
Efficient Congestion-oriented Custom Network-on-Chip Topology Synthesis

Cristinel Ababei
Department of Electrical and Computer Engineering

North Dakota State University, Fargo ND, USA
Email: cristinel.ababei@ndsu.edu

Abstract—We propose a new custom Network-on-Chip
(NoC) topology synthesis methodology consisting of floorplan-
ning, routers assignment, and routing paths calculation steps.
The proposed heuristic methodology integrates fast algorithms
based on the B*-tree representation for floorplanning, on
bipartite matching for the routers assignment step, and on
multicommodity flow for congestion minimization for the rout-
ing paths calculation step. Hence, it is able to explore a large
portion of the solution space efficiently. Network performance
is estimated using an integrated cycle-accurate simulator.
Experimental results demonstrate that custom irregular NoC
topologies can achieve latencies comparable to those achieved
by 2-layer 3D regular mesh topologies. The multicommodity
flow based routing paths calculation is proven to be effective in
improving the average latency at high packet injection rates.

Keywords-irregular Network-on-Chip; topology synthesis;
multicommodity flow;

I. I NTRODUCTION

There are two types of Network-on-Chip (NoC) topolo-
gies: regular and custom. Regular NoC topologies connect
cores located in tiles with equal area. Custom or irregular
NoCs are designed for applications with cores of different
sizes. Because for these applications to assume tiles with
equal area is unrealistic, the design flow must include the
NoC topology synthesis design step. The problem of optimal
custom topology synthesis does not have a known theoretical
solution [1]. There are several fundamental challenges in
the problem of custom NoC topology synthesis. First, due
to its irregularity, the topology of a custom NoC affects
unpredictably the network performance, power consumption,
and area usage. Second, additional design steps such as
floorplanning must be included in the design flow. These
steps add to the design flexibility and as a result the design
solution space is much larger and hence more difficult to ex-
plore. Finally, custom topologies require specialized routing
algorithms or advanced router architectures to eliminate the
risk of deadlock. The goal of this paper is to address these
problems by proposing a new efficient topology synthesis
methodology. Efficiency is achieved thanks to the short com-
putational runtime of each of the algorithms employed for
floorplanning, routers assignment, routing paths calculation,
and network simulation.

II. PREVIOUS WORK AND CONTRIBUTION

Most of the previous works on NoC topology synthesis
have used floorplanning to estimate wirelength, area, and
power consumption or to generate asingle starting floorplan.

For example, floorplanning information was used during
regular NoC topology selection to provide feasible mappings
in [2]. Floorplanning was used to estimate power and area
during application-specific multi-level NoC synthesis in [3].
A tabu-search based integrated mapping with mixed integer
linear program (MILP) based physical planning was used
in [4] to find the best topology for regular NoCs from
a predefined topology library. A floorplanner was used
to estimate link power consumption and to detect timing
violations of 2D [5] and 3D [6] application-specific NoCs.

Because the floorplanning solution significantly impacts
the custom NoC performance (details will be provided later),
limiting the synthesis process to only a single floorplan
may lead to sub-optimal NoC topologies. To address this
problem, we propose to automatically process multiple floor-
plans to explore a larger portion of the solution space.
To address the complexity of the custom NoC synthesis
problem, we propose aconstructive design methodology
similar to [7]–[10]. The proposed methodology combines
a sequence of two heuristic steps: routers assignment and
routing paths calculation with congestion minimization. The
novelty of our approach lies in the utilization of ultra-
fast algorithms for both of these steps: bipartite matching
for the routers assignment step and multicommodity flow
(MCF) (300×faster than CPLEX [14]) for the routing paths
calculation step, respectively. In addition, the floorplanner,
based on the efficient B*-tree representation, supports non-
slicing floorplans. The efficiency of these algorithms enable
practical computational runtimes in exploring topology syn-
thesis starting from multiple floorplans.

III. C USTOM NOC TOPOLOGYSYNTHESIS

The block diagram of the proposed constructive NoC
topology synthesis methodology is presented in Fig.1.

A. Floorplanning

The objective of the first step is to generate a list ofM

different floorplans, which will be processed in the next
steps. This approach is motivated by the impact that the
initial floorplan has on the NoC latency. This is illustrated
by the histogram of the latencies of 30 custom NoC solutions
synthesized by the proposed methodology starting from 30
different floorplans of testcaseami25 (see Fig.2.a). Note that
solutions vary significantly despite the fact that the area and
wirelength of all floorplans have small standard deviations.

We address this problem by exploring a large number of
floorplans. The floorplanner is runN times with different

Cristinel.Ababei
Text Box
This is the authors' copy. The definitive version and copyright are held by IEEE.

Figure 1. Overview of the proposed constructive NoC topologysynthesis
methodology. The floorplanning step is runN times while the next two
steps are runM ≤ N times.

seeds for the random number generator and the bestM ≤ N

floorplans are recorded. The default values areN = 100
andM = 30 to keep the computational runtimes practical.
The floorplanner is based on the B*-tree representation from
[11]. It employs a simulated annealing algorithm, with a cost
function that combines area and wirelength (user can specify
α ∈ [0, 1]):

Cost function = α · Area + (1 − α) · WireLength (1)

To minimize the wirelength of the source-destination con-
nections with high communication volume (this will trans-
late to reduced number of hops through the network), the
edges of the graph utilized by the floorplanning algorithm
are weighted by the communication volume (available from
the communication task graph (CTG) of each application).

0.00

5.00

10.00

15.00

20.00

25.00

Bins of flit latency (cycles)

F
re

q
u

en
cy

Routing paths computation done using MCF

(a)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Bins of flit latency (cycles)

F
re

q
u

en
cy

Routing paths computation done using Shortest Path

(b)
Figure 2. (a) Histogram of the average flit latencies of 30 NoC topologies
of testcaseami25; median flit latency is 46.77 cycles. (b) Histogram when
the routing paths calculation uses the shortest path instead of the proposed
MCF based technique; median flit latency is 84.33 cycles.

B. Routers Assignment and Links Construction

In the second step, IP/cores to routers assignment is done
for each floorplan from the list of bestM floorplans. First,
four routers are placed at the corners of each core. If two
or more routers overlap or are very close to each other, they
are collapsed to only one router. Then, routers assignment
is done by employing a bipartite matching algorithm, which

utilizes a bipartite graph with two sets of nodes: core-
nodes representing the application cores and router-nodes
representing the routers (see Fig.3). Weighted edges connect
each of the core-nodes to the corresponding router-nodes.
The weight1 of an edge between a coreCi and a router
Rj is inversely proportional to the number of neighbor
routers of Rj within a distance shorter than a threshold
Distth and the accumulated communication volume of all
the communications that haveCi as source or destination:

w(Ci, Rj) ∼
1

|AdjR(Rj , Distth)|
,

1

Commvol(Ci)
(2)

For example, in Fig.3, the routerR6 has its adjacency
list: AdjR(R6, Distth) = {R3, R4, R5, R7, R8, R9, R10}
while the corec has its accumulated communication volume
Commvol(c) = 60. The intuition behind this edge weight
expression is that first, we want to assign routers with
more neighbors (this will result into well connected network
topologies later on during link construction) and second,
from among these routers those with higher connectivity
should be preferred by the cores with high communication
volume (this will increase the chance of high-traffic cores to
be assigned to routers that arewell connected).

Because assigning multiple cores to single routers would
require the usage of bigger routers2 (due to the increased
number of ports), we assume that each core is assigned an
individual router. The routers assignment problem is solved
by the efficient Hungarian algorithm [12]. Note that previous
studies formulate this problem as an LP [6] or MILP [8]
and solve it usinglp solve and Xpress-MP, respectively.
However, these approaches may become computationally
expensive.

Only the routers that are assigned to cores are used
to synthesize the NoC topology. This is done by creating

1Edge weights will represent thecosts inside the bipartite matching
algorithm.

2Even though overall, fewer routers may reduce the area usage, bigger
routers are more difficult to insert within the white space of the floorplan−

this could be addressed by also considering routers during the floorplanning
step. In addition, bigger routers may consume more power due to larger
crossbars and arbiters [5], [7].

Figure 3. IP/cores to routers assignment and links construction steps.

physical links between any two assigned routers that are
within less than the threshold distanceDistth from each
other. At the end, we greedily remove some of the created
links to restrict the maximum number of ports of each router
and hence save area usage (the longest links are removed
first). The result of this process, for example for testcase
ami33, is shown in Fig.6.a.

C. Multicommodity Flow based Routing Paths Calculation

1) MCF problem formulation for latency minimization:
Once the custom NoC topology has the communication
links constructed, all routing paths must be computed. The
information about the routing paths will be stored in routing
look-up tables (LUTs) inside each router. To compute the
routing paths for all communication demands we formulate
this problem as a multicommodity flow (MCF) problem.
The communications between application tasks represent
the commodities (each commodity has associated a demand
given by the communication volume between the tasks), and
the main goal is to minimize the communication latency
under link capacity constraints. The communication latency
is computed based on the wire delays, while capacities
are associated with the link bandwidths. Because the MCF
algorithm treats simultaneously all the source-destination
communication pairs, the communications will be evenly
routed through the network. This will lead to an uniformly
loaded network and will result in lower congestion and better
network performance [13].

To formulate this problem, we build a network graph
G(V,E) with the nodes inV associated with the routers
that were assigned to cores in the previous step. For each
physical link between two routers we create two directed
edges inE. Let us assume that, there arek commodities
and each commodity has a demanddi between source node
si and destination nodeti. Let pi be the set of all pathspi

betweensi and ti andp =
⋃

i pi the union of all possible
paths for all commodities. Let alsof(p) denote the amount
of flow sent along pathp, for everyp ∈ p. Each edgee has
associated a delayDe and capacityce. The MCF problem
formulation with the goal of minimizing the total latency
as the sum of the delays of flows through all edges is as
follows.

Min :
∑k

j=1

∑
p∈pj

∑
e∈p f(p) · De (3)

S.t. ∀1 ≤ j ≤ k :
∑

p∈pj
f(p) ≥ dj (4)

∀e :
∑

p:e∈p f(p) ≤ ce (5)

∀p : f(p) ≥ 0 (6)

The constraint in equation (4) ensures that the communi-
cation demand for each source-destination pair is satisfied,
while the constraint in equation (5) limits the cumulated flow
through each edge to less than the edge capacity.

2) Solving the MCF problem using an approximation
algorithm: To efficiently solve the MCF problem formulated
in the previous section we use an adapted version of the
polynomial time approximation algorithm studied in [14].

It is based on the recent advancements in polynomial time
approximation schemes (PTAS) [15] and can achieve(1+ǫ)
optimal solutions. The approximation algorithm finds the
largestλ and a multicommodity flow solution that routes at
leastλdj units of commodityj so that the global latencyLT

and capacity constraints are satisfied. Theprimal problem
formulation is as follows.

Max : λ (7)

∀j :
∑

p∈pj
f(p) ≥ λ · dj (8)

∑k

j=1

∑
p∈pj

∑
e∈p f(p) · De ≤ LT (9)

∀e :
∑

p:e∈p f(p) ≤ ce (10)

In order to be able to write thedual problem formu-
lation, we introduce the following dual variables:Zj for
each commodity demand constraint from equation (8),Φd

for the latency constraint from equation (9), andYe for
each capacity constraint from equation (10). Then, the dual
problem formulation is as follows.

Min :
∑

e∈E ce · Ye + LT · Φd (11)

∀j,∀p :
∑

e∈p Ye +
∑

e∈p De · Φd ≥ Zj (12)
∑k

j=1
dj · Zj ≥ 1 (13)

∀e : Ye ≥ 0 (14)

∀j : Zj ≥ 0 (15)

The pseudocode of the multicommodity flow solver for
total latency minimization is shown in Fig.4. Its idea is to use
a binary search technique to find the minimum global latency
that still satisfiesλ ≥ 1. It uses as a subroutine the algorithm
mcf(G, d, LT) whose pseudocode is shown in Fig.5. This
subroutine solves the problems defined by equations (7)-(10)
and (11)-(15) by iteratively updating the primalλ and dual
D values until the gap between them is sufficiently small.
In Fig.4, λmax represents the value ofλ obtained using the
subroutinemcf(G, d, LT) with LT relaxed to infinity. In
Fig.5, l(e) defines thelength associated with each edgee
and dist(j) is the shortest path from source to destination
of commodityj under the length functionl(e).

Algorithm 1: Latency minimization MCF algorithm
1: mcf solver()
2: In: graphG with edge capacitiesce, demandd, thresholdǫ
3: Out: (1 + ǫ) optimal total latency
4: Setλmax ← mcf(G, d,∞)
5: Set lower-bound latency:LL← 0
6: Set upper-bound latency:UL← total latency underλmax

7: while (UL− LL)/UL > ǫ do
8: L← (LL + UL)/2
9: (LL′, UL′)← mcf(G, d, L)

10: LL← LL′; UL← UL′

11: end while
12: returnUL

Figure 4. Pseudocode of the MCF solver.

The solution found using the above approximation MCF
algorithm is a fractional flow solution, meaning that the
communication between a given source-destination pair may
be split between multiple paths. Using directly such a
fractional flow solution may lead to energy savings [16], but

Algorithm 2: Maximum concurrent flow algorithm
1: mcf(G,d,LT)
2: In: graphG, demandd, total latency budgetLT , thresholdδ
3: Out: (1− δ) optimal maximum concurrent valueλ
4: ∀e, f(e)← 0, Ye ← δ/ce, Φd ← δ/LT
5: l(e)← Ye + De · Φd

6: while gap between primal and dual not small enoughdo
7: for each commodityj do
8: rdj ← dj

9: while rdj > 0 do
10: // Find shortest path andf units of flow to route:
11: P ← shortest path(sj → tj)
12: // Routef units of flow along shortest path:
13: f(e)← f(e) + f, ∀e ∈ P

14: Φi
d ← Φi−1

d · [1 + δ
3
·

∑
e∈P f ·De

LT
]

15: Y i
e ← Y i−1

e · [1 + δ
3
·

f

ce
], ∀e ∈ P

16: li(e) ← li−1(e) + (Y i
e − Y i−1

e) + De · (Φi
d −

Φi−1
d),∀e ∈ P

17: rdj ← rdj − f
18: end while
19: end for
20: Compute primal:λ
21: Compute dual:D ←

∑
e∈E Ye·ce+L·Φd

∑
k
j=1

dj ·dist(j)

22: end while
23: returnλ

Figure 5. Pseudocode ofmcf(G, d, LT) that finds the maximum
concurrent flow such that total latency budgetLT is satisfied.

requires complications of the network interface to support
packet ordering at destinations [10], [17]. To avoid such
complications, we use a simple heuristic to round the
fractional flows tointegral flows such that only one routing
path is selected for each source-destination communication.
The technique is based on sorting communications in non-
increasing order by their communication volume and then
rounding their flows along the paths with highest fractions.
In our experiments, this approach lead to better results
compared to randomized rounding [13].

3) Ensuring deadlock-free routing: Resource ordering
is a method to prevent deadlocks in custom NoCs [18].
However, it may over-constrain the MCF based routing paths
calculation. In addition, removing deadlocks by breaking all
cycles in the channel dependency graph [19] may become
computationally expensive and also may over-constrain the
routing paths calculation. Hence, to ensure the deadlock-
free property, we design each router with a number of
virtual channels (VCs) for each port equal to the number
of communications (e.g., flows as determined by the MCF
algorithm) that pass through. In this way, cyclic dependen-
cies are eliminated. This approach may however use many
VCs when the number of communications passing through
a given router is high. This problem is in part alleviated by
the MCF algorithm, which distributes all flows uniformly
across the network.

D. NoC Simulation

In the last step, each of theM NoC topologies is verified
using the integrated cycle-accurate simulator. The simulator
supports routers with arbitrary number of ports and virtual
channels. The following default values are used: packet size

of 5 flits with each flit being 64 bits wide, and input buffer
size of 5 flits. The router architecture is similar to that
studied in [20]. The uniform traffic is generated with packet
injection rates that are proportional to the communication
volumes of the source-destinations pairs in the CTG of each
application. The estimated latency is recorded for each of
the floorplans from the list ofM floorplans. The topology
with the best final latency is selected as the final result.

IV. EXPERIMENTAL RESULTS

The proposed algorithms were implemented as a computer
program in C++. The program can be downloaded from
[21]. Simulations were done on a Linux machine running
on a 2.8 GHz Intel Quad processor with 2 GB memory. The
testcases are shown in Table I. The first two testcases are
from [22] and the other testcases are constructed from the
classic Microelectronics Center of North Carolina (MCNC)
testcases [11]. We scaled the area of each testcase to achieve
an average chip size of about1cm × 1cm, which is typical
for systems designed using the NoC paradigm reported in
the open literature [23], [24]. The last column of Table
I reports the computational CPU runtime of the proposed
methodology. For example, the CPU runtime is 120 minutes
for the largest testcaseami49. Note that this includes the
total processing time ofN = 100 floorplanning steps, of
M = 30 iterations (see Fig.1) of routers assignment and
routing paths calculation steps, and of multiple runs of the
cycle-accurate simulator for various packet injection rate
values. In contrast, the CPU runtime is 20 min for a testcase
with 27 cores in [7] (on 2.0 GHz Pentium-M processor) and
8 h for a testcase with 17 cores in [8] (on 950 MHz SPARC
processor). The CPU runtime of the routers assignment and
routing paths calculation steps only during a single iteration
is less than 1 sec and of the same order of magnitude as the
heuristic proposed in [9].

Table I
TESTCASES AND THEIR CHARACTERISTICS.

Num. of CTG Min/max CPU runtime
Testcase IP/cores connectivity comm. vol. (minutes)
vopd 12 low 1/500 4.83
mpeg4 14 low 1/942 5.75
ami25 25 medium 1/4 13.32
ami33 33 medium 1/14 22.95
ami49 49 high 1/14 120.08

We cannot compare our results to the studies in [5], [7]–
[9] because their implementations are not publicly available.
In addition they focused on system-level power consumption
and area optimization, while we focus on computational
efficiency and network latency. However, to investigate
the performance of the custom topologies synthesized by
the proposed methodology, we compare them with regular
topologies. In the second set of experiments, to investigate
the impact of computing the routing paths using the MCF
based technique, we compare the average flit latency with
that when the routing paths are computed using a shortest
path (SP) based technique (approach that is used in previous
studies such as [7], [10], [16]).

A. Comparison with Regular Mesh NoC Topologies

ID 0

ID 1

ID 2

ID 3

ID 4

ID 5

ID 6

ID 7
ID 8

ID 9

ID 10

ID 11

ID 12

ID 13

ID 14

ID 15

ID 16ID 17

ID 18

ID 19

ID 20

ID 21

ID 22

ID 23

ID 24

ID 25

ID 26

ID 27

ID 28

ID 29

ID 30

ID 31

ID 32

0

15 1

2

29

3 30

7

27 4

5

6

8

9 12

16

10

20

11 19

13

26

14

17

18

28 21

22

23 24

25

31

32

(a)

ID 0

ID 1

ID 2

ID 3

ID 4

ID 5

ID 6

ID 7
ID 8

ID 9

ID 10

ID 11

ID 12

ID 13

ID 14

ID 15

ID 16ID 17

ID 18

ID 19

ID 20

ID 21

ID 22

ID 23

ID 24

ID 25

ID 26

ID 27

ID 28

ID 29

ID 30

ID 31

ID 32

0

1

2

34

5

6

7 8

910

11

12

13

14

15

1617

18

19

20

21

22

23

24

2526

27

28

29

30

31

32

(b)
Figure 6. (a) Routers assignment and links construction for testcaseami33.
(b) Top view for testcaseami33 of the 2-layer 3D mesh NoC topology: cores
reside on the first layer and the mesh network resides on the second layer.

In the first set of experiments, we compare the flit
latency of the custom NoC topologies synthesized using
the proposed methodology with that of regular mesh NoC
topologies. We construct the regular topology assuming
a 2-layer 3D NoC architecture [25]. This architecture is
constructed by implementing the regular mesh network on
one layer and the irregular floorplan on a second layer. Cores
are connected to the network routers with extra-links and
through silicon vias (TSVs) for vertical connections. The 2-
layer 3D regular NoC uses XY routing. An example is shown
in Fig.6.b. This architecture achieves better latencies than
2D architectures that use only one layer for both the regular
mesh NoC and cores. This is because 2D architectures would
either use a large tile area to be able to accommodate the
largest core (in such cases a lot of silicon area would be
waisted) or expand the cores to make room for routers
(which is not realistic because in most practical situations
the cores have layouts that cannot be changed).

The results of this experiment are shown in Fig.7. Based
on our simulations, we make the following observations:

0

100

200

300

400

500

600

0.09 0.14 0.19 0.24 0.29

L
at

en
cy

 (
cy

cl
es

)

Packet injection rate (packets/cycle)

2-layer 3D regular

custom irregular

(a)

0

100

200

300

400

500

600

0.064 0.114 0.164 0.214

L
at

en
cy

 (
cy

cl
es

)

Packet injection rate (packets/cycle)

2-layer 3D regular

custom irregular

(b)

0

100

200

300

400

500

600

0.08 0.13 0.18 0.23 0.28 0.33

L
at

en
cy

 (
cy

cl
es

)

Packet injection rate (packets/cycle)

2-layer 3D regular

custom irregular

(c)

0

100

200

300

400

500

600

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

L
at

en
cy

 (
cy

cl
es

)

Packet injection rate (packets/cycle)

2-layer 3D regular

custom irregular

(d)

0

100

200

300

400

500

600

0.22 0.32 0.42 0.52 0.62 0.72 0.82

L
at

en
cy

 (
cy

cl
es

)

Packet injection rate (packets/cycle)

2-layer 3D regular

custom irregular

(e)
Figure 7. Latencies achieved by 2-layer 3D regular NoC topologies and
proposed irregular NoC topologies: (a)vopd, (b) mpeg4, (c) ami25, (d)
ami33, and (e)ami49.

(i) The extra-links and the vertical TSVs do not affect
significantly the average flit latency of the 2-layer 3D mesh
NoCs. That is because such delays will only time-shift
the injection traces of all source cores while the steady-
state average latency will be affected minimally. As a
consequence, the 2-layer 3D mesh topologies already offer
very good performance.

(ii) The saturation latency achieved by the custom topolo-
gies synthesized by the proposed methodology is better than
that of 2-layer 3D mesh topologies for testcasesvopd, ami25,
andami49.

(iii) We found that a smaller network diameter and a
higher radix of the custom topologies are keys to achieving

better network performance. Such topologies can be con-
structed using small and medium length links rather than
only short links, whose usage tends to lead to an increase of
the network diameter. A direct consequence of this is that
the links construction step has to judiciously use links to
synthesize the optimal custom topology.

(iv) Our results are obtained under the assumption that the
NoC topologies studied in this experiment are operated as
synchronous systems at equal clock frequencies. However,
if each topology will be operated at the maximum possible
clock frequency− assumed to be given by the longest link
between any two connected routers− then the latency of the
2-layer 3D mesh NoC topologies will improve compared
to that of the custom topologies. This is because custom
topologies must use L-shaped links (implemented on two
different metal layers) as opposed to regular meshes that
may use straight links in both x,y directions.
B. Comparison between Multicommodity Flow and Shortest
Path based Routing Paths Calculation

In the second experiment, we compare the latency results
obtained when the routing paths calculation is done using
either the proposed MCF based technique or a shortest path
based technique. The result for the testcaseami25 is shown
in Fig.8. The other testcases have similar plots, which are
not included here due to space limitations.

0

100

200

300

400

500

600

0.08 0.13 0.18 0.23 0.28 0.33

L
at

en
cy

 (
cy

cl
es

)

Packet injection rate (packets/cycle)

Shortest path

Multicommodity flow

Figure 8. Average flit latency for testcaseami25.

Based on our simulations, we make the following obser-
vations:

(i) The MCF based technique improves the NoC per-
formance at high packet injection rates. This is because
heavy traffic is distributed more uniformly and consequently
congestion is minimized.

(ii) At low packet injection rates, the shortest path tech-
nique tends to achieve better latencies irrespective of the
network topology. This is because the MCF based technique
still detours some traffic via longer paths in an attempt to
achieve a more uniform distribution of traffic. However, that
is not necessary when the network is exercised at low packet
injection rates.

(iii) If the custom NoC topology has a spanning-tree like
structure, then the two routing paths calculation techniques
achieve similar results. Because such a topology does not
offer any path diversity, the shortest path based technique
achieves already the best solution and congestion cannot be
alleviated.

V. CONCLUSIONS

We proposed an efficient design methodology for custom
NoC topology synthesis. The methodology integrates several

efficient steps: floorplanning, routers assignment, routing
paths calculation, and verification via cycle-accurate simula-
tion. Experimental results demonstrated that custom irregular
NoC topologies can achieve latencies comparable to those
achieved by 2-layer 3D regular mesh topologies.

REFERENCES

[1] R. Marculescu, U.Y. Ogras, L.-S. Peh, N.E. Jerger, and Y. Hoskote,
“Outstanding research problems in NoC design: system, microar-
chitecture, and circuit perspectives,”IEEE TCAD, 2009.

[2] S. Murali and G. De Micheli, “SUNMAP: a tool for automatic
topology selection and generation for NoCs,”ACM DAC, 2004.

[3] J. Xu, W. Wolf, J. Henkel, and S. Chakradhar, “A design methodol-
ogy for application-specific networks-on-chip,”ACM TECS, 2006.

[4] S. Murali, L. Benini, and G. De Micheli, “Mapping and physical
planning of networks-on-chip architectures with quality-of-service
guarantees,”ACM ASP-DAC, 2005.

[5] S. Murali et al., “Designing application-specific Networks on Chips
with floorplan information,”ACM ICCAD, 2006.

[6] S. Murali, C. Seiculescu, L. Benini, and G. De Micheli, “Synthesis
of networks on chips for 3D systems on chips,”ACM ASP-DAC,
2009.

[7] J. Chan and S. Parameswaran, “NoCOUTs: NoC topology genera-
tion with mixed packet-switched and point-to-point networks,”ACM
ASP-DAC, 2008.

[8] K. Srinivasan, K.S. Chatha, and G. Konjevod, “Linear-
programming-based techniques for synthesis of Network-on-Chip
architectures,”IEEE TVLSI, 2006.

[9] K.S. Chatha, K. Srinivasan, and G. Konjevod, “Automated tech-
niques for synthesis of application-specific Network-on-Chip archi-
tectures,”IEEE TCAD, 2008.

[10] A. Pinto, L. Carloni, and A. Sangiovanni-Vincentelli, “Synthesis
of on-chip interconnection structures: from point-to-point links
to networks-on-chip,”Technical Report UCB/EECS-2006-147, UC
Berkeley, 2006.

[11] T.-C. Chen and Y.-W. Chang, “Modern floorplanning based on B*-
trees and fast simulated annealing,”IEEE TCAD, 2006.

[12] J. Munkres, “Algorithms for the assignment and transportation
problems,”J. of the Society of Industrial and Applied Mathematics,
1957.

[13] T. Leighton, S. Rao, and A. Srinivasan, “Multicommodity flow and
circuit switching,” Annual Hawaii Int. Conf. on System Sciences,
1998.

[14] Y. Hu, Y. Zhu, H. Chen, R. Graham, and C.-K. Cheng, “Communi-
cation latency aware low power NoC synthesis,”ACM DAC, 2006.

[15] G. Karakostas, “Faster approximation schemes for fractional multi-
commodity flow problems,”ACM/SIAM SODA, 2002.

[16] S. Murali and G. De Micheli, “Bandwidth-constrained mapping of
cores onto NoC architectures,”ACM DATE, 2004.

[17] S. Murali, D. Atienza, L. Benini, and G. De Micheli, “A method for
routing packets across multiple paths in NoCs with in-order delivery
and fault-tolerance guarantees,”VLSI Design Journal, 2007.

[18] G. De Micheli, L. Benini, Networks on Chip, Morgan Kaufmann,
2006.

[19] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks,
Morgan Kaufmann, (2002).

[20] L.-S. Peh, and W.J. Dally, “A delay model and speculative archi-
tecture for pipelined routers,”HPCA, 2001.

[21] HNOC, 2010, [Online]. Available: http://venus.ece.ndsu.nodak.edu/
∼cris/software.html

[22] E.B. van der Tol and E.G.T. Jaspers, “Mapping of MPEG-4 decod-
ing on a flexible architecture platform,”SPIE Media Processors,
2002.

[23] S.R. Vangal et al., “An 80-tile sub-100-W TeraFLOPS processor in
65-nm CMOS,”IEEE J. Solid-State Circuits, 2007.

[24] S. Bell et al., “TILE64 - processor: a 64-Core SoC with mesh
interconnect,”IEEE SSCC, 2008.

[25] V. de Paulo and C. Ababei, “A framework for 2.5D NoC exploration
using homogeneous networks over heterogeneous floorplans,”IEEE
ReConFig, 2009.

