
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2010, Article ID 603059, 12 pages
doi:10.1155/2010/603059

Research Article

3D Network-on-Chip Architectures Using Homogeneous
Meshes and Heterogeneous Floorplans

Vitor de Paulo and Cristinel Ababei

Electrical and Computer Engineering Department, North Dakota State University, Fargo, ND 58108-6050, USA

Correspondence should be addressed to Cristinel Ababei, cristinel.ababei@ndsu.edu

Received 19 February 2010; Accepted 25 August 2010

Academic Editor: Lionel Torres

Copyright © 2010 V. de Paulo and C. Ababei. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We propose new 3D 2-layer and 3-layer NoC architectures that utilize homogeneous regular mesh networks on a separate layer and
one or two heterogeneous floorplanning layers. These architectures combine the benefits of compact heterogeneous floorplans and
of regular mesh networks. To demonstrate these benefits, a design methodology that integrates floorplanning, routers assignment,
and cycle-accurate NoC simulation is proposed. The implementation of the NoC on a separate layer offers an additional area
that may be utilized to improve the network performance by increasing the number of virtual channels, buffers size, or mesh
size. Experimental results show that increasing the number of virtual channels rather than the buffers size has a higher impact
on network performance. Increasing the mesh size can significantly improve the network performance under the assumption that
the clock frequency is given by the length of the physical links. In addition, the 3-layer architecture can offer significantly better
network performance compared to the 2-layer architecture.

1. Introduction

3D integration is emerging as an attractive solution to the
problem of increasing global interconnect delay of integrated
systems [1–4]. The main advantage of 3D integration
technologies is that the footprint area of the chip is smaller
compared to the 2D case. Therefore, because the connections
between device layers can be realized by short and reduced
delay through silicon vias (TSVs), the average interconnect
delay is significantly shorter. However, 3D integration tech-
nologies face challenges related to thermal issues.

Network-on-Chip (NoC) represents a new design
paradigm for increasingly complex Systems-on-Chip (SoC),
and since the idea of routing packets instead of wires was
proposed [5–7], it has grown into a rich research topic [8–
10]. The NoC concept replaces design-specific global on-
chip wires with a generic on-chip interconnection network
realized by specialized routers that connect generic pro-
cessing elements (PE)—such as processors, ASICs, FPGAs,
memories, and so forth—to the network and facilitate
communications or links between them. The benefits of the
NoC based SoC-design include scalability, predictability, and

higher bandwidth with support for concurrent communica-
tions.

The scalability and predictability of NoCs enable design-
ers to design increasingly complex systems, with large
numbers of IP/cores and lower communication latencies for
many applications. In such scenarios, where flexibility and
predictability are primary concerns, homogeneous regular
networks (see Figure 1(a)) are preferred. However, homo-
geneous NoC topologies have limitations in that commu-
nication locality is poorly supported, and the utilization of
network resources is low. Moreover, designs with IP/cores
with different sizes are not well suited to implementations
based on regular mesh NoC topologies. Therefore, when
area and performance are more important, application-
specific heterogeneous irregular networks (see Figure 1(b))
are preferred. However, the design of these networks is more
difficult and specialized routing algorithms are necessary to
prevent deadlock.

Most of the previous works assumed equal area for all
tiles. This assumption simplifies the design process due to the
regularity of the mesh NoC topologies. However, assuming
tiles with equal area in cases where IP/cores have different



2 International Journal of Reconfigurable Computing

PE

R

R

outer Link Tile
Processing element

(a) (b)

Figure 1: (a) 2D homogeneous NoC design. A tile is composed of a router (R) and a generic processing element (PE). A PE can implement
any IP/core of a given application. Routers are interconnected via physical links. (b) Custom heterogeneous NoC design.

sizes is unrealistic. To address this problem for systems with
heterogeneous floorplans and to exploit the benefits of 3D
integration, in this paper, we propose new 3D NoC archi-
tectures. The proposed architectures utilize homogeneous
networks on a separate layer and heterogeneous floorplans
on different layers. Our objective is to combine the benefits
of compact heterogeneous floorplans with those of regular
homogeneous mesh networks.

2. Related Work

In this section, we discuss recent works on 3D NoCs and
studies that utilize floorplanning information during the
design and optimization of NoCs. The reader is referred
to [11, 12] for recent surveys of NoCs. Nanophotonic and
wireless NoCs have also been recently proposed as alternative
solutions to 2D architectures. However, they pose several
issues including scaling and integration of photonic devices
and power dissipation of mm-wave transceivers [13].

Performance benefits of 3D NoC topologies were inves-
tigated analytically in [14] and experimentally in [15]. The
transition from 2D to 3D NoC architectures is done by
equally distributing tiles onto the device layers of the 3D
architecture in [16, 17]. A different approach is to reduce
the footprint of each tile by implementing the processing
element and the router in a distributed fashion across layers
[18]. By leveraging long wires to connect remote intralayer
nodes, a low-diameter 3D network is studied in [19].
Efficient application-specific 3D NoC topology synthesis
algorithms are studied in [20]. A novel layer-multiplexed
3D network architecture with vertical demultiplexing and
multiplexing links is proposed in [21]. The scalability of 3D
NoCs in terms of throughput, latency, and area overhead
is studied in [22]. The per-flow worst-case communication
performance in 2D and 3D regular mesh NoCs with four
layers is investigated in [23]. The first demonstration of
a fabricated 3D NoC is reported in [24]. Previous works
focused on homogeneous regular NoCs and floorplans where
all PEs have equal size. In this paper, the proposed archi-
tectures provide a design solution to applications where PEs
are heterogeneous with different sizes. Hence, the proposed

3D NoC architectures represent an alternative solution to
heterogeneous irregular NoC topologies.

Floorplanning information is used in the area-wirelength
calculations from [25, 26] or during mapping [27]. A
floorplanner is used to compute links power consumption
and to detect timing violations in application-specific NoCs
in [28]. The NoC synthesis approach from [28] was extended
to designing custom 3D network topologies in [29]. Slicing
floorplanning is used in the design methods for custom
NoC topology synthesis studied in [30–32]. Frequently
communicating modules are placed next to each other
using a floorplanner in the network synthesis heuristic
studied in [33]. A physical planner is used in [34] during
topology design to reduce power consumption on wires.
Previous works use floorplanning either for wirelength and
power estimations or to find a single placement, which then
remains fixed throughout the topology synthesis process.
However, other floorplanning solutions may represent better
starting placements for the synthesis process. To address this
problem, the methodology proposed in this paper explores
multiple floorplans to increase the chance of finding the
optimal initial placement.

3. Contribution

In this paper, we propose novel 3D NoC architectures and
implement an automated design space-exploration tool. Our
main contribution can be summarized as follows.

(i) We propose and study two 3D NoC architectures (2-
layer and 3-layer architectures) that utilize a homoge-
neous network on a separate layer and heterogeneous
floorplans on different layers. In this way, the network
regularity is maintained for flexibility and delay
predictability while the IP/cores can have arbitrary
sizes. This approach avoids design difficulties due to
IP/core size irregularities that are typically addressed
by specialized routing algorithms [35].

(ii) For the 2-layer architecture, we propose the use of a
floorplanning and routers assignment-based design
methodology for the placement of IP/cores on the



International Journal of Reconfigurable Computing 3

first layer and the minimization of their connections
to the NoC routers located on the second layer.
In the case of the 3-layer architecture, the design
methodology also includes a partitioning step. The
floorplanning of the two partitions on layers 1 and 3
is done using a newly modified floorplanner capable
of handling vertical constraints. One advantage of
the separation between IP/cores and network is that
once the best floorplan is found, one can focus on
improving the system performance by focusing on
the network. The second layer has an additional
available area that may be utilized to increase the
number of routers or their complexity (e.g., increase
the number of virtual channels and/or the buffers
size). In addition, network interfaces (NIs), which are
important components of NoC-based systems, also
may be placed on the second layer, thereby reducing
the footprint area of the floorplanning layers.

(iii) We implemented a versatile software framework
to investigate the benefits of the proposed 3D
architectures. It integrates an efficient B∗Tree-based
floorplanner with a cycle-accurate NoC simulator for
maximum confidence in the experimental results.

Preliminary results on the 2-layer NoC architecture were
reported in [36]. In this paper, we also propose the second
3-layer NoC architecture that aims at further reducing the
footprint area of the chip and at improving the average
flit latency. Due to the differences from the first proposed
architecture, we also modify the design methodology by
introducing an additional partitioning step and enhancing
the floorplanning algorithm to handle vertical constraints.

4. 3D Architectures

4.1. 2-Layer Architecture. The 2-layer architecture has two
device layers. The first layer is used entirely for the heteroge-
neous irregular IP/cores, while the second layer is dedicated
to the homogeneous regular NoC (see Figure 2(b)). This
approach simplifies the design process in that it separates
the floorplanning optimization from the network topology
synthesis. The goal of the floorplanning step is to find the
best floorplan with minimal white space. The second device
layer accommodates the regular mesh network. In this way,
the network regularity is maintained for flexibility and delay
predictability, while the IP/cores can have arbitrary sizes. In
addition, a simple packet routing algorithm can be used such
as the deterministic XY routing.

4.2. 3-Layer Architecture. The 3-layer architecture has three
device layers. The second layer is again dedicated to
implementing the NoC, while layers 1 and 3 are used for
IP/cores placement (see Figure 2(c)). This architecture aims
at reducing the footprint area of the chip, which in turn
leads to shorter physical links, hence improving the network
performance (overall average flit latency). In both proposed
architectures, the vertical connections between IP/cores and
their assigned routers are realized using through silicon vias

1 2
3

4
56

7 8 9

(a) Floorplan

Layer 2
homogeneous

Layer 1
heterogeneous

(b) 2-layer architecture

1’ 2’
3’

4’
5’

7’ 8’ 9’

(d) 2D

Layer 3
Layer 2
Layer 1

(c) 3-layer architecture

6’

Figure 2: (a) Initial floorplan with no routers. (b) 2-layer archi-
tecture. (c) 3-layer architecture. (d) 2D implementation with each
IP/core inflated to account for area required by network interfaces,
routers and wires for physical links.

(TSV). Routers connected to IP/cores have five ports, while
the rest of the routers have only four ports.

One advantage of the proposed 3D NoC architectures
is that the 3D fabrication will be simpler compared to
3D architectures with more than three layers [17], as
the misalignment is only between two or three layers. In
addition, the thermal management of fewer layers also will
be simpler. Moreover, the extra space available on the second
layer may be used to increase the number of routers or
their complexity. The additional area may be utilized to
implement fault/error tolerance techniques such as error-
correcting codes to address crosstalk issues or could be
allocated to additional wires to increase the bandwidth of
physical links and therefore improve the overall network per-
formance. Alternatively, the extra area also may be utilized
to implement thermal monitoring and management schemes
[37], to implement buffers for pipelining the physical links,
or to incorporate reconfigurability capabilities [38].

5. Proposed Design Methodology

The proposed design methodology is presented in Figure 3.
The input to the design flow is the application represented
as a communication task graph (CTG) whose tasks have
been mapped to floating IP/cores using existing mapping
algorithms [39]. By floating it is meant that the location of
these tasks is yet to be determined during the floorplanning
step. In addition, the user can specify several control
parameters including the number of different floorplans to
be explored N , the number of best floorplans M recorded
in the best M list and evaluated later using the integrated
cycle-accurate simulator and the mesh size R × R. The main
steps of the proposed design methodology are described in
the following sections.



4 International Journal of Reconfigurable Computing

5.1. Partitioning of the CTG. This step is done only for the
3-layer architecture. Because in this case, the IP/cores are
placed on two layers (1 and 3), we first partition the CTG
of each application into two subgraphs (see Figure 4), which
will be placed by the floorplanner in the next step. The
bipartitioning is done such that the total area of the cores
in each partition is balanced while the number of arcs (an
arc represents a source-destination communication pair in
the communication task graph) cut is minimized. The two
partitions have to be balanced to minimize the footprint area
of the 3D chip, which will be determined by the maximum
area of the accumulated area of the blocks in each partition.
The minimization of the cut size between the two partitions
has as a result that highly connected cores are placed on the
same layer. This, as observed in our experiments, helps these
cores to be floorplanned closer to each other, which in turn
leads to better overall latencies.

For this step, we use the well-known hMetis partitioner
[40, 41]. hMetis is a multilevel move-based partitioner, which
can achieve balanced and minimum cutsize partitions very
efficiently.

5.2. Exploration of N and Recording of Best M Floorplans.
The integrated floorplanner is based on the B∗Tree rep-
resentation from [42]. It employs a simulated annealing-
based algorithm, with a cost function that combines area and
wirelength (user can specify α ∈ [0, 1])

Cost function = α · Area + (1− α) ·Wire Length. (1)

Connections between cores are weighted by the communica-
tion volume (available from the CTG) so that the resulting
floorplanning solution minimizes first the connections with
higher communication volume.

A number of N different floorplans are generated by
running the floorplanner N times with the selected weights
for area and wirelength and with different seeds for the
internal random number generator. During this step, a
number of best M ≤ N floorplans are recorded in the best M
list. The selection is made according to the chosen criterion
of smaller area or shorter total wirelength, which is related to
the total communication volume inside the application. The
default values of N and M are N = 30, M = 10. However,
they also may be specified by the user. A typical result after
floorplanning is shown in Figure 5.

For the 3-layer architecture, the floorplanning step is
different. In this case, cores are placed on layers 1 and
3 as dictated by the result of the partitioning step. To
do that, we have modified the floorplanning algorithm
to be able to handle vertical constraints. As a result, this
step is split into two substeps (i) In the first substep, the
first partition is floorplanned on layer 1 using the original
version of the floorplanning algorithm (this is similar to
the 2-layer architecture). (ii) During the second sub-step,
the second partition is floorplanned on layer 3 using the
modified floorplanner. In this case, connections between
cores of this partition and cores of the first partition (already
placed and fixed on layer 1) act as vertical constraints for
the floorplanning process on layer 3. Vertical constraints

Communication task
graph mapped to IP/cores

Task graph partitioning

Floorplanning

NoC construction
routers assignment

Simulation

User can specify
N : explored floorplans
M: recorded floorplans

Balanced minimum cutsize
hMetis partitioner
Only for 3-layer architecture

Simulated annealing: explore N , keep M
B∗Tree representation

Explore: buffers size, virtual channel count
bipartite matching

Cycle accurate NoC simulator

Best floorplan and mesh NoC

R× R: NoC size

(R + k × R + k) regular mesh, k + 0, 1, 2 . . .

Figure 3: Proposed NoC design exploration methodology.

(a) bi-partitioning (b) 3-layer architecture

Figure 4: Bipartitioning of the application communication task
graph and assignment of the two partitions to layers 1 and 3 of the
3-layer architecture.

aim at minimizing the overall wirelength of the top-level
application. Intuitively, cores on layer 3 connected in the
top-level communication task graph to cores on layer 1
should be overlapping or vertically aligned to shorten the
communication distance via the network on layer 2. A
typical result after floorplanning for the 3-layer architecture
is shown in Figure 6.

5.3. Routers Assignment. In this step, each floorplan from the
list of best M floorplans undergoes the routers assignment
step. The regular R × R mesh NoC is constructed on layer
2. This square regular mesh network utilizes the minimum
number of routers that can guarantee at least one router
for each IP/core. This topology is referred to as the direct
topology. However, the mesh can optionally be expanded to
a larger number of routers in both x, y directions. Since
we deal with heterogeneous floorplans, it is not possible
to guarantee the presence of routers at the locations of
IP/core corners (or even the IP/core layout). Therefore, some
of the IP/cores will have to use extralinks to connect to
the assigned routers. These extra-links introduce additional
delays (included inside the cycle-accurate simulator) that
affect the overall performance.



International Journal of Reconfigurable Computing 5

26 25 2 13

23 5 28 21 19 12

27 24 20 11 32

4 14 6 18 3 30

15 22 0 10 29 9

7 17 16 1 31 8

ID 26
ID 13

ID 25

ID 28

ID 21

ID 2
ID 19

ID 12

ID 27

ID 5 ID 24

ID 23

ID 6 ID 20 ID 11
ID 32

ID 9
ID 4

ID 14

ID 22

ID 0

ID 18 ID 3

ID 30

ID 7 ID 15 ID 1 ID 10
ID 31 ID 8

ID 17 ID 16
ID 29

Figure 5: Screen capture with the result of floorplanning and routers assignment for ami33. The NoC is a direct topology of 6× 6, which is
the minimum to guarantee at least a router for each IP/core. The extralinks are shown as straight lines between cores and assigned routers.

ID 23
ID 10

ID 26

ID 5
ID 25

ID 29
ID 27

ID 6
ID 3

ID 4 ID 32 ID 30 ID 31

ID 7 ID 8

ID 9 ID 12

ID 11 ID 2

(a) Layer 1

24 10 5 26

23 27 17 25 13 29

0 32 30 6 14 3

4 7 16 9 21

22 18 15 20 2 12

1 8 11 28 19

31

(b) Layer 2

ID 24

ID 13

ID 0

ID 17
ID 16

ID 21 ID 14

ID 22

ID 28

ID 18 ID 15

ID 20

ID 19

ID 1

(c) Layer 3

Figure 6: Floorplanning and routers assignment for ami33 using the 3-layer architecture.



6 International Journal of Reconfigurable Computing

Table 1: Characteristics of the used testcases.

Testcase Number of Core Core std. dev. Direct topology

IP/cores avg. W/H of W/H R× R

apte 8 4324/2499 27/4 3× 3

xerox 10 2114/2872 335/1290 4× 4

hp 11 4533/924 2498/386 4× 4

ami25 25 1770/1408 1201/896 5× 5

ami33 33 1581/1573 830/865 6× 6

ami49 49 1089/1123 768/651 7× 7

C1

C1

C2

C2

C3

C3

C4 C4
C5

C5

C6

C6

R1

R2

R2

R3

R3

R4

R4R5 R5

R6

R6

R7

R8

R9

R9
...

...

Bipartite graph

Assigned router

Unassigned router

IP/core nodes

Router nodes

Figure 7: Illustration of the routers assignment step on a testcase
with 6 IP/cores and a regular mesh network of 3× 3 routers.

The goal of the routers assignment step is to associate
each IP/core with a router from the regular mesh on layer
2 such that the total wirelength of the extra-links between
each IP/core and its assigned router is minimized. This is
a linear assignment problem solved by using the efficient
Kuhn-Munkres algorithm [43]. The algorithm utilizes a
bipartite graph (see Figure 7) with two sets of nodes: left-
nodes representing the application IP/cores and right-nodes
representing the routers of the regular mesh NoC. Edges
connect each node from one set to all nodes in the other
set. Edge weights are proportional to the Manhattan distance
between the IP/core and routers. In this way, we treat the
assignment of all IP/cores simultaneously and achieve an
overall minimal total length of the extra-links. This step is the
same for both 2-layer and 3-layer architectures. The examples
from Figures 5 and 6 also show the result of the routers
assignment step.

5.4. NoC Simulation. In the last step, each of the best M
NoC topologies is verified using the integrated cycle-accurate
simulator. The simulator is an adapted version of the one
studied in [37]. We use the following default values for the
NoC topology: packet size of 5 flits with each flit being 64 bits
wide, input buffer size of 12 flits, and two virtual channels.
We use XY routing and wormhole flow control, which is
known to be very efficient and requiring small hardware
overheads. The cycle-accurate simulator is always run until
all injected flits reached their destination and the average

latency is computed allowing first 1000 warm-up cycles. The
router architecture is similar to the one presented in [44].
The final average flit latency, which is obtained during this
step, is recorded for each of the floorplans from the best M
list. The NoC topology with the best overall latency is selected
as the final result.

Finally, we note that ideally, one would use the routers
assignment and the cycle-accurate simulation inside the
optimization loop of the simulated annealing based floor-
planning algorithm (the concept of unifying different design
flow steps to better explore the design solution space has been
applied successfully for example to mapping and routing in
[45].) However, this becomes computationally too expensive
due to the long CPU runtimes required by the cycle-accurate
simulator.

6. Experimental Results

6.1. Experimental Setup and Testcases. We implemented the
proposed design methodology, which integrates the parti-
tioner, the floorplanner, the routers assignment, the NoC
cycle-accurate simulator, and the GUI, using C++. The tool
can be downloaded from [46]. In our experiments, we used
six testcases whose characteristics are shown in Table 1. In
this table, we also present the size of the direct topologies. We
constructed these testcases from the classic MCNC testcases,
whose area was scaled to achieve an average size of about
1 cm× 1 cm, which is a typical area for NoCs reported in the
literature [24, 47–49]. The initial connectivity between the
modules was used to compute the communication volume in
the communication task graph associated with each testcase
floorplan.

For the simulated annealing-based floorplanning step,
we used an alpha value of 0.25, which in our experiments
proved to be a good balance between area and wirelength
while the aspect ratio of the resulting floorplan was close to
1. In the NoC simulation step, each testcase was subject to
uniform traffic with packets injected at each source router
at a rate proportional to the communication volume of the
corresponding source-destination communication pair.

Because in our methodology the length of the physical
links between the network routers varies with the network
size, we estimate the link delay by extrapolating the physical
link delay from [37] using a simple Elmore delay formula
[50]. The same delay estimation technique was applied to
the extra-links between IP/cores and routers, which were



International Journal of Reconfigurable Computing 7

600
500
400
300
200
100

0
0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

La
te

n
cy

(n
s)

Packet injection rate (packets/cycle)

2
3
4

5
6

Figure 8: Latency as number of virtual channels is varied for apte.

Packet injection rate (packets/cycle)

0.014 0.024 0.034 0.044 0.054

600
500
400
300
200
100

0

L
at

en
cy

(n
s)

2
3
4

5
6

Figure 9: Latency as number of virtual channels is varied for xerox.

assumed to be L-shaped (with negligible via delay between
metal layers). We do, however, consider the delay of the
through silicon vias (TSVs) between two device layers of the
3D architectures. We estimated the TSV delay by technology
projection [51] using the delay data from [17]. Based on the
analyses in [17, 52], we assume that the area required by TSVs
is negligible and that TSVs can be accommodated within the
white space available in typical floorplans. The CPU runtime
is approximately 30 minutes (Linux machine, 2.5 GHz, 2 GB
memory) for the largest testcase ami49.

6.2. Exploration of the 2-Layer Architecture. In the first part of
the experiments, several variations are applied to the default
network specifications. The purpose of these experiments is
to identify the optimal network that minimizes the average
flit latency.

6.2.1. Varying the Virtual Channels Count. We start by
investigating the impact of increasing the number of virtual
channels. We can afford to do that because routers are
expected to be smaller than the average core size (roughly
20% of the total cores area), which means that on layer 2
there is extra area that may be utilized to further improve the
NoC performance. In this experiment, we varied the number
of virtual channels between 2 and 6.

The results for the average flit latency (as reported by
the cycle-accurate NoC simulator) are shown in Figures 8,
9, 10, 11, 12, and 13. We observe that the average flit latency
generally improves with the increase of the number of virtual
channels. We also plot (see Figure 14) the normalized latency

0.014 0.024 0.034 0.044 0.054

Packet injection rate (packets/cycle)

600
500
400
300
200
100

0

La
te

n
cy

(n
s)

2
3
4

5
6

Figure 10: Latency as number of virtual channels is varied for hp.

0.035 0.055 0.075 0.095 0.115 0.135

Packet injection rate (packets/cycle)

600
500
400
300
200
100

0

La
te

n
cy

(n
s)

2
3
4

5
6

Figure 11: Latency as number of virtual channels is varied for
ami25.

0.04 0.06 0 0.1 0.12 0.14 0.16

Packet injection rate (packets/cycle)

600
500
400
300
200
100

0

La
te

n
cy

(n
s)

2
3
4

5
6

Figure 12: Latency as number of virtual channels is varied for
ami33.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Packet injection rate (packets/cycle)

600
500
400
300
200
100

0

La
te

n
cy

(n
s)

2
3
4

5
6

Figure 13: Latency as number of virtual channels is varied for
ami49.



8 International Journal of Reconfigurable Computing

1.2

1

0.8

0.6

0.4

0.2

0
2 3 4 5 6

N
or

m
al

iz
ed

la
te

n
cy

Virtual channels count

apte
xerox

hp

ami25
ami33
ami49

Figure 14: Normalized latency with variation of the number of
virtual channels for the packet injection rate when the network
saturation occurs.

1.2

1

0.8

0.6

0.4

0.2

0

N
or

m
al

iz
ed

la
te

n
cy

0 1 2 3 4 5 6

Buffers size

apte
xerox

hp

ami25
ami33
ami49

Figure 15: Normalized latency with variation of the buffers size for
the packet injection rate when the network saturation occurs.

(with respect to the latency achieved using the default of
2 virtual channels) for the packet injection rate when the
network saturation occurs. We find that the optimal number
of virtual channels is different for different testcases.

These results are expected because the overall congestion
in the network is intuitively reduced if the number of
virtual channels multiplexed in the time-domain over a
physical channel is increased. However, it is also evident
that increasing the number of virtual channels more than
necessary can have a negative impact on performance. This is
explained as follows: as the network gets loaded with injected
packets, the average amount of stalling due to arbitration
inside routers (with increasingly more virtual channels) may
increase and affect negatively the latency.

6.2.2. Varying the Buffers Size. In this experiment, instead of
increasing the number of virtual channels, we increase the
buffers size. Since we assume the area occupied by routers to
be roughly 20% of the total cores area, we increase the area
of each router to up to 5x by increasing both the input and
output buffer sizes of each port (buffers occupy most of the
area inside the router architecture).

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

600
500
400
300
200
100

0

La
te

n
cy

(n
s)

Packet injection rate (packets/cycle)

Min mesh (R× R)

(R + 1× R + 1)

(R + 2× R + 2)
(R + 3× R + 3)

Figure 16: Latency as mesh size is varied for ami49.

Due to space limitations, we report (see Figure 15) only
the normalized latency (with respect to the latency achieved
using the minimum buffer size) for the packet injection rate
when the network saturation occurs. We observe that the
average flit latency improves with the increase of the buffer
size. However, once a certain buffer size is reached (which is
roughly the 3x data point except for xerox) further increasing
the buffer size does not improve the latency. We note that in
general, latency is improved more by increasing the number
of virtual channels rather than increasing the buffers size.

6.2.3. Varying the Mesh Size. In this experiment, we inves-
tigate the impact of increasing the size of the regular mesh
network (R + k × R + k, k = 1, 2, 3) on the average flit
latency. Increasing the number of routers in both dimensions
x, y for the same testcase translates in shorter physical
links between routers. As a result, the entire system can be
clocked at higher frequencies, which significantly improves
the saturation throughput. For example, the result of this
experiment for testcase ami49 is shown in Figure 16. The
results of the rest of the testcases are similar; we do not
include the rest of the plots here due to space limitations.

It has to be noted that this result is achieved under
the assumption that the delay of the router pipeline is a
clock period, which is given by the delay of the physical
link. This assumption is made in [37], from where we
adopted the NoC simulator, and can be validated by using
speculation and lookahead as discussed in [8]. If, however,
this assumption is removed, the router pipeline should incur
a delay equal to two, three, or four clock cycles (to account
for typical operations including routing computation, virtual
channel allocation, switch allocation, and switch traversal),
depending on the type of flit (head, body or tail) and the
degree of speculation and lookahead [8]. On the other hand,
if the router pipeline is assumed to incur a constant and
fixed delay—irrespective of the physical link length—then
the system clock frequency will be given by the maximum
between the delay of the physical link and the delay of the
router pipeline. In this case, the impact of increasing the
mesh size will be less significant, and it could actually lead
to an increase of the flit latency as studied in [36].

6.3. Comparison of the 2-Layer and 2D Architectures. In
order to compare the proposed 2-layer architecture against



International Journal of Reconfigurable Computing 9

600

500

400

300

200

100

0

La
te

n
cy

(n
s)

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

2D
3D 2-layer
3D 2-layer best

Packet injection rate (packets/cycle)

Figure 17: Latency comparison for 2D and 2-layer implementa-
tions of apte.

600

500

400

300

200

100

0

La
te

n
cy

(n
s)

0.014 0.024 0.034 0.044 0.054

2D
3D 2-layer
3D 2-layer best

Packet injection rate (packets/cycle)

Figure 18: Latency comparison for 2D and 2-layer implementa-
tions of xerox.

600

500

400

300

200

100

0

La
te

n
cy

(n
s)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2D
3D 2-layer
3D 2-layer best

Packet injection rate (packets/cycle)

Figure 19: Latency comparison for 2D and 2-layer implementa-
tions of hp.

a traditional approach we construct the 2D architecture
by artificially expanding the IP/cores with 20% [12, 16]
to account for the space occupied by routers and network
interface (implemented within the cores boundaries on the
same layer).

The simulation results are shown in Figures 17, 18, 19,
20, 21, and 22. We observe that the performance of the 2-
layer architecture is better for each testcase. For the 2-layer
architecture, the additional delays incurred due to the TSVs
negatively impact the flit latency. However, the footprint
area is smaller (as cores are smaller), and therefore the

600

500

400

300

200

100

0

La
te

n
cy

(n
s)

0.03 0.05 0.07 0.09 0.11 0.13 0.15

2D
3D 2-layer
3D 2-layer best

Packet injection rate (packets/cycle)

Figure 20: Latency comparison for 2D and 2-layer implementa-
tions of ami25.

600

500

400

300

200

100

0
La

te
n

cy
(n

s)
0.04 0.06 0.8 0.1 0.12 0.14 0.16

2D
3D 2-layer
3D 2-layer best

Packet injection rate (packets/cycle)

Figure 21: Latency comparison for 2D and 2-layer implementa-
tions of ami33.

600

500

400

300

200

100

0

La
te

n
cy

(n
s)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

2D
3D 2-layer
3D 2-layer best

Packet injection rate (packets/cycle)

Figure 22: Latency comparison for 2D and 2-layer implementa-
tions of ami49.

physical links are shorter, which leads to significantly smaller
flit latencies. In addition, if we exploit the extra area on
the top layer of the 2-layer architecture as described in the
previous sections, then the latency can be further improved
as illustrated by the 3D 2-layer best data points from Figures
17−22.

We also note that the performance of the 2D architecture
may be improved by designing custom NoCs similar to those
studied in [28, 30]. However, the main goal of this paper is
not to show that regular homogeneous 3D NoCs are better
than custom 2D NoCs, which is unlikely, but to propose 3D



10 International Journal of Reconfigurable Computing

600

500

400

300

200

100

0

La
te

n
cy

(n
s)

3D 2-layer
3D 3-layer

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Packet injection rate (packets/cycle)

Figure 23: Latency for 2-layer and 3-layer implementations of apte.

600

500

400

300

200

100

0

La
te

n
cy

(n
s)

3D 2-layer
3D 3-layer

0.014 0.024 0.034 0.044 0.054

Packet injection rate (packets/cycle)

Figure 24: Latency for 2-layer and 3-layer implementations of
xerox.

600

500

400

300

200

100

0

La
te

n
cy

(n
s)

0.02 0.04 0.06 0.08 0.1 0.12

3D 2-layer
3D 3-layer

Packet injection rate (packets/cycle)

Figure 25: Latency for 2-layer and 3-layer implementations of hp.

architectures as alternatives to regular 2D NoCs and explore
their performance when the number of virtual channels,
buffers size, and mesh size is varied to use the extra space
available on layer 2.

6.4. Comparison of the 2-Layer and 3-Layer Architectures. In
the last part of our experiments, we compare the average flit
latencies of the 2-layer and 3-layer architectures. The simu-
lation results, using the default values for mesh size, number
of virtual channels and buffers size are shown in Figures 23,
24, 25, 26, 27, and 28. As expected, because in the case of the
3-layer architecture the physical links are shorter, the clock
frequency at which the system can work is higher. Hence,
the average flit latency is improved significantly. Therefore,
we conclude that the 3-layer architecture is better than the

600

500

400

300

200

100

0

La
te

n
cy

(n
s)

3D 2-layer
3D 3-layer

0.03 0.05 0.07 0.09 0.11 0.13 0.15

Packet injection rate (packets/cycle)

Figure 26: Latency for 2-layer and 3-layer implementations of
ami25.

600

500

400

300

200

100

0
La

te
n

cy
(n

s)

3D 2-layer
3D 3-layer

0.04 0.06 0.8 0.1 0.12 0.14 0.16

Packet injection rate (packets/cycle)

Figure 27: Latency for 2-layer and 3-layer implementations of
ami33.

600

500

400

300

200

100

0

La
te

n
cy

(n
s)

3D 2-layer
3D 3-layer

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Packet injection rate (packets/cycle)

Figure 28: Latency for 2-layer and 3-layer implementations of
ami49.

2-layer architecture. However, the design methodology for
the 3-layer architecture requires additionally the partitioning
step and the modification of the floorplanning algorithm. It
may potentially require more complex thermal management
too due to the increased integration density and the 3D
fabrication technology will be more complex due to the
alignment of three layers.

7. Conclusion and Future Work

In this paper, we proposed 3D 2-layer and 3-layer NoC archi-
tectures that utilize homogeneous networks on a separate
layer and heterogeneous floorplans on different layers. A



International Journal of Reconfigurable Computing 11

design methodology that consists of floorplanning, routers
assignment, and cycle-accurate NoC simulation was imple-
mented and utilized to investigate the new architectures.
Experimental results showed that increasing the number of
virtual channels rather than the buffers size is more effective
in improving the NoC performance. In addition, increasing
the mesh size can significantly improve the NoC performance
under the assumption that the clock frequency is given
by the length of the physical links. Moreover, the 3-layer
architecture can offer significantly better NoC performance
compared to the 2-layer architecture.

As future work, we plan to address the problems of
energy consumption and thermal profile optimization [53,
54] possibly in a unified fashion inside the floorplanning
algorithm. The floorplanning step will be modified to
consider the allocation of white space and TSVs planning
under area constraints.

Acknowledgment

This paper was supported by the Electrical and Computer
Engineering Department at North Dakota State University
(NDSU).

References

[1] L. Xue, C. C. Liu, H.-S. Kim, S. K. Kim, and S. Tiwari,
“Three-dimensional integration: technology, use, and issues
for mixed-signal applications,” IEEE Transactions on Electron
Devices, vol. 50, no. 3, pp. 601–609, 2003.

[2] W. R. Davis, J. Wilson, S. Mick et al., “Demystifying 3D ICs:
the pros and cons of going vertical,” IEEE Design and Test of
Computers, vol. 22, no. 6, pp. 498–510, 2005.

[3] P. Morrow, B. Black, M. J. Kobrinsky et al., “Design and
fabrication of 3D microprocessors,” in Proceedings of Materials
Research Society Symposium, 2006.

[4] S. J. Koester, A. M. Young, R. R. Yu et al., “Wafer-level
3D integration technology,” IBM Journal of Research and
Development, vol. 52, no. 6, pp. 583–597, 2008.

[5] P. Guerrier and A. Grenier, “A generic architecture for
on-chip packetswitched interconnections,” in Proceedings of
ACM/IEEE Design Automation and Test in Europe Conference
(DATE ’00), pp. 250–256, 2000.

[6] A. Hemani, A. Jantsch, S. Kumar et al., “Network on chip: an
architecture for billion transistor era,” in Proceedings of IEEE
NorChip Conference, November 2000.

[7] W. J. Dally and B. Towles, “Route packets, not wires: on-chip
interconnection networks,” in Proceedings of the 38th Design
Automation Conference (DAC ’01), pp. 684–689, June 2001.

[8] W. J. Dally and B. P. Towles, Principles and Practices of
Interconnection Networks, Morgan Kaufmann, 2004.

[9] G. de Micheli and L. Benini, Networks on Chip, Morgan
Kaufmann, 2006.

[10] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y.
Hoskote, “Outstanding research problems in NoC design:
system, microarchitecture, and circuit perspectives,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 28, no. 1, pp. 3–21, 2009.

[11] T. Bjerregaard and S. Mahadevan, “A survey of research and
practices of network-on-chip,” ACM Computing Surveys, vol.
38, no. 1, pp. 71–121, 2006.

[12] E. Salminen, A. Kulmala, and T. D. Hamalainen, “Survey of
Network-on-Chip proposals,” White Paper OCP-IP, 2008.

[13] L. P. Carloni, P. Pande, and Y. Xie, “Networks-on-chip
in emerging interconnect paradigms: advantages and chal-
lenges,” in Proceedings of the 3rd ACM/IEEE International
Symposium on Networks-on-Chip (NoCS ’09), pp. 93–102, May
2009.

[14] V. F. Pavlidis and E. G. Friedman, “3-D topologies for
networks-on-chip,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 15, no. 10, pp. 1081–1090,
2007.

[15] B. S. Feero and P. P. Pande, “Networks-on-chip in a three-
dimensional environment: a performance evaluation,” IEEE
Transactions on Computers, vol. 58, no. 1, pp. 32–45, 2009.

[16] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan,
and M. Kandemir, “Design and management of 3D chip
multiprocessors using network-in-memory,” in Proceedings of
the 33rd International Symposium on Computer Architecture
(ISCA ’06), pp. 130–141, June 2006.

[17] J. Kim, C. Nicopoulos, D. Park et al., “A novel dimensionally-
decomposed router for on-chip communication in 3D archi-
tectures,” in Proceedings of the 34th Annual International
Symposium on Computer Architecture (ISCA ’07), pp. 138–149,
June 2007.

[18] D. Park, S. Eachempati, R. Das et al., “MIRA: a multi-layered
on-chip interconnect router architecture,” in Proceedings of the
35th International Symposium on Computer Architecture (ISCA
’08), pp. 251–261, June 2008.

[19] Y. Xu, Y. Du, B. Zhao, X. Zhou, Y. Zhang, and J. Yang, “A low-
radix and low-diameter 3D interconnection network design,”
in Proceedings of the 15th IEEE International Symposium on
High Performance Computer Architecture (HPCA ’09), pp. 30–
42, Raleigh, NC, USA, February 2009.

[20] S. Yan and B. Lin, “Design of application-specific 3D
networks-on-chip architectures,” in Proceedings of the 26th
IEEE International Conference on Computer Design (ICCD ’08),
pp. 142–149, October 2008.

[21] R. S. Ramanujam and B. Lin, “A layer-multiplexed 3D on-chip
network architecture,” IEEE Embedded Systems Letters, vol. 1,
no. 2, pp. 50–55, 2009.

[22] A. Y. Weldezion, M. Grange, D. Pamunuwa et al., “Scalability
of network-on-chip communication architecture for 3-D
meshes,” in Proceedings of the 3rd ACM/IEEE International
Symposium on Networks-on-Chip (NoCS ’09), pp. 114–123,
May 2009.

[23] Y. Qian, Z. Lu, and W. Dou, “From 2D to 3D NoCs: a case
study on worst-case communication performance,” in Pro-
ceedings of ACM/IEEE International Conference on Computer
Aided Design (ICCAD ’09), pp. 555–562, November 2009.

[24] C. Mineo, R. Jenkal, S. Melamed, and W. Rhett Davis, “Inter-
die signaling in three dimensional integrated circuits,” in
Proceedings of IEEE Custom Integrated Circuits Conference
(CICC ’08), pp. 655–658, September 2008.

[25] S. Murali and G. De Micheli, “SUNMAP: a tool for automatic
topology selection and generation for NoCs,” in Proceedings
of the 41st Design Automation Conference (DAC ’04), pp. 914–
919, June 2004.

[26] J. Xu, W. Wolf, J. Henkel, and S. Chakradhar, “A design
methodology for application-specific networks-on-chip,”
Transactions on Embedded Computing Systems, vol. 5, no. 2,
pp. 263–280, 2006.



12 International Journal of Reconfigurable Computing

[27] S. Murali, L. Benini, and G. de Micheli, “Mapping and physical
planning of networks-on-chip architectures with quality-of-
service guarantees,” in Proceedings of ACM/IEEE Asia and
South Pacific Design Automation Conference (ASPDAC ’05), pp.
27–32, 2005.

[28] S. Murali, P. Meloni, F. Angiolini et al., “Designing
application-specific networks on chips with floorplan infor-
mation,” in Proceedings of International Conference on
Computer-Aided Design (ICCAD ’06), pp. 355–362, November
2006.

[29] S. Murali, C. Seiculescu, L. Benini, and G. De Micheli,
“Synthesis of networks on chips for 3D systems on chips,” in
Proceedings of the Asia and South Pacific Design Automation
Conference (ASP-DAC ’09), pp. 242–247, Yokohama, Japan,
January 2009.

[30] K. Srinivasan and K. S. Chatha, “A low complexity heuristic
for design of custom network-on-chip architectures,” in
Proceedings of Design, Automation and Test in Europe (DATE
’06), pp. 130–135, March 2006.

[31] K. Srinivasan, K. S. Chatha, and G. Konjevod, “Linear-
programming-based techniques for synthesis of network-on-
chip architectures,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 14, no. 4, pp. 407–420, 2006.

[32] K. S. Chatha, K. Srinivasan, and G. Konjevod, “Automated
techniques for synthesis of application-specific network-on-
chip architectures,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 27, no. 8, pp.
1425–1438, 2008.

[33] C. Neeb and N. Wehn, “Designing efficient irregular networks
for heterogeneous systems-on-chip,” Journal of Systems Archi-
tecture, vol. 54, no. 3-4, pp. 384–396, 2008.

[34] T. Ahonen, D. A. Sigüenza-Tortosa, H. Bin, and J. Nurmi,
“Topology optimization for application-specific networks-on-
chip,” in Proceedings of International Workshop on System Level
Interconnect Prediction (SLIP ’04), pp. 53–60, Paris, France,
February 2004.

[35] S.-Y. Lin, C.-H. Huang, C.-H. Chao, K.-H. Huang, and A.-Y.
Wu, “Traffic-balanced routing algorithm for irregular mesh-
based on-chip networks,” IEEE Transactions on Computers, vol.
57, no. 9, pp. 1156–1168, 2008.

[36] V. de Paulo and C. Ababei, “A framework for 2.5D NoC
exploration using homogeneous networks over heterogeneous
floorplans,” in Proceedings of International Conference on
ReConFigurable Computing and FPGAs (ReConFig ’09), pp.
267–272, Cancun, Mexico, December 2009.

[37] L. Shang, L.-S. Peh, and N. K. Jha, “Dynamic voltage
scaling with links for power optimization of interconnection
networks,” in Proceedings of IEEE International Symposium on
High-Performance Computer Architecture (HPCA ’03), 2003.

[38] F. A. Samman, T. Hollstein, and M. Glesner, “Networks-on-
chip based on dynamic wormhole packet identity mapping
management,” VLSI Design, vol. 2009, Article ID 941701,
2009.

[39] P. Zipf, G. Sassatelli, N. Utlu, N. Saint-Jean, P. Benoit, and
M. Glesner, “A decentralised task mapping approach for
homogeneous multiprocessor Network-On-Chips,” Interna-
tional Journal of Reconfigurable Computing, vol. 2009, Article
ID 453970, 14 pages, 2009.

[40] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: applications in VLSI domain,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 7, no. 1, pp. 69–79, 1999.

[41] G. Karypis, hMetis, 2009, http://glaros.dtc.umn.edu/gkhome/
metis/hmetis/download.

[42] Y. Chang, Y. Chang, G. Wu, and S. Wu, “B∗-trees: a new
representation for non-slicing floorplans,” in Proceedings of the
37th Design Automation Conference (DAC ’00), pp. 458–463,
June 2000.

[43] J. Munkres, “Algorithms for the assignment and transporta-
tion problems,” Journal of the Society of Industrial and Applied
Mathematics, vol. 5, no. 1, pp. 32–38, 1957.

[44] L. Peh and W. J. Dally, “Delay model and speculative
architecture for pipelined routers,” in Proceedings of the
7th International Symposium on High-Performance Computer
Architecture (HPCA ’01), pp. 255–266, October 2001.

[45] A. Hansson, K. Goossens, and A. Rǎdulescu, “A unified
approach to mapping and routing on a network-on-chip for
both best-effort and guaranteed service traffic,” VLSI Design,
vol. 2007, Article ID 68432, 2007.

[46] C. Ababei, VNOC3, 2009, http://venus.ece.ndsu.nodak.edu/
∼cris/software.html.

[47] S. R. Vangal, J. Howard, G. Ruhl et al., “An 80-Tile Sub-100-W
TeraFLOPS processor in 65-nm CMOS,” IEEE Journal of Solid-
State Circuits, vol. 43, no. 1, pp. 29–41, 2008.

[48] S. Bell, B. Edwards, J. Amann et al., “TILE64TM processor: a
64-core SoC with mesh interconnect,” in Proceedings of IEEE
International Solid State Circuits Conference (ISSCC ’08), pp.
88–81, February 2008.

[49] K. Kim, S. Lee, J.-Y. Kim et al., “A 125GOPS 583mW network-
on-chip based parallel processor with bio-inspired visual-
attention engine,” in Proceedings of IEEE International Solid
State Circuits Conference (ISSCC ’08), pp. 305–615, February
2008.

[50] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective,
Prentice-Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

[51] ITRS, 2007 Edition, Interconnects, http://www.itrs.net/Links/
2009ITRS/2009Chapters 2009Tables/2009 Interconnect.pdf.

[52] I. Loi, S. Mitra, T. H. Lee, S. Fujita, and L. Benini, “A low-
overhead fault tolerance scheme for TSV-based 3D network
on chip links,” in Proceedings of International Conference on
Computer-Aided Design (ICCAD ’08), pp. 599–602, November
2008.

[53] J. Hu and R. Marculescu, “Energy- and performance-aware
mapping for regular NoC architectures,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
24, no. 4, pp. 551–562, 2005.

[54] W. Hung, C. Addo-Ouaye, T. Theocharides, Y. Xie, N. Vijaykr-
ishnan, and M. J. Irwin, “Thermal-aware IP visualization and
placement for networks-on-chip architecture,” in Proceedings
of IEEE International Conference on Computer Design: VLSI in
Computers and Processors (ICCD ’04), pp. 430–437, October
2004.


