-based approaches. 
Net-based methods translate path criticalities (criticality is 
inversely proportional to slack) to net weights and treat nets 
independently. Path-based methods consider paths explicitly. 
Generally, path-based approaches are more accurate but 
slower than net-based approaches. Marquardt, et al., presented 
TVPR [7], the timing-driven version of VPR [6], which 
incorporates path-based timing analysis and connection-based 
analysis within the SA algorithm. They obtained delay 
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Fig. 1.  Graphical comparison of different placement approaches proposed in the literature. 
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improvement at the expense of increase in wiring and runtime. 
In order to achieve better runtimes, weighted-edge partitioning 
is the choice for the placement methodology proposed by 
Hutton [17], although for hierarchical FPGA architectures. 

We use a Virtex II [2] like FPGA architecture. The core of 
the FPGA is composed of an array of configurable logic 
blocks (CLBs), and routing resources. A CLB consists of one 
or more n-input lookup tables. Each lookup table can output 
either latched or unlatched signals. In this paper, we assume 
that the CLB has only one 4-input lookup table. However, our 
methodology can be used for FPGAs with CLBs containing 

arbitrary number of inputs and any number of lookup tables. 
In such a case, technology mapping is used to group several 
lookup tables into a single CLB, which in turn is treated as a 
single cell at the placement level. Throughout the paper, we 
interchangeably use “node” or “cell” to refer to CLBs. Each 
CLB can access the routing segments using connection 
blocks. Switch boxes are used to connect wires either back-to-
back or perpendicularly. Routing segments can have lengths 
of one, two, six or extend the entire width or height of the chip 
(called long wires). We also assume that wire segments are 
fully buffered. Therefore, fanout has a negligible impact on 
the delay of a net, especially during placement in which the 
exact routing is unknown. This assumption is consistent with 
modern FPGAs in which buffers are used to improve the net 
delay and make it more predictable [2][20]. As a result, we 
can treat a multi-terminal net as a set of two- terminal nets, 
each connecting the source to a sink. This means that we 
assume that all edges are independently routed and therefore, 
their delays are independent. 

III. PPFF: PARTITIONING-BASED PLACEMENT FOR FPGAS 
In this section we describe our partitioning-based placement 

framework, which simultaneously performs delay and 
congestion minimization. We adopted the net-based approach 
in which the path delay is taken into account by translating a 
path’s slack to individual net criticalities (the criticality of a 
net is inversely proportional to the smallest slack of the paths 
that pass through the net). 

The overall flow of our PPFF algorithm is shown in Fig. 2. 
We recursively partition the design and place it hierarchically 
during global placement. Because after placement there can be 
cell overlaps, we perform the legalization and cell distribution 
using a greedy method, followed by a post-processing 
detailed-placement step that employs low temperature SA. 

Placement is done by recursively partitioning the circuit 
using the hMetis partitioning tool [1]. During partitioning we 
maintain a tight connection between the circuit graph and the 
placement (as coordinates of all cells on the FPGA fabric). 
This connection is key to the success of applying the net 
terminal alignment heuristic (defined in Subsection III.A) as 
well as to the accuracy of delay computations. Recursive 
partitioning is done until each leaf in the hierarchical partition 
tree contains less than four cells. All edges in the circuit graph 
to be partitioned by hMetis are weighted. The weights 
represent timing criticality of the edges calculated using the 
timing slack values: 

slack
slacky  criticalit

edgesall

i
i max

−= 1  (1) 

where max slack is positive. 
We also define criticality of a node as the maximum 

criticality of its incident edges. Using timing criticality as edge 
weight discourages the partitioning engine from cutting edges 
with high criticalities. Therefore, critical nets will be kept 
short and the circuit will have a smaller delay. The process of 
delay assignment and slack/criticality update is performed at 
every partitioning level. Hence, timing criticalities will be 
more accurate and a better, tighter connection between timing-
driven partitioning and placement is developed and 
maintained. A number of novel ideas used in our recursive 
partitioning steps are listed below:  

• Net terminal alignment (presented in Subsection A).  
• Partitioning order (covered in Subsection C). 
• Net delay and timing criticality modeling based on 
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Fig. 2.  Schematic diagram of proposed algorithm. 
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routing analysis (discussed in Subsection E). 
In the following subsections we will discuss more details of 

each of these features. 

A. Net terminal alignment for delay minimization  
FPGA placement tools widely use wire length as the guide 

for minimizing circuit delay. However, wire length, calculated 
as the net bounding box, does not accurately capture the delay 
of a net because of the segmented routing architecture of 
modern FPGAs. It has been shown that the number of 
switches along a net could be as important as the Manhattan 
distance between its terminals, sometimes even dominating 
the distance [5][14]. Fig. 3 illustrates this point. Connections 
A, B and C have the same wire length, but exhibit different 
delays due to the difference in the number of switches they 
used. It can be observed that net C has the smallest delay. 

At the placement level, we cannot predict – with 100% 
accuracy – the number of switches that the router will use to 
route a net. However, given the same placement as the 
terminals of nets A and B, the router is more likely to use 
fewer switches to route the more timing critical net between 
the two. Furthermore, we can certainly say that at least one 
switch is needed to connect the horizontal segments of the 
route to the vertical ones. On the other hand, the placement of 
the terminals of net C provides the opportunity for the router 
to avoid using any switches at all. 

Terminals of a net are aligned if they are placed in the same 
row or column of the CLB array. For example, terminals of 
net C in Fig. 3, are aligned. Terminal alignment provides a 
loose coupling between placement and routing, by allowing 
the router to use fewer switches on timing critical nets. Note 
that wire length minimization will not distinguish between 
nets A, B and C, as they all have the same half-perimeter 
bounding box value. To study the effect of alignment on 
circuit timing and routability, we integrate the alignment 
technique into TVPR. We can define the alignment cost of a 
vertex as the weighted sum of square of its edge criticalities. 
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Note that we square the criticality to give high priority to 
cells with higher criticalities. An example of the alignment 
cost computation is shown in Fig. 4. 

The auto-normalization cost function used in TVPR is 

 
1w0where,

timingCost
 timingCost∆w

BB_cost
∆BB_cost)w(1cost

t

tt

≤≤

⋅+⋅−=  (3)

 
 
Where BB_cost is the wirelength bounding box cost. We 

add the alignment cost to the cost function, while preserving 
the auto-normalization property: 
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Even though we do not modify the random moves in TVPR 

to directly enforce alignment, we use wal to favor moves that 
improve alignment. The effect of alignment on circuit delay 
was studied by varying a combination of cost function weights 
(see Equation (4)). The experiment was performed on the set 
of benchmark circuits introduced in Section V. TVPR’s 
default weights for timing and bounding box costs are 0.5. 
The improvement over the original TVPR is shown in Fig. 5. 
The improvement on combinational circuits is larger than that 
on sequential circuits. The peak improvement is about 4.6% 
when timing, alignment and bounding box weights are 0.3, 0.2 
and 0.5, respectively. Notice that the improvement decreases 
with wal. This is because the alignment technique is not 
distance aware. In other words, if two terminals are aligned 
horizontally or vertically, their separate distance is irrelevant 
as seen by (2). Therefore, to successfully apply alignment, 
timing optimization based on distance should also be 
performed so that a balance is struck between alignment, 
timing criticality and routability. 

B. Alignment implementation in partitioning-based 
placement 
In this subsection, we describe how we integrated the net 

terminal alignment technique into the partitioning-based 
placement. This is key to obtaining the most out of the 
alignment technique while maintaining the time complexity of 
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Fig. 4.  The example of alignment cost computation. Alignment cost at node A = 
1٠0.7+1٠0.8+0٠0.6+1٠0.9. 
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the partitioning-based placement. Partitioning-based 
placement recursively partitions a circuit in a breath-first 
manner. Each sub-circuit corresponds to one node in a 
recursion tree. All nodes with the same distance from the root 
node constitute one level in a partitioning-based placement. 
The alignment will be performed among the terminals within 
the same level only. Therefore, alignment also proceeds in a 
level-by-level basis. 

We mentioned in Section III.A that terminal alignment 
allows the router to minimize the delay of the aligned net. 
However, excessive alignment can negatively affect 
congestion. Therefore, we will align only the most critical 
connections (i.e., the connections with criticality values abave 
a specified threshold). 

We define anchors as vertices of regions already 
partitioned at the current partitioning level. These vertices 
serve as references for other terminals that are going to be 
partitioned. Consider nodes X and Y of a two-terminal net 
shown in Fig. 6. Assume that node Y is an anchor. If node X is 
about to be placed in one of four partitions, A, B, C and D, 
placing X in region A or B can provide the alignment for the 
connection (X,Y). We would like to note that terminal 
alignment behaves differently from a wire length 
minimization heuristic or a traditional “terminal propagation” 
method used in most partitioning-based placement algorithms. 

If terminal propagation were used, a dummy node would be 
added to partition B and X is likely to be placed in B because 
X-Y is a critical connection. However, placing X in A or B 
does not necessarily make any difference in the delay of the 
connection (X,Y) due to the segmented routing architecture of 
the FPGA. Furthermore, if we used the wirelength metric, 
placing X in A or C would not make any difference, while it 
does for alignment.  

As mentioned above, alignment does not distinguish 

between A and B (or C and D). This means that the alignment 
of a net can only be done in one cut direction. For example, in 
Fig. 6, it only makes sense to consider alignment of X-Y when 
partitioning along a horizontal cut. We should also note that 

terminal alignment and terminal propagation are orthogonal 
techniques. For example, in Fig. 6, terminal propagation can 
be used in conjunction with terminal alignment. For a vertical 
cut, terminal propagation gets activated for net (X,Y), whereas 
terminal alignment only gets activated for this net when a 
horizontal cut is being made. 

In a region to be partitioned into four regions, we perform 
two consecutive bi-partitionings, as opposed to one 
quadrisection. The reason is that by doing bi-partitioning, we 
can decide which direction (horizontal or vertical) to cut first 
to give priority to critical terminals. Let us call the left and 
right (top and bottom) borders of a partition region the vertical 
(horizontal) borders. Ideally, we would like to let the most 

critical net gain the most from alignment. Therefore, we 
perform the horizontal cut first if the maximum criticality 
crossing vertical borders is higher than that of the horizontal 
borders and do vertical cut otherwise. For example, in Fig. 7, 
the largest timing criticality among nets crossing the vertical 
borders of the placement region (i.e., max{0.8,0.9}=0.9) is 
larger than that of nets crossing the horizontal borders (i.e., 
max{0.85,0.4}=0.85). Therefore, the first bi-partitioning is a 
horizontally cut and the next two bi-partitionings in the newly 
created regions have to be done vertically. 

The alignment implementation is summarized in Fig. 8, 
which shows how critical nodes are aligned with nodes placed 
in regions that are already partitioned. For demonstration 
purposes, we assume that all regions to the top and to the left 
of the region under partitioning in Fig. 8-a have already been 
partitioned. Among the six anchors, only two have critical 
connections to terminals in the region under consideration. 
Assume that the vertical cut will be carried out. Therefore, 
only the critical nodes that have vertical connections to 
anchors will be aligned as shown in Fig. 8-b. These nodes will 
be fixed inside the partition that aligns them, and the rest of 
the nodes are assigned to either partition by hMetis. The fixed 
nodes can affect how other nodes will be divided into the 
partitions, because of their connectivity to them. 

Note that the partitioning-based placement imposes the 
placement restriction for a sub-circuit (i.e., the cell cannot 
migrate to other sub-circuits). Therefore, it is easy to show 
that if the terminals are not aligned at a level, they cannot be 
aligned at lower levels. 
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Fig. 7.  Deciding the cut direction. 
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C. Partition Ordering 
After a region is partitioned, its nodes serve as anchors to 

other nodes in regions to be partitioned. To demonstrate the 
effect of partitioning order, we assume that partitioning is 
done from top to bottom and left to right as shown in Fig. 9. 
The regions in the third and forth columns have anchors in 
only the horizontal direction, while the regions in the second 
column have anchors in both directions. It can be seen that if 
we change the order in which regions are partitioned, the 
anchors available to a particular region would be different. 
We refer to this effect as region dependency. It can be 
observed that region 1 has the maximum flexibility in 
assigning nodes to its sub-partitions. Conversely, the region in 
the bottom-right corner of the chip will have the maximum 
number of alignment constraints. 

We define dependency between two regions as follows: 
regions a and b are “directly dependent” if they are in the 

same row or column, and there is at least one critical edge 
connecting terminals of the two regions. When two regions 
are directly dependent, partitioning of one of them into four 
regions creates anchors for the other. Examples of dependent 
regions in Fig. 11-a are {a,b}, {a,d} and {c,f}, but not for 
example {p,f}. We also define “transfer dependency” as a 
transitive dependency between two regions. When regions X 
and Y have transfer dependency, there is a chain of direct 
dependent regions starting with X and ending in Y. For 
example, region a in Fig. 11-a has a length-4 transfer 
dependency with region g through a,b,c,f,g or a,d,c,h,g. We 
can consider the direct dependency as a transfer dependency 
of length one. Intuitively, the influence of a dependency 
decreases as its length increases. We have found that 
considering only dependencies of length one (direct 
dependency) provides good placement quality / runtime 
tradeoff. For direct dependency, we can solve the partition 
ordering problem in linear time. 

For a set of regions, we can construct the corresponding 
undirected dependency graph G(V,E,W), where: 
• V is the set of regions. 
• Eba ∈),(  iff a and b are directly dependent regions. 
• wab, the weight of edge (a,b), defined as the summation of 

the criticality of all critical connections between a and b. 
A connection is critical if its timing criticality is above a 
user-defined value. 

Finding the best partitioning order in terms of dependency 
can be translated to a linear placement problem with minimum 
sum of incoming edge weights as follows. 

Minimum incoming weight linear placement (MIWLP): 
For a given weighted-edge graph G(V,E,W), find a labeling 
function L:V→N, that determines the order in which regions 
are partitioned, such that 

 EvuandVvuwherew
vLuL

uvVv
∈∈∑

<
∈

),(,,maxmin
)()(

 (5) 

Note that wuv = wvu . We can define C(v) and get the cost 
function 

,)(maxmin
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∑
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This problem can be solved optimally using a greedy 
algorithm that iteratively labels one node at a time. We label 
nodes from last to first. Let S be the set of unlabelled nodes 
and S’ be the set of nodes that have been labeled. Since any 
node in S will have a smaller label than any node in S’, (6) can 
be rewritten as: 

Svforwvc
EvuSuall
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Note that initially S’ = Φ. Let us define Si and Si’ as the set 
of non-labeled and labeled nodes at stage i, i.e. when only |V| - 
i nodes have been ordered. Note that S0 and S0’ are equivalent 
to S and S’, respectively. Therefore, the cost of node v at stage 
i can be expressed as: 

∑
∈∈

=
EvuSuall

uv
i wvc

),(,
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The proposed algorithm for solving MIWLP problem is as 
follows. 

 
Algorithm MIWLP 

||, '
|||| VSS vv =Φ=  

For i = |V| down to 1  // NOTE the reverse order 
a. Compute Ci(v) for each v ∈ Si.  
b. b. Select node vi in Si  such that Ci(vi)  is smallest. 
c. Label vi as i, }{\},{ 11 iiiiii vSSvSS =∪′′=′ −−

 . 

 
Lemma: If L(v)=i, then Ck(v) = Ci(v), ∀k<i. In other words, 

the cost of a node will not change after it is labeled. 
Proof:  We can divide the edges incident to v into two 

groups: those connecting v to nodes with smaller labels 
(“incoming” edges), and those connecting v to nodes with 
larger labels (“outgoing” edges). The latter edges do not count 
in either Ck(v) or Ci(v). On the other hand, the contribution of 
an edge (u,v) for L(u)<L(v) is independent of the actual value 
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Fig. 9.  Effect of a simple partitioning order. 
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of L(u), as long as L(u)<L(v). At stage i, we only know that 
L(u) < L(v). At stage k, we might know the exact value of 
L(u), but the inequality still holds, and as a result, the C value 
does not change.  � 

A direct result of this lemma is that the final value of the 
cost of a node (i.e., C1(v)) is the same as Ci(v), where L(v)=i. 

Claim: The above algorithm yields the optimal solution to 
MIWLP 

Proof: To prove the claim, we start by showing that there 
exists an optimal ordering for the problem that contains node 
A=vi, the node with the smallest current cost at stage i in the 
above algorithm as the i-th order.  

Let P be the solution obtained by our algorithm with 
objective value of X. Let P* be the optimal solution to the 
problem with objective cost X*. Let i be the first position (in 
reverse order, i.e., from |V| down to i) that the ordering of the 
nodes differs in P and P*. That is, nodes with labels i+1, i+2, 
..., |V| are the same in P and P*. Assume that node B with 
L*(B)=i in P* is the first node that is different from its 
corresponding node A in P, where L(A)=i (see Fig. 10). Let 
the label of node A in P* be L*(A)=j.  

Our goal is to convert P* to P*new by replacing B with A, 
and show that the new objective function X*new is not larger 
than X*. By recursively applying this transformation, we can 
change P* to P and show by induction that X is also optimum.  

Let us pick A out from the P* solution, and fill the gap by 
decreasing (by one) the order of the nodes that have labels in 
the [j+1 ,i] range. The new ordering makes a new solution 
P*new. Because of the shifting of the nodes, the order of B will 
be i – 1 in P*new. Then, put A at the i-th order in P*new as 
shown in Fig. 10. Therefore, now L*new(A) = i and L*new (B) = 
i - 1. The nodes with labels greater than i or less than j are the 
same in P* and P*new. 

From (8), we can infer the new cost of each node as 
follows: 

1. C*new(v) = C*(v) ≤ X: if L*(v) = L*new (v) > i, because the 
incoming edges are the same (the order of the source nodes of 
the incoming edges might have changed, but that does not 
have any effect on the cost. Refer to the above lemma). 

2. C*new(v) = C*(v) ≤ X: if L*(v) = L*new (v) < j, because the 
incoming edges did not change. 

3. C*new(v) ≤ C*(v) ≤ X: if j < L*(v) ≤ i, because by moving 
A to the ith order, we might have changed some incoming 
edges of v to outgoing, and hence decreased C(v). 
Furthermore, we did not add any edges to the set of incoming 
edges of v. 

4. However, C*new(A) ≤ C*(A), because some of the nodes 
with labels between j+1 and i in P* might have edges to A, 
and these edges will become incoming for v in P*new. 

5. From the lemma, C*i(B) = C*(B) ≤ X, and C*i
new(A) ≤ 

C*new (A). 
6. Since the set of nodes with labels greater than i is the 

same in P, P* and P*new, we have C*i(B) = C*i
new(B). 

7. By definition of node A, C*i
new(A) ≤ C*i

new(B) = C*i(B) ≤ 
X. Therefore, C*i

new(A) ≤ X. 
Therefore, X*new ≤ X*. However, since P* is an optimum 

solution. Thus, X*new = X* and P*new is another optimum 
solution. Since the node with labels greater than i is the same 
for P and P*new, their costs are the same. If we repeat this 
transformation from any node down to the node at label 1, the 
above argument can be applied recursively. Finally, we will 
obtain a P*new which is optimum and has the same order of the 
nodes as P. Therefore, P is an optimal solution. � 

A simple example of a dependency problem, its dependency 
graph, and its optimal MIWLP solution is shown in Fig. 11. 
Note that there may be many optimum solutions to the 
problem. For example, Fig. 11-c shows the optimum solution 

given by our algorithm and Fig. 11-d shows another optimum 
solution with the same incoming weight at each node. 

D. Overlap removal and cell distribution 
The partitioning-based placement is effective only for 

coarse-level netlists. In our method, the partitioning process 
stops when the region size reaches a threshold (4 in our case). 
Once we stop the partitioning process, the resulting placement 
is illegal in two respects: First, some regions may have more 
nodes than they can accommodate. This is the result of the 
imperfect balancing of the partitions created by hMetis. 
Second, all the cells in the coarse region (e.g., 2x2) are still at 
the center of the regions and have to be placed at individual 
CLB locations in the region. As shown in Fig. 2, we legalize 
the placement in two steps: overlap removal and cell 
distribution, both of which consider alignment during 
legalization.  

In the overlap removal step, we move the least critical cells 
from an overcrowded coarse region to the closest region that 
can accommodate the cells and also provides the best 
alignment. After the overlap removal procedure is finished, 

 
 

Fig. 11.  The example of region dependency, its corresponding dependency 
graph and its MIWLP solution. Two solutions are shown in parts (c) and (d).
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every region has enough space for its nodes. However, each 
region, occupying an array of CLBs (e.g., 2x2), contains a 
number of cells, all of which are located at the center of the 
region. We use the distribution step to distribute cells into a 
CLB which best preserves their alignments. Distribution is 
performed in the following steps. 

1. Order placement regions according to their external 
horizontal or vertical criticalities.  

2. For each region, order its cells according to their external 
horizontal or vertical criticalities.  

3. For each cell that has criticality greater than a threshold, 
find the best-aligned position and place it. 

4. Randomly place the remaining cells. 
Finally, the placement is refined by running TVPR’s low 

temperature annealing algorithm on the whole circuit to 
further minimize wire length and delay (see Fig. 2).  

One may argue that overlap removal can be done entirely 
by the low temperature SA, without the need for the 
legalization step. However, modifying the SA algorithm to 
address the overlaps would make the refinement step too 
complicated, as it would have to optimize many cost functions 
simultaneously. As a result, it might take much longer for the 
low-temperature SA to converge to a legal solution. 

 

E. Delay Model and Timing Criticality Update 
It has been shown that the number of segments traveled by 

a routed net is a more important factor in determining the 
delay of the net rather than the traditional geometric distance 
[5] [14]. As a result, delay estimation based only on 
Manhattan distance may be optimistic or pessimistic in an 
FPGA device with variable length segmented routing 
architecture [15] [16]. In standard cell designs, connection 
delay is closely related to its distance while its criticality is 
almost irrelevant provided that there is no congested area in 

the chip. Unless buffers are optimally inserted, the net delay is 
strongly dependent on the fanout of the net. In contrast, for 
fully-buffered FPGAs, the connection delay is largely 
independent from the fanout and this allows us to easily 
estimate the connection delay by the connection distance [20]. 
However, multi-length segmented FPGAs provide numerous 
combinations of segments to complete a connection, each with 

a different delay characteristic. The critical connection is 
required to be routed with the delay-optimal segment 
combination, while the non-critical can take longer delay 
routes. Therefore, two connections with the same length but 
different criticalities can have different delays. 

In this section, we address two delay estimation problems: 
• The first tries to understand how the routing algorithm 

works so that the placement algorithm can tailor its 
optimization process to conform to routing optimization 
methods. Routing delay analysis is discussed in Section 
E.1. 

• Next, we try to develop models, which can estimate the 
delay of the nets during partitioning-based placement. 
Section E.2 discusses issues related to delay estimation. 

 
E.1  TVPR Routing Delay Analysis 

We first perform an analysis of the TVPR router in order to 
better understand its behavior. We start with a profiling step 
for the routing resource usage. We use TVPR to place and 
route selected circuits and then superimpose an imaginary grid 
on the FPGA fabric, which represents the partitioning cut lines 
at different levels had the placement been done using a 
partitioning-based method as described in Section III. Nets 
crossing the grid lines corresponding to level i are counted to 
get the usage profile of every type of routing resources at that 
level. The characteristics of the set of circuits that we used in 
our experiments are shown in Table I of Section IV.  

The key point of this step is that we noticed a common 
trend in the way routing resources are used by the TVPR 
routing tool. A typical routing resource usage is shown in Fig. 
12. We can see that long segments are used extensively for 
routing nets that would be cut at higher levels of partitioning, 
while double-length segments are used mostly for nets cut at 
lower levels. Single-length segments are used almost 
uniformly across all levels. The shape of these plots is 
preserved irrespective of what placement tool is used. We 
performed experiments with three different placement 
engines: our placement algorithm, VPR, and random 
placement.  

The main conclusion of the above analysis is that routing 
resource usage and therefore net delay is predictable. This 
allows us to adopt a lookup-table delay estimation technique 
tailored for the routing method that follows the placement. 
Therefore, for a particular architecture, it is reasonable to 
extract the delay from placed-and-routed circuits and store 
them according to their distances and criticalities. However, 
we have to discretize the criticality to reduce the table size. As 
the criticality of the partitioning-based placement is not 
accurate by nature (refer to Section III.E.2), dividing the 
criticality into 10 regions is enough to provide good delay 
estimation. 

These delay lookup-tables store information about the 
average delay of nets with a given criticality, which span a 
given minimum length. These tables are then used inside our 
partitioning-based placement algorithm for delay assignment 
to nets cut at different partitioning levels.  
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Fig. 12.  Typical routing resource usage plot. 
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We should point out that the delay after routing is what 
matters in determining the performance of a circuit. That is the 
reason that we gather delay profiles after routing and try to 
build a model that can capture routing behavior at placement 
level. If we are successful, the optimizations done by the 
placement algorithm are in line with what the routing is 
inclined to do. As a result, the estimation and optimization 
processes at the placement level will eventually be more 
effective. 

 
E.2  Delay Estimation During Partitioning-based 
Placement 

During recursive partitioning, edges are cut at different 
partitioning levels. Delay assignment to cut edges is done as 
follows. The minimum distance spanned by a cut net is 
determined by the level at which it is cut. We estimate the 
delay of a cut net based on its timing criticality at the time of 
partitioning and the minimum distance it spans. Our delay 
model takes into account both the number of segments used 
for routing as well as the segment lengths through the use of 
delay lookup-tables.  

Nets cut at the first partitioning level are assigned delays 
corresponding to a single-length segment which is the smallest 
delay among all routing resources. During the subsequent 
partitioning levels, the (x, y) coordinates of all CLBs are more 
accurately known and so is the minimum length spanned by a 
net. Therefore, every net will be reassigned a delay according 
to its updated distance and criticality. 

IV. SIMULATION RESULTS 
In Section III.A, we have shown the effectiveness of 

terminal alignment when incorporating it into simulated-
annealing-based placement, TVPR (as shown in Fig. 5, about 
5% improvement in circuit delay compared to TVPR’s 
original placement). However, when we apply this technique 
to partitioning-based placement, we inevitably limit the range 
of alignment to only within sub-circuits. Therefore, we could 
expect to gain less improvement in this case. To verify the 
effectiveness of the proposed technique, we performed three 
sets of experiments and compared the results with those 
obtained by using TVPR. The aim of the first experiment is to 
test whether the information from the TVPR router can be fed 
to a post-processing placement algorithm to improve timing 
(i.e., smaller delays after routing). This set of experiments is 
discussed in Subsection IV.A. 

The second set of experiments compares our overall flow as 
a stand-alone tool to TVPR to see if the quality of the 
proposed method surpasses TVPR’s. Subsection IV.B 

demonstrates the results. Finally, the third set of experiments 
tries to find the contribution of each of the heuristics that we 
used in our flow (i.e., alignment, delay tables and partition 
ordering) to the delay improvements. Subsection IV.C covers 
these experiments. 

All simulations are averaged over six runs and are 
performed on a Linux machine with Pentium II Xeon 450Mhz 
and 2Gb memory. 

 

A. Validating the Effectiveness of Feeding Routing Profiles 
to Placement  
The purpose of this set of experiments is to first validate the 

usefulness of the routing profile information for the placement 
tool. It also presents our method as a post processing 
algorithm to improve timing. The flow of this set of 
experiments is shown in Fig. 13. 

We first placed each circuit of the benchmark set using the 
original TVPR, then we used the TVPR router to route all 
circuits (the three top boxes in Fig. 13). Delay, runtime and 
channel width of each circuit after running TVPR is shown in 
columns 2, 3 and 4 of Table II. The overall delay (one to last 
row) is calculated as harmonic mean of all delay values while 
the overall runtime and channel width (CW) are the sum of all 
circuits.  

Then, we extracted the delay information of each circuit as 
mentioned in Section III.E.1 (the box labeled “routing 
analysis” in Fig. 13). The delay information of each circuit 
was then used inside our partitioning-based placement 
algorithm to redo the placement of the same circuit. Finally 
we route the circuit using TVPR’s router and compare its 
delay to that of the original TVPR’s delay. The results are 
shown in columns 5-10 of Table II. The numbers in the group 
of columns labeled "% delay difference compared to TVPR” 
are calculated as 100 × (our_delay – TVPR_delay) / 
TVPR_delay. Negative numbers show improvement over 
TVPR while positive numbers show worse results compared 
to TVPR.  

For each circuit placed using PPFF, we apply low 
temperature simulated annealing (i.e., starting temperature is 
10% of the original TVPR), with different cost function 
weights (as described in Section III.A, t and a represent wt and 
wal, respectively). Note that the t0.5, a0 case is equivalent to 
the original TVPR. It can be observed that circuits placed by 

TABLE I 
STATISTICS OF BENCHMARK CIRCUITS  

Circuit No. of 
CLBs 

No. of 
I/Os 

 
Circuit No. of 

CLBs 
No. of 
I/Os 

ex5p 1064 71  ex1010 4598 20 
misex3 1397 28  tseng* 1047 174 
alu4 1522 22  diffeq* 1497 103 
des 1591 501  dsip* 1370 426 
seq 1750 76  s298* 1931 10 
apex2 1878 42  bigkey* 1707 426 
spla 3690 62  elliptic* 3604 245 
pdc 4575 56  s38417* 6406 135 

(* denote sequential circuit)  

Timing
info VPR Routing

Ckt netlist VPR Placement VPR Routing

Our placement Routing analysis

 
Fig. 13.  Flow of the first set of experiments. 
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our placement algorithm have comparable delays to TVPR 
when timing and alignment weights are 0.4 and 0.1, 
respectively. The post processing step can lead to 
improvements as high as 19% (dsip circuit placed with timing 
and alignment weights of 0.2 and 0.3). Although the best 
weight combination for each circuit is different, from the 
overall improvement, we can conclude that the best 
combination is achieved when a moderate alignment weight is 
used.  The decrease in improvement as the alignment weight 
increases, confirms the result obtained in Section III.A. 

Note that we had to increase the channel width for some 
circuits (e.g., ex5p, misex3, and diffeq) in order to achieve full 
routability. Therefore, we require five more tracks for the 
whole set of benchmark circuits which is about 1.5% increase 
in total number of channels. This number of tracks is also used 

for the second simulation setup. 
Our experiments show that the delay results of a purely 

partitioning-based placement that does not consider the 
routing profiles and does not utilize low temperature 
annealing legalization is about 50% worse than TVPR, while 
using 34% more routing channel width. From the 
experimental results shown in Table II, we can conclude that 
using the routing profile tables in our partitioning-based 
placement provides better coupling between placement and 
routing. It confirms that the routing profile indeed helps the 
placement engine generate better results that conform to 
optimizations done at the routing stage.  

Furthermore, Fig. 13 shows TPVR followed by our “post-
processing” step. One can run our placement algorithm after 
TVPR, hence incur a 30% increase in runtime on average (in 
Table II, the average runtime of PPFF is 0.28 of TVPR). If the 
extra PPFF step results in deterioration of circuit delay, we 
can discard changes that PPFF made to the output of TPVR. 
Otherwise, we can keep the output of PPFF as the final 
placement. The last row of Table II follows the same logic. 
Entries in this row are the average of negative values. It shows 
that by using the flow of Fig. 13, we can achieve about 2% 
improvement over TVPR, with a penalty of 30% increase in 
runtime. 

B. Comparing PPFF and TVPR  

TABLE II 
COMPARISON BETWEEN OUR RESULTS OBTAINED WITH UR PPFF AND TVPR 

(TVPR router analysis information used for each circuit separately) 
PPFF with delay data for individual circuit TVPR 

% delay difference compared to TVPR Circuit 
Delay 
(e-8) 

Time 
(sec) CW t0.5,a0 t0.4,a0.1 t0.3,a0.2 t0.2,a0.3 

Time 
(/TVPR) CW* 

ex5p 8.02 179 22 -5.20% -4.20% -6.90% 5.10% 0.30 24 
misex3 7.48 243 19 -0.50% 4.40% 1.10% 9.70% 0.28 20 

alu4 6.84 265 19 3.70% -5.50% -0.80% 12.00% 0.27 19 
des 9.52 372 22 13.60% 0.60% -1.60% 0.80% 0.20 22 
seq 8.10 339 23 3.40% -9.90% -5.40% -1.00% 0.27 23 

apex2 8.91 402 22 -3.20% -4.60% 1.30% -0.20% 0.25 22 
spla 13.60 1122 30 -9.80% -5.70% -6.10% -3.70% 0.23 30 
pdc 15.40 1567 32 0.00% 5.10% 15.30% 2.20% 0.23 32 

ex1010 15.10 1355 22 -12.50% -1.00% 2.20% 2.20% 0.26 22 
tseng 4.77 188 18 7.90% 9.70% 5.40% 9.70% 0.28 18 
diffeq 5.35 288 16 0.60% 6.80% 6.20% 12.50% 0.28 18 
dsip 6.42 291 20 -3.70% -14.90% -0.90% -19.10% 0.40 20 
s298 9.65 348 18 16.10% 5.40% 7.60% -0.70% 0.31 18 

bigkey 5.45 374 19 -3.00% 3.00% -2.10% -7.90% 0.33 19 
elliptic 7.59 1013 23 25.20% 7.20% 15.60% 10.00% 0.28 23 
s38417 5.92 2224 18 3.90% 9.30% 12.70% 20.00% 0.24 18 
Overall 7.66 10570 343 -0.20% -1.10% 0.50% 3.70% 0.28 348 

Avg Imp    -2.37% -2.86% -1.49% -2.04%   
*CW is channel width

TABLE III 
COMPARISON BETWEEN OUR RESULTS OBTAINED WITH UR PPFF AND TVPR 
(TVPR router information used as the average of three circuits in bold face) 

PPFF with delay data for individual circuit 
% delay difference compared to TVPR Circuit 

  t0.5,a0         t0.4,a0.1       t0.3,a0.2       t0.2,a0.3 
Time 
/TVPR CW* 

ex5p -6.40% -10.40% -1.20% 7.20% 0.300 24 
misex3 1.00% 8.20% 4.40% -0.70% 0.278 20 

alu4 1.70% 5.40% 6.60% 12.60% 0.270 19 
des 3.10% 0.60% 0.20% 2.30% 0.255 22 
seq -2.10% -11.40% -1.60% 0.10% 0.273 23 

apex2 -3.40% -3.80% -4.10% -1.10% 0.248 22 
spla 4.90% -8.60% 1.20% -4.40% 0.236 30 
pdc -4.00% 8.00% -3.20% -2.40% 0.234 32 

ex1010 -7.80% -3.30% -1.10% -2.80% 0.257 22 
tseng 10.00% 5.80% 7.40% 8.20% 0.280 18 
diffeq 4.00% 7.10% 6.70% 7.10% 0.279 18 
dsip -18.80% -4.20% -12.60% -17.00% 0.404 20 
s298 10.10% -4.70% 0.20% 0.30% 0.315 18 

bigkey 2.90% -3.40% 1.40% -2.70% 0.331 19 
elliptic 12.20% 30.80% 9.10% 6.90% 0.280 23 
s38417 11.30% 13.50% 9.40% 15.90% 0.240 18 
Overall -0.30% -1.00% 0.80% 1.90% 0.280 348 

*CW is channel width 
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Previous experiments always ran TVPR followed by 
routing analysis and partitioning-based placement for each 
circuit. However, doing so is against our original goal of 
speeding up the placement process. We would like to find out 
whether the routing profile generated from a subset of circuits 
would have the same benefits for all circuits. If the answer to 
this question is positive, then we can run TVPR on only a few 
representative circuits, perform the routing analysis and store 
the results in a table. Then, we can avoid running TVPR 
altogether and use the routing profile information within our 
proposed PPFF flow. The flow of this set of experiments is 
shown in Fig. 14. 

The second experiment is performed by using information 
about the TVPR router analysis as average of three different 
representative circuits, which are shown in bold face in Table 
III. The representative circuits were selected randomly from 

small, medium and large circuits.  
All circuits are placed with our algorithm and successfully 

routed with the TVPR router. It can be seen that the overall 
improvement exhibits the same trend as when the delay data 
of a circuit is used for itself and the best overall delay is 
approximately the same at the same cost function weight 
combinations. It is worth noting here that the parallel 
placement for FPGA can provide practically the same delay 
with a 2.3 fold speedup [3]. However, their experiments were 
done only for the combinational circuits and used many 
processors (our combinational results are better than our 
sequential circuits). 

Since we use the TVPR profiling on a few circuits only, our 
algorithm can be used as a stand-alone placement tool, and 
hence the placement run-time for a larger set of circuits will 
be dramatically decreased. The average runtime is about 0.28 
of that of TVPR or about 3.6 times faster than TVPR. To 
better estimate the speedup, we also performed a regression 
analysis between TVPR’s runtime and our approach. The 
fitting linear curve has a slope of 0.248, which translates to a 
4x speedup. The regression analysis shows that our method 
scales better as circuit sizes increase. Note that our algorithm 
can also be used for multiple placement runs of the same 
circuit for quick solution space exploration. 

However, the benchmark circuits used in this simulation are 
small compared to the commercial circuits. To project the 
speedup that PPFF can obtain for those commercial circuits, 

the trend lines are plotted for both TVPR and PPFF as shown 
in Fig. 15. It can be seen that the order of growth of PPFF is 
smaller than that of TVPR which indicate that PPFF can 
achieve even more speedup for large circuits. 

For some applications in which the quality is not the prime 
objective, we can further achieve more speed up by reducing 
the starting temperature in the low temperature Simulated 
Annealing phase. Fig. 16 shows the percentage delay 
difference when tuning the starting temperature with fixed 
cost function weights as 0.4 for timing and 0.1 for alignment. 
It can be seen that we can achieve 5.5 speedup with no more 
than 4% delay degradation. 

 

C. Determining the Relative Effect of Our Heuristic 
Methods 
As mentioned in Section III.E.2, the routing profiles are 

similar in shape regardless of the placement algorithm used. 
Therefore, it is possible to use the delay which is extracted by 
the circuit placed by PPFF which require less runtime than 
TVPR. To illustrate this idea, we performed an experiment 

following the flow shown in Fig. 17.  
Two sources of delay information are studied: the delay 

information extracted from the PPFF placement method 
(shown in Fig. 14), and the delay information that is used 
inside TVPR. Note that the delay table used inside TVPR does 
not consider net criticalities: only wire length is considered in 
estimating the delay of a net. The experiment is performed by 

using the same channel widths as the ones used in Section 
IV.A and IV.B. When the delay tables of TVPR are used 
during our flow, the post-routing delay degrades by 2.3% on 
average compared to the second column in Table III (t0.4, 
a0.1). The above experiment showed that better delay 
estimations would improve the results of our method.  
    Now we would like to know the effect of each of the two 

Size vs Runtime

y = 0.004x1.5123

y = 0.0031x1.3797

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000

# cells

se
co

nd

Vpr run time
PPFF run time

 
Fig. 15.  Regression analysis of the runtimes. 
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Fig. 16.  % delay difference for difference starting temperature. 
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Fig. 14.  The flow of the second set of experiments. 
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Fig. 17.  The flow to determine the effect of different delay information. 
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major components of our method: alignment and partition 
ordering. The contribution of each component is studied by 
disabling each in turn and comparing the results after routing. 
The channel width used for each circuit in this experiment is 
the same as that used in the experiment shown in Fig. 14, 
hence, fixing one parameter in the design quality metrics 
space to provide a meaningful comparison between different 
methods. The base case in these experiments is the post-
routing delay of the second column of Table III (t0.4, a0.1). 

We used the following methods to test the effectiveness of 
each of our techniques: 
• Alignment: we disable the alignment during partitioning 

based placement, overlap removal, distribution and low 
temperature annealing (see Fig. 2). On average, this 
resulted in 3.4% quality degradation compared to the base 
case. 

• Partition ordering: the best partition order determined by 
the algorithm proposed in Section III.C was replaced by 
random ordering. This resulted in 1.4% average quality 
loss compared to the base case. 

V. CONCLUSIONS 
We presented a partitioning-based timing-driven placement 

algorithm for FPGAs. We achieved almost 4x speedup over 
TVPR, with comparable circuit delays and a penalty of 1.5% 
increase in total channel width. We pointed out the importance 
of analyzing the behavior of the routing algorithm and using 
that model in the placement engine to generate placements 
that conform to routing optimization. We proposed an 
alignment technique, which facillitates placements, which are 
superior to the ones generated by the traditional bounding box 
minimization techniques. When TVPR is augmented with this 
technique, its results improve by 5% with virtually no extra 
runtime. Better placement qualities were achieved by using 
the proposed alignment technique in a partitioning-based 
placer compared to a traditional min-cut partitioning-based 
placer. We also proposed a technique to find the best 
partitioning order among placement regions in order to 
minimize alignment dependency during the integration of the 
terminal alignment into the partitioning based placement,. 

We did not explicitly consider congestion while performing 
alignment, but implicitly reduce congestion by using 
partitioning (minimize cut between partitions, hence reducing 
the number of nets that connect them) and low temperature 
simulated annealing (minimizing wire length implicitly 
reduces congestion). We believe that performing a congestion-
aware alignment can reduce the load of low temperature 
simulated annealing and allow faster convergence to high 
quality placements. 
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