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One of the current main challenges of the FPGA design flow is the long processing time of the placement and routing algorithms. In
this paper, we propose a hybrid parallelization technique of the simulated annealing-based placement algorithm of VPR developed
in the work of Betz and Rose (1997). The proposed technique uses balanced region-based partitioning and multithreading. In the
first step of this approach placement subproblems are created by partitioning and then processed concurrently by multiple worker
threads that are run on multiple cores of the same processor. Our main goal is to investigate the speedup that can be achieved
with this simple approach compared to previous approaches that were based on distributed computing. The new hybrid parallel
placement algorithm achieves an average speedup of 2.5× using four worker threads, while the total wire length and circuit delay
after routing are minimally degraded.

Copyright © 2009 Cristinel Ababei. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In the field programmable gate arrays (FPGAs), design
automation domain, placement, and routing are the most
processing time intensive steps. The processing time problem
has been somewhat alleviated by the advancements in
processor speeds. However, the speedup of classic placement
and routing algorithms obtained by using faster processors
cannot keep pace with the rate at which the FPGA complexity
increases.

The switch to parallel microprocessors represents a
cornerstone in the history of computing [1], and the current
trend is to continuously increase the number of cores per
chip [2–7]. Despite the fact that parallel computing has been
discussed for a long time [8, 9], it is still a challenging
task to find the most appropriate parallelization technique
and application transformation that would maximize the
benefit of parallelism. Concurrency is now a pervasive topic
[10] and one of the problems of parallel computing is that
there are too many solutions [11]. In the FPGA domain,
distributed computing and multithreading have been used
as parallelization techniques for achieving efficiency. While
our primary goal in this paper is to develop an efficient and
practical hybrid parallel implementation of the simulated

annealing placement algorithm of VPR [12], we also hope
that our study will contribute toward a better understanding
of the general question of which parallelization technique
suits best certain placement or routing algorithms.

In the next two sections we discuss related previous
work and outline our main contribution. Then, we present
details of the proposed parallel implementation, which is
based on mincut partitioning and multithreading. Finally,
we will present our experimental results, discussions, and
conclusions.

2. Related Work

There have been considerable efforts to develop parallel
implementations of placement algorithms in the FPGA
and VLSI domains. Routing algorithms have received less
attention partly due to the fact that routing has been
taking less computational time and partly due to the fact
that routing is a more complex step from a parallelization
perspective. Traditionally, simulated annealing (SA) has been
one of the most popular placement approaches in the FPGA
domain. Hence, most of the previous work has focused on
parallelization techniques for SA.
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From an algorithmic point of view, previous work
techniques can be classified into move acceleration [13, 14]
and parallel moves based [15–17] solutions. The parallel
moves approaches include: (i) techniques using one copy of
the main placement problem, (ii) techniques using multiple
copies of the main placement problem, and (iii) techniques
using placement subproblems of the main placement. The
main limitations of these approaches are the degradation of
the solution quality and the memory usage increase due to
duplication of the database, which may lead to slowdowns. A
remarkable characteristic of the techniques proposed in [14]
is that serial equivalence is preserved (the parallel version of
the algorithm gives the same result as the sequential version
of it), which can be very useful for debugging and replication
purposes.

Based on the parallel computing paradigm that is
employed for parallelization, previous approaches in the
FPGA domain can be classified into distributed comput-
ing [18, 19] and multithreading-based [14, 20] solutions.
The distributed approach has the disadvantage of slower
interprocessor communication, which can diminish the
benefits of parallelization, especially for situations with
significant and high-frequency intertask communication.
Multithreading is using a different programming approach
[21] that exploits concurrency offered by processors with
multicores [2–7]. It needs only a multicore processor, which
is readily available today and cheaper than a network
of processors. Moreover, because all communications are
within the same processor chip—via shared variables—
multithreading is capable of achieving better speedups
compared to those of distributed computing that can suffer
from network delays. Multithreading is simple and offers
an alternative implementation that complements previously
proposed distributed implementations. That is, one can
design a combined parallel implementation using distributed
networked multicore processors, which can locally run
multithreaded tasks to achieve further speedups. Distributed
computing is now a more mature field [22] and has been
extensively researched and used in many applications [23,
24]. Multithreading has been used also in applications such
as circuit and transient simulation [25, 26].

There have been also efforts to parallelize non-SA-based
placement algorithms. A parallel version of an analytical
placement algorithm for FPGAs is presented in [18, 19] and
is based on the negotiation paradigm. Other standard-cell
parallel algorithms are reported in [27–30].

3. Contribution

In this paper, we use mincut partitioning and multithreading
for speeding up the simulated annealing placement algo-
rithm of VPR [12]. Our solution can be classified as a
technique in the (iii) category (using placement region-based
subproblems) discussed in the previous section. The main
difference (apart from using multithreading) between our
implementation and previous region-based parallel solutions
[16] is the fast mincut balanced partitioning that we use.
This minimizes the number of nets with terminals in

different partitions, and therefore, minimizes the amount
of dependencies between tasks. This allows us to process
tasks concurrently and independently from each other. As a
result, the final quality degradation is minimal with a better
overall speedup. Our main goal is to analyze how much
speedup can be achieved using this technique, which requires
minimal change to the code base of the sequential algorithm.
Legacy algorithm implementations may be very complex,
and thus, parallelization approaches that minimally modify
them are desirable. Our implementation is the first one, in
its category, to achieve better speedup using four threads,
with less quality degradation. Our algorithm is intended to
provide an alternative rather than a replacement to previous
approaches. To this end, the main contribution of this paper
is as follows.

(i) We propose a hybrid parallelization technique based
on mincut partitioning and multithreading. We use
hMetis [31], one of the best publicly available par-
titioning tools, to divide the main placement prob-
lem into tasks processed concurrently by different
threads. This approach leads to better speedups with
minimal degradation of the solution quality.

(ii) We are the first to report results for the largest new
benchmarks of the latest VPR 5.0 package [32].

Preliminary results of this work were reported in a poster
[20]. Here, we provide the details of our implementation and
report additional results on larger test cases.

4. Mincut Partitioning and Multithreading-
Based Parallel Placement

First, we review the classic simulated annealing-based place-
ment for island-style FPGAs. This will help us to better
introduce our ideas later in the paper.

4.1. Classic Simulated Annealing-Based Placement. The clas-
sic simulated annealing algorithm [33] was motivated by an
analogy to annealing in solids. This algorithm simulates the
cooling process by gradually lowering the temperature of the
system until it converges to a steady, frozen state. The major
advantage of SA is the ability to avoid being trapped at local
minima. It employs a random search, which accepts not only
changes that decrease the objective function but also some
changes that increase it.

Simulated annealing has been applied successfully to
the placement of both VLSI and FPGA circuits [12, 34].
In both cases, the solution space exploration—going from
one feasible solution to another—is achieved by performing
moves. A move typically means swapping two cells or
relocating only one cell. These moves are accepted with
decreasing probability as the temperature is decreased grad-
ually (Figure 1). During placement for island-style FPGAs,
combinational logic blocks (CLBs) are swapped to explore
new solutions. These swaps are restricted within a distance
rlim between blocks. The control parameter rlim is decreased
during the annealing process from a maximum value to
the minimum of 1. This way blocks that are located as far
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Figure 1: Block diagram of the classic simulated annealing (SA).
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Figure 2: Illustration of how rlim controls moves inside the
SA-based placement algorithm of VPR [12]. Initially, at high
temperatures, blocks far away from each other can be easily
swapped. Finally, at low temperatures, only blocks close to each
other can be swapped.

as the entire chip width or height from each other can be
swapped at the beginning of the algorithm, while toward the
end of the algorithm only adjacent blocks can be swapped
(Figure 2).

4.2. Parallel Simulated Annealing Placement. In this section
we describe our new multithreading-based parallelization
technique. The pseudocode of our algorithm is presented
in Algorithm 1. The main placement problem is decom-
posed into multiple balanced regions using multilevel 4-way
partitioning. These regions form tasks that are placed into
a common queue. Then, the worker threads process these
tasks in parallel and independently. The solution of each
task is placed back into the corresponding task object from
the queue. These results are then read in and assembled
by the main manager run on the main thread. Finally, the
top-level solution is further improved by an ultrafast low-
temperature annealing refinement step. We use multilevel 4-
way partitioning for its simplicity and because it helps in
achieving balanced tasks as subproblems that resemble the
original top-level problem. This allows us to reuse the same
sequential annealing function for tasks processing. Next, we
describe in more details the main steps of our technique.

Step 1 (Partitioning of the FPGA Chip Into Balanced
Partitions). First, we perform multilevel 4-way partitioning
of the top-level circuit netlist using hMetis [31]. This step

Partitioning and Multithreading-based Placement() {
(i) Step 1: Main thread

Multi level 4-way partitioning into subchips
Subchips added to queue of tasks

(ii) Step 2: Worker threads
Process tasks concurrently until queue becomes empty

(iii) Step 3: Main thread
Ultra fast top-level low temperature SA refinement

}

Algorithm 1: Pseudocode of the proposed multithreading-based
parallelization algorithm.

Initial netlist

Fixed IO pins Level 1 placement sub-problem

Level 1 4-way partitioning
into four sub-netlists

16 tasks processed by 4 threads
of different colors

Level 2 4-way partitioning
into sixteen sub-netlists

T1 T2 T3 T4

T5 T6 T7 T8

T9 T10 T11 T12

T13 T14 T15 T16

Figure 3: Illustration of Step 1. The FPGA is decomposed into
multiple balanced regions using multilevel 4-way partitioning.
These regions represent tasks to be processed concurrently.

is illustrated in Figure 3. Each partition is used to construct
a smaller placement subproblem (that is a task), which has
input/output (IO) pins of the top-level initial placement
as well as new IO pins that account for nets which cross
the partition boundaries. These nets represent the nets
cut during the partitioning process and have terminals
located in two or more different partitions. The IO pins of
the top-level initial netlist are assigned fixed locations by
VPR automatically, and they represent fixed nodes of the
associated graph partitioned by the mincut hMetis. The new
IO pins will represent fixed anchors (during the placement in
Step 2) at the boundaries of the new placement subproblems
(see right-bottom part of Figure 4). This is similar to the
terminal propagation technique in standard-cell placement
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Figure 4: Subchip new IO pins are created during partitioning.
They will act as fixed anchors during the parallel placement of all
subchips.

algorithms [35]. The location of these fixed anchors will
be established on the fly as each subnetlist will be initially
randomly placed in the corresponding region of the FPGA.
For example, after the level 1 4-way partitioning, a net
with terminals in the upper left and right partitions will
have an anchor on the vertical partitioning boundary. The
location of the anchor is the closest to the center of gravity
of the net. If the net has terminals in diagonally opposite
partitions, then the anchor will be located at the center.
This is illustrated in Figure 4, where, for example, the net
N1 is split by the partitioning process into two subnets N11

and N12, representing new local nets for the corresponding
placement subproblems. In our experiments we also tried
using floating anchors but the final quality of results was
worse. We suspect that fixing the anchor points leads to
better results because anchors act as attractors for terminals
of the same net from different partitions to the same fixed
locations. In this way, the bounding box of the top-level net
will be smaller at the end of Step 2.

The use of hMetis partitioning algorithm provides a
minimum number of cut nets, which translates into a
reduced number of anchor points. The main benefit of this
approach is that it minimizes the required synchronization
between tasks and allows the threads to be run independently
with a minimal negative impact on the final quality of results.
The number of partitioning levels is determined by the size of
the FPGA as well as the number of available worker threads
to be run on different cores. If the multicore processor has,
for example, four cores, then four independent worker treads
can be launched and used to process concurrently four tasks.
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T2 T5 T11T14

T1 T6 T12T13
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Figure 5: Illustration of Step 2. Sixteen tasks are processed
concurrently by four worker threads (see also Figure 3). This step
exploits parallelism to achieve overall speedup.

In this case, for the example shown in Figure 3, each of the
four threads will end up processing four tasks. However,
increasing the number of partitions beyond the number
of available cores may improve the load balancing among
threads but will also result in lower quality of results due
to the smaller areas in which simulated annealing will be
restricted to in each task. This partitioning step is performed
by the main thread, which is also responsible for the creation
and launching of the worker threads, using a manager-
worker multithreading strategy described in detail in [21,
36]. Because hMetis is very fast, the processing time of this
step is usually less than 1% of the processing time of the
sequential VPR placement tool.

Step 2 (Multithreading-Based Parallel Placement). The result
of the previous step is a list of tasks stored in a queue
data structure, where each task represents a placement
subproblem corresponding to a different region of the
initial top-level FPGA. Note that the task objects stored in
this queue represent the so-called shared variables in the
commonly used terminologies in [21, 36]. In the second
step of our technique, the worker threads pickout and
process these tasks concurrently until all tasks are exhausted.
Every worker thread performs the SA annealing described in
Figure 1, but this time on placement subproblems of smaller
size than the size of the initial top-level FPGA placement.
The result of each thread is deposited back in the task object,
which is marked as placed. It is this step where parallelism
by multithreading is exploited. This step is illustrated in
Figure 5. In our implementation, during this step the main
thread also retrieves the placement result from each task
that is marked as being finished. The result of each task
is copied to the top-level data structure that represents the
top-level FPGA placement. That is, the location of each block
from each placement subproblem is mapped back onto the
corresponding location on the main initial top-level FPGA chip.
In our experiments, the processing time of this step is usually
25% of the processing time of the sequential VPR placement
tool.



International Journal of Reconfigurable Computing 5

Step 3 (Low-Temperature SA Refinement). In the last step
of our technique, the main thread runs the ultrafast low-
temperature simulated annealing. The fast cooling scheme
is realized by starting with a low initial temperature of 0.1
found by a set of calibration experiments over a set of
representative test cases. This initial temperature offered a
good tradeoff between speedup and degradation of solution
quality. The cooling scheme is also controlled by the rlim
parameter (see Figure 2). The cooling rate and the number
of inner loop iterations are determined inside the modified
algorithm similarly to the original VPR tool. The purpose
of this sequential refinement step is to further improve the
solution quality by correcting the moves that could not
be explored during Step 2. These moves are restricted and
involve mostly blocks located alongside the partition bound-
aries. During this step, nets that had terminals in different
partitions will have their bounding boxes minimized (see
left-bottom part of Figure 4).

5. Experimental Results

We implemented our technique using C++ by changing the
VPR code base, which can be downloaded from [37]. We
used the hMetis partitioning tool that can be downloaded
from [38]. The modified VPR tool with our implementation
can be downloaded from [39]. We introduced a new option
called -mt place [int] which can be used in order to run our
parallel implementation of the placement algorithm. [int]
specifies the desired number of worker threads to be created
and used (its default value is equal to the number of cores
detected on the current processor). The other options of
the modified tool are the same as those of the original VPR
tool. All experiments were performed using the VPR option
of fixed IO pins. All our experiments were performed on a
Linux machine running on an 2.4 GHz Intel Quad processor
and 2GB memory.

5.1. VPR 4.3 and VPR 5.0 Test Cases. In this section we
present experimental results obtained using our modified
parallel VPR tool versus the standard sequential VPR for
all twenty test cases of VPR 4.3 [37] as well as for the
largest eleven benchmarks included in the latest VPR 5.0
package [32]. The FPGA architecture that we used is arch4
of the VPR package, which is used by the majority of
previous works. It contains a mix of wire segments of
length one, two, six, and chip-width long wires. We ran
our parallel VPR placement algorithm using four threads
because our processor is an Intel Quad with four cores.
Because of that and because the test cases are not too big
and partitions obtained with hMetis are very well balanced
we used only level one 4-way partitioning. The flow diagram
of our experimental setup is shown in Figure 6. Each test
case is basically processed using two different design flows.
In the first design flow, each test case is placed using the
proposed parallel VPR placement algorithm and then routed
using the timing-driven sequential VPR routing tool. In
the second design flow, each test case is placed using the
standard sequential VPR placement algorithm and then also

Testcase

Standard VPR route

Place CPU, WL

Route WL, delay

Design
flow 1

Design
flow 2

New parallel
VPR place

Standard sequential
VPR place

Figure 6: The flow diagram of the experimental setup with two
design flows: first design flow uses the proposed parallel VPR
placement algorithm and the second design flow uses the standard
sequential VPR placement algorithm.

routed using the timing-driven sequential VPR routing tool.
During each flow, we record the CPU runtime (processing
time) and the wire length (WL) after the placement step
and the wire length and the circuit delay after the routing
step.

In order to have a better confidence in our results, all test
cases are run four times corresponding to four different seeds
of the random number generator (the seed value can be set
using the available VPR options). The results are presented
in Table 1 and are reported based on the averages of the four
different runs. Due to space limitations, we report in Table 1
only the results obtained using the first design flow (uses the
proposed parallel VPR) and the improvement in runtime or
degradation in terms of place WL, route WL, and route delay
compared to the results obtained using the second design
flow (uses the sequential parallel VPR). Because we do four
different runs for each test case in both design flows, we
also report the standard deviations (as percentage % of the
corresponding mean) of the placement CPU, place WL, route
WL, and route delay.

We observe that our new parallel VPR tool achieves
an average speedup of 2.51×. The last three columns,
under the label Degradation [%], report the degradation
(as percentages) of the WL after placement and WL and
circuit delay after routing. Note that in several cases the
results obtained using the proposed parallel VPR are actually
improved. In such cases, the results are reported as negative
percentages in Table 1. It can be noticed that the wire length
after placement degraded on average with 2.89%, which
translated into 2.36% degradation of the wire length and
3.2% circuit delay degradation after routing. The routing
algorithm runtime remained the same.

We note an interesting trend: the speedup for individual
test cases tends to increase proportionally with the circuit
size. This is illustrated in Figure 7, which shows the speedup
for all the test cases from Table 1. In this figure, the x-axis
represents all the test cases ordered in nondecreasing order
of the number of CLBs (i.e., circuit size).

5.2. Discussion. While the idea of region-based partitioning
as a parallelization technique is not new, the merit of
our paper consists in the improved speedup and smaller
degradation of the quality of results. In this paper, we
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Table 1: Comparison of sequential and parallel VPR placement algorithms. Negative numbers from the last three columns signify actual
improvements and not degradations. The first twenty test cases are VPR 4.3 test cases and the remaining eleven test cases are VPR 5.0 test
cases.

Design flow 1: parallel VPR place + sequential VPR route Improvement [×] Degradation [%]

Test No. Place CPU Place WL/Std. Route WL/Std. Route delay/Std.
Place CPU Place WL Route WL

Route

case CLBs [s] dev [%] dev [%] dev [%] delay

ex5p 1064 16.80 178/1.22% 36723/1.47% 85.48/9.24% 1.82× 3.36 1.72 9.48

apex4 1262 16.40 186/0.38% 42108/0.58% 78.81/5.74% 2.16× 1.10 −0.06 −5.52

dsip 1370 18.60 308/1.14% 44111/1.36% 47.95/8.73% 2.44× 1.81 0.53 −2.29

misex3 1397 18.40 197/2.25% 44197/0.95% 78.56/11.73% 2.17× 2.47 0.66 3.81

tseng 1407 12.60 122/1.14% 22157/0.66% 54.42/8.74% 2.52× 3.58 2.38 3.15

diffeq 1497 19.00 175/2.7% 33446/2.07% 59.85/8.12% 2.51× 4.68 3.58 0.74

alu4 1522 19.20 199/0.93% 40366/1.36% 83.52/4.99% 2.24× 3.24 2.48 9.94

des 1591 24.40 399/1.06% 78897/0.36% 93.07/4.83% 2.50× 3.03 1.01 −1.75

bigkey 1707 24.00 317/0.59% 53433/0.9% 54.74/7.56% 2.53× 1.62 2.47 −16.23

seq 1750 24.60 275/1.58% 59280/1.66% 81.97/8.01% 2.31× 4.22 2.32 3.51

apex2 1878 27.40 288/0.69% 65697/2.53% 87.90/6.79% 2.26× 4.81 2.84 −2.55

s298 1931 20.80 209/1.69% 43746/1.61% 125.23/2.3% 2.63× 2.12 0.39 −0.11

frisc 3556 65.00 602/1.65% 120264/1.27% 116.50/4.44% 2.46× 9.09 5.08 5.87

elliptic 3604 63.60 580/1.03% 109437/0.66% 123.83/9.1% 2.47× 7.53 4.85 17.18

spla 3690 66.40 667/0.62% 159518/0.92% 126.43/6.1% 2.54× 5.88 2.68 −0.03

pdc 4575 88.20 942/1.12% 213418/1.3% 161.77/5.84% 2.54× 3.96 1.41 5.15

ex1010 4598 79.60 674/1.33% 144458/2.62% 140.44/6.79% 2.77× 2.03 1.85 11.76

s38417 6406 115.00 724/1.08% 138241/1.11% 73.59/3.4% 3.07× 2.76 1.73 −13.82

s38584 6447 119.60 824/1.1% 131252/1.75% 79.90/6.07% 2.99× 2.35 3.09 2.41

clma 8383 171.20 1535/0.91% 313180/0.91% 142.96/5.46% 3.02× 4.21 2.72 12.31

c1 3439 74.00 471/2.21% 103934/0.85% 161.98/2.62% 1.99× 4.07 5.66 1.67

c2 3831 88.00 572/1.61% 101830/1.21% 82.63/5.47% 2.21× 0.83 −0.59 6.56

c3 3876 85.67 557/2.18% 105189/0.2% 182.66/3.31% 2.11× 7.35 4.72 −13.02

c4 4859 104.00 600/1.18% 124975/0.84% 331.19/11.73% 2.32× 4.09 1.89 8.24

c5 5013 113.33 667/1.19% 134341/0.33% 331.33/4.65% 2.30× 2.31 1.15 −2.96

c6 6580 164.00 808/2.7% 148621/2.87% 58.70/12.1% 2.17× 2.54 2.67 9.34

c7 9467 254.33 1326/0.52% 256394/0.48% 189.56/9.87% 2.56× 6.48 4.21 18.33

c8 10099 255.00 1778/1.2% 355124/1.5% 341.11/4.2% 2.51× 7.64 3.40 1.86

c9 20326 720.33 2856/1.18% 569767/1.37% 295.46/0.33% 2.62× 1.85 2.99 5.00

c10 59917 4028.50 5032/1.68% 1152403/1.31% 157.45/7.12% 3.45× −22.00 1.04 18.86

c11 63722 4360.00 9095/2.5% 1650583/1.57% 372.38/3.47% 3.48× 0.51 2.37 2.44

Avg.: 2.51× 2.89% 2.36% 3.2%

investigated the speedup achieved using mincut partitioning
as opposed to direct partitioning into vertical and horizontal
strips [16]. Moreover, our implementation is based on
multithreading and run on the same chip rather than
on distributed processors in a shared memory network
architecture [16]. Our approach offers a better speedup
and smaller quality degradation than previous region-based
parallelization attempts. Because of the slight WL and delay
degradation, our new modified VPR placement tool is
intended to be used primarily for faster and better area and
wire length estimations or as a faster placement solution
when users are willing to sacrifice performance for runtime,
as suggested in [40] and as demonstrated in Figure 8. In this
figure, we plot the normalized wire length-runtime envelope

curves for the old sequential and our new parallel VPR
placement tools. Normalization is done with respect to the
best sequential VPR wire length result, while runtime is
controlled via the number of moves performed inside the
inner loop of the annealing engine. Both curves contain five
data points. The right most data point corresponds to the
default states of the sequential and parallel VPR tools. The
remaining data points, moving from right to left on both
curves, are obtained by limiting the number of inner loop
iterations to a fraction of only 0.5, 0.1, 0.05, and 0.001 of
the number of inner loop iterations of the default state. We
observe that the new modified VPR placement tool achieves
better quality for a given runtime budget, and therefore, can
offer more accurate and efficient estimations.
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Table 2: Qualitative comparison of the proposed parallel VPR placement algorithm against previously proposed parallel placement
algorithms from the FPGA domain. NA stands for not available.

Type of Speedup Number Solution No. Parallelization Amount

algorithm [×] of cores/ degradation test cases approach of code Domain Availability

machines [%] tested change

This work Region-based SA 2.5× 4 WL: 2.36% 31 Multithreading Medium FPGA Public

Delay: 3.2%

Ludwin et al.
[14]

Move accel. SA 2.2× 4 WL: 0.0% 8 Multithreading Large FPGA Commercial ‘08

Haldar et al.
[16]

Region-based SA 1–1.5× 2–6 WL: 7%–18% 5 Distributed Medium FPGA NA ‘00

Haldar et al.
[16]

Markov chain SA 1.2–4.0× 2–6 WL: 7%–40% 5 Distributed Large FPGA NA ‘00

Chan and
Schlag [18]

Analytical 2× 3 Delay: 1% 10 Distributed Large FPGA NA ‘07
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The quality of the final placement at the end of the
ultrafast low-temperature SA depends not only on the initial
temperature, the maximum distance between swapped cells
(i.e., rlim), and the total number of moves attempted during
the inner loop but also on the quality of the starting
placement. The placement achieved using the combination
of hMetis mincut partitioning and simulated annealing of

placement subproblems represents a high-quality starting
placement for the last ultrafast low-temperature SA step. It is
this combination of techniques that leads to better speedup
and smaller degradation in the quality of results compared to
previous similar approaches.

Our current parallel implementation is applied only to
the wire length/congestion driven VPR placement algorithm.
We are currently working on the timing-driven placement
algorithm, which is more challenging because timing critical
paths can span multiple partitions and requires synchro-
nization between worker threads or between worker threads
and the main thread in order to maintain an accurate top-
level circuit delay information during the parallel processing
of tasks. This additional required communication has a
negative impact on the achievable speedup.

5.3. Related Work. In this section, we compare qualita-
tively the proposed parallel VPR placement algorithm with
previous parallel implementations of placement algorithms
from the FPGA domain. We cannot do a direct comparison
because none of the previous implementations is publicly
available. Nevertheless, because the main figures of merit
for evaluation of a given parallel algorithm are the speedup
and the degradation of the solution quality (compared to
the sequential counterpart), which typically are reported as
averages for a variety of test cases, a qualitative comparison
is still possible. This comparison is presented in Table 2.
We note that, among the simulated annealing-(SA) based
approaches, the proposed parallel VPR placement achieves
the best speedup of 2.5× on four cores. However, the
proposed algorithm degrades the solution quality with
2.36% compared to the move acceleration-based SA from
[14], which, however, is not as scalable, suffers from memory
inefficiency, and requires considerable code change to the
sequential algorithm. Among the implementations that use
distributed computing as the parallelization paradigm, the
analytical (not simulated annealing) placement from [18]
offers one of the best speedup-solution degradation product.
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6. Conclusion

In this paper, we implemented and studied a new par-
allelization technique for the simulated annealing-based
FPGA placement algorithm of VPR. It is a hybrid technique
that uses mincut partitioning and multithreading. The new
parallel VPR placement tool achieves an average speedup of
2.5× using four threads on a four-core processor, while the
total wire length and delay are degraded with about 3%.
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