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Abstract—We propose a new graph theory based algorithm
for the determination of the minimum break point set of meshed
systems. We show that if there is a k-tree in the graphG(V, E)
associated with the system, then the minimum break point set has
a cardinality of |E|−|V |+k. The proposed algorithm implements
an iterative procedure to identify such a k-tree and having
minimum k. It is found that the cardinality of the minimum
break point set is 9 for the IEEE 14 bus system and 16 for the
IEEE 30 bus system. These minimum values are smaller than
the previously best reported results of 10 and 18 for the same
systems.

Index Terms—Directional relays. Break points. Minimum num-
ber of break points. k-trees.

I. I NTRODUCTION

T HE problem of directional relay coordination in a meshed
system requires the selection of a set of relays. Since

opening of these relays opens all directed simple loops in
the system, this set is called a break point set (BPS) [1].
The minimum cardinality BPS is known as the minimum
break point set (MBPS). Determination of the MBPS in
interconnected networks is the key step during calculationand
setting of overcurrent relays protection values.

Even though the problem of locating the minimum set of
break points of a meshed system has been studied extensively,
most of the previous solutions obtain a minimal and not a
minimum set. Generally, these solutions are based on the enu-
meration of all loops in the network graph associated with the
system. The enumeration process may become prohibitively
computationally expensive due to the exponential increaseof
the time complexity [2], [3]. Recently, the authors of [4]
have proposed an integer linear programming (ILP) solution
to find the optimal break point set. Their solution represents
the best result (break point set of cardinality 10 for IEEE
14 bus system) in the published literature and improves over
many other recent approaches cited and discussed in [4]. The
ILP solution and the recent genetic algorithm based approach
studied in [5] have found the break point set of cardinality 18
for IEEE 30 bus system. In this paper, we introduce a new
algorithm for the determination of the minimum set of break
points. Our algorithm identifies a minimum set of cardinality
9 and 16 for the IEEE 14 bus system and the IEEE 30 bus
system, respectively.
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The remainder of the paper is organized as follows. Section
II presents the statement of the problem addressed in this
paper. Also, our main contribution is outlined in this section.
Section III describes the proposed algorithm for the the deter-
mination of the minimum set of break points. In Section IV,
we report experimental results for several systems, including
the IEEE 14 and 30 bus systems. The paper is concluded in
Section V.

II. STATEMENT OF THE PROBLEM AND CONTRIBUTION

Let N be the system or network1 on which directional
relays are to be placed andG(V,E) be its associated graph,
where V is the set of nodes andE is the set of edges,
respectively. A bus of the networkN corresponds to a node
in V and a line ofN corresponds to an edge inE. We
assume that the network and therefore the associated graph
G is connected and has no self-loops [6]. Adirectional relay
placed on a line of the networkN is represented by an arrow-
head alongside the corresponding edge of the graph. The
arrow-head is called adire (short for directional relay). An
example networkN is shown in Fig.1.a and its corresponding
graph G(V,E) is shown in Fig.1.b. The graphG has the
set of nodesV = {v1, v2, v3, v4} and the set of edges
E = {e1, e2, e3, e4, e5, e6}. A directional relay on lineL1
at busB1 in networkN is represented by adire along edge
e1 near the nodev1 in the graphG, oriented away from the
nodev1.

(a) (b)

Fig. 1. (a) Example system or networkN with four buses. (b) The associated
graphG with four nodes and six edges.

The problem of computing the minimum break points
set (MBPS) is stated or formulated as follows.Given the
connected associated graphG(V,E) of a networkN , place as
few dires as possible, such that when one travels along each

1System and network are used interchangeably in this paper.
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loop in G (in any direction), at least one dire oriented against
the direction of the travel is encountered.

In this paper, we introduce a new graph theory based
algorithm for the determination of the minimum set of break
points. Our main contribution is as follows: 1) The proposed
deterministic algorithm is based on finding a k-tree whose
complementary set of edges in the system graphG corresponds
to the minimum set of directional relays if (i) each edge
in the complementary set has its vertices in different parts
of the k-tree and (ii) no (k-1)-tree exists which satisfies the
first condition, 2) To address the computational time for large
systems we introduce novel techniques to simplify the network
graph without compromising the quality of the final result, and
3) We report experimental results, which improve on the state
of the art: the proposed algorithm can find a minimum break
point set of cardinality 9 and 16 for the IEEE 14 and 30 bus
systems respectively, which is smaller than the cardinality of
10 and 18 reported for the same systems in [4], [5].

III. D ETERMINATION OF THE M INIMUM BREAK POINT

SET OF DIRES

A. Range of Possible Values for the Cardinality of the Mini-
mum Break Point Set

Let δ be the minimum number of dires required to satisfy
the condition stated for a given graph in the MBPS problem
formulation from the previous section. It is important to note
that, for a given graphG(V,E), δ can only be a number from
the integer interval[δlower bound, δupper bound] = [|E|− |V |+
2, |E|]. The upper bound of the range of possible values ofδ

for the given graphG is δupper bound = |E| and represents
the worst-case situation, when all lines of the networkN must
have a directional relay. An example of a system graph, which
requiresδ = δupper bound is shown in Fig.2.b. The lower
bound of the range of possible values ofδ for the given graph
G is δlower bound = |E|− |V |+2 and represents the best-case
situation, when only the minimumpossiblenumber of lines
of the networkN must have a directional relay. The system
shown in Fig.2.a is an example when this situation occurs:
δ = 6 − 4 + 2 = 4 dires are needed for the graph with four
vertices (|V | = 4) and six edges (|E| = 6). In addition, it
is also important to note that, the location of the dires is not
unique. For example, a different placement of the same number
δ = 4 of dires for the graph from Fig.1.b is shown in Fig.2.a.

Because for a given graphG(V,E), δ is an integer from the
interval[|E|−|V |+2, |E|], we can write it asδ = |E|−|V |+k,
where the integerk corresponds to a suitable k-tree (details

(a) (b)

Fig. 2. Example graphs with differentδ’s (a) Graph withδ = |E|−|V |+2.
(b) Graph withδ = |E|.

will be provided in the next subsections) in the given graph
G and is uniquely determined from the intervalk ∈ [2, |V |].
In this paper we propose an algorithm to find the minimumk

(thereby the minimum number of diresδ) and identify the
location of dires. The proposed algorithm is based on an
iterative procedure, which starts with the best case situation
k = 2 and may iterate untilk = |V |. In the next subsection, we
present the outline of proposed algorithm and then we provide
details in the subsequent subsections.

B. Outline of the Proposed Algorithm

In this subsection we present our algorithm for finding
δ = |E| − |V | + k and the location of dires for a given
graph. As mentioned in the previous subsection, the proposed
procedure is an iterative search process to find the minimum
integerk belonging to[2, |V |], and thereby aδ, which satisfies
the condition of having at least one dire oriented against the
direction of travel in any loop of the given graphG in any
direction. The pseudocode of the proposed iterative algorithm
is shown in Fig.3.

Algorithm 1 : Determination of the MBPS
1: computeMBPS()
2: In: graphG(V, E)
3: Out: δ and location of dires
4: Setk ← 1
5: repeat
6: k ← k + 1
7: δ ← |E| − |V |+ k
8: k tree found← check delta(δ)
9: until !k tree found OR k = |V |

10: return δ and location of dires

Fig. 3. Pseudocode of the general algorithm for the determination of the
minimum break point set of dires. The procedurecheck delta(δ) is described
in Fig.4.

Algorithm 2 : Determination of k-tree
1: check delta(δ)
2: In: graphG(V, E), δ for a givenk
3: Out: k-tree if any and location of dires
4: repeat
5: Enumerate new setEi

|V |−k of |V | − k edges
6: Build incidence sub-matrix corresponding toEi

|V |−k

7: Compute rankr of the sub-matrix
8: if r = |V | − k then
9: Find partsSa, Sb, ...

10: if all edges inTcompl have ends in different partsthen
11: Record that k-tree is found
12: Mark dires
13: return true (k-tree found)
14: end if
15: end if
16: until all possible combinations of|V | − k edges out ofE have

been enumerated
17: return false (k-tree not found)

Fig. 4. Pseudocode of the procedurecheck delta(δ) for searching a k-tree.
Note that the enumeration process would stop in line 13 and theprocedure call
finishes once a k-tree is found. This procedure is utilized inside the proposed
algorithm from Fig.3.
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We start by checking if a break point set withδ = |E| −
|V | + k, k = 2 dires is sufficient to satisfy the condition of
having at least one dire oriented against the direction of travel
in any loop in any direction. If no such set exists, then we
continue this process and check whetherδ = |E|−|V |+k, k =
3 dires are sufficient. If not, then we repeat the check for
δ = |E|− |V |+k, k = 4 and so on. This iterative process can
continue until thek = |V | is reached, whenδ = |E|, which
requires that all edges in the system graphG must be marked
with a dire.

The proposed algorithm relies on the procedure
check delta(δ) (called in line number 8 from Fig.3),
which is detailed in Fig.4 and described in the following
subsections.

C. Networks for whichδ = |E| − |V | + k, k = 2

The procedure from Fig.4 is illustrated with respect to the
graphG shown in Fig.5.a. Consider the 2-tree ofG formed
by the edgesTa ∪ Tb = {e1, e4, e6}, whereTa = {e1, e4}
and Tb = {e6} represent the two parts (i.e., sub-trees) that
constitute the 2-tree (see Fig.5.b). LetSa = {v1, v4, v5} be
the set of vertices ofTa and Sb = {v2, v3} be the set of
vertices ofTb. Note that in some cases, one of these sets may
have only one element [6].

(a) (b)

(c)

Fig. 5. (a) Example graph. (b) The relevant 2-tree. (c) Graph with dires.

The complement of the 2-tree is the set of edgesTcompl =
{e2, e3, e5, e7, e8, e9}. Each of these edges has one of its
vertices (or ends) inSa and the other inSb. Then, the
following statement is valid (its justification is presented in
the next paragraph):
Statement 1:The minimum number of diresδ for the graph
G is precisely the cardinality of the setTcompl (i.e., |E| −
|V | + k = 9 − 5 + 2 = 6).
Therefore, the minimum break point set of dires can be placed
on these edges near vertices inSa (oriented away from the
vertex in Sa at which each edge is incident). For example,
Fig.5.c shows the location of the minimum number of dires
marked along the edges inTcompl (edges of the relevant 2-tree
are drawn with thick lines). It is important to emphasize that
dires are not located on any of the edges of the 2-tree.

The justification of Statement 1 is as follows. Because by
definition the treesTa and Tb contain no loops, any loop of

G must include some edges from the complementary edge set
Tcompl = G− Ta − Tb. These edges form a cutset ofG since
the removal of these edges leavesG in two disconnected sub-
graphs [6]. In addition, each loop inG will contain an even
number of edges from this set. Thus, when one travels along a
given loop ofG, the traveling path must traverse an edge from
the setTcompl going towards a vertex inSa and later will be
leaving from a vertex inSa (in the opposite direction). Since
each edge of this set has a dire oriented away from the vertices
of Sa, the traveling will encounter at least one dire oriented
against the direction of travel.

Searching for a 2-tree inside the procedure from Fig.4 is
based on an enumeration process. We enumerate all possible
sets with|V |−2 edges of the|E| edges (a procedure for such
enumeration is presented in [7]). For the graph in Fig.5 these
sets are{e1, e2, e3}, {e1, e2, e4}, {e1, e2, e5}, ...{e7, e8, e9}.
For each of the enumerated|V | − 2 edge sets, we build the
sub-matrix of the incidence matrix ofG corresponding to the
edge set. Then, the following statement is valid [6]:
Statement 2:If this sub-matrix has its rank equal to|V |−k =
|V | − 2, then the enumerated edge set constitutes a k-tree of
G.
If in addition, all edges from the complementary edge set
Tcompl = G−Ta −Tb have their ends in different parts of the
2-tree, then this setTcompl gives the edges which will have
dires placed on them (away from the vertices ofSa). At this
point, the process of identification of the minimum number
of break points is completed. It is also worth noting that, the
rows and columns of the sub-matrix can be arranged to make
it a block-diagonal matrix. The rows of one block correspond
to the vertices of one part (Sa) of the 2-tree while the rows of
the second block correspond to the vertices of the other part
(Sb) of the 2-tree.

D. Networks for whichδ = |E| − |V | + k, k = 3

This is the case of the second main iteration of the proposed
algorithm from Fig.3. The complete graph with five vertices
is an example for such a case (see Fig.6). We now search for
a 3-tree formed by|V | − 3 edges of the graphG. The 3-tree
represents three separate parts [6]. Similar to the earliercase
(described in the previous subsection for 2-trees), one or more
of these parts may have only one vertex. LetTa, Tb, andTc

be the three parts of the 3-tree and also letSa, Sb, andSc be
their corresponding sets of vertices.

(a) (b)

Fig. 6. (a) Complete graph with 5 vertices. (b) Relevant 3-tree.

Statement 3:Following a rationale similar to that of Statement
1, if each edge in the complementary set of edgesTcompl =
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G−Ta−Tb−Tc has its vertices in different parts of the 3-tree,
then those edges correspond to the minimum set of dires.
We place a dire on every edge present in the complementary
set which is incident to a vertex inSa. It is placed near the
vertex in Sa and is oriented away from it. Then, we place a
dire on every edge present in the complementary set which is
incident to a vertex inSb if that edge is not already marked by
a dire. The dire is placed near the vertex inSb and is oriented
away from it.

For the example in Fig.6.a the 3-tree has the partsSa =
{v1, v2}, Sb = {v3, v4}, and Sc = {v5} and the minimum
number of dires isδ = |E| − |V | + k = 10 − 5 + 3 = 8.
The edges of the 3-tree are shown by thick lines in Fig.6.b,
which also shows the marking of the dires. Note that the third
component of the 3-tree is an isolated vertex.

The search process for a 3-tree is similar to the case of
searching for a 2-tree and described generally in Fig.4. The
difference is that now we enumerate sets with|V | − 3 edges
of the |E| edges.
Statement 4: Following a rationale similar to that of State-
ment 2, if the sub-matrix of the incidence matrix ofG that
corresponds to one of these enumerated sets has its rank equal
to |V |−k = |V |−3, then the enumerated edge set constitutes
a k-tree ofG.
If in addition, all edges from the complementary edge set
Tcompl = G−Ta−Tb−Tc have their ends in different parts of
the 3-tree, then this setTcompl gives the edges which will have
dires placed on them (away from the vertices ofSa andSb).
Once this situation is identified, the process of identification
of the minimum number of break points is completed. Again,
note that the rows and columns of the sub-matrix can be
arranged to make it a three block-diagonal matrix. The vertices
in each block correspond to vertices in each part of the 3-tree.

E. Generalizationδ = |E| − |V | + k, k = 4, 5, ..., |V |

If a 3-tree is not found from the iteration fork = 3 as
described in the previous subsection, we then continue withthe
next main iteration in Fig.3 and look for a 4-tree. An example
of such a case is the complete graph with seven nodes for
which δ = |E| − |V | + k = 21 − 7 + 4 = 18 (see Fig.7).
In general, this procedure can be continued for values ofk =
4, 5, ..., |V | (see Fig.3) until an appropriate k-tree is found.
In the worst-case scenario, the procedure will continue until
k = |V | is reached. In that caseδ = |E|, which means that
all edges in the graphG must be marked with a dire.

To summarize the presentation of the proposed algorithm,
the main result of this paper may be stated as follows:The
complementary set of edges of a k-tree corresponds to the
minimum set of dires if (i) each edge of the complementary
set has its vertices in different parts of the k-tree and (ii)no
(k-1)-tree exists which satisfies the first condition.

IV. EXPERIMENTAL RESULTS

In this section we present our experimental results. Based
on the proposed algorithm, a computer program is written in
C++. Several networks are analyzed by running the program
on a Linux machine with a 2.8 GHz Intel Quad processor and

Fig. 7. The complete graph with 7 vertices is an example of graphfor which
δ = |E| − |V | + k = 21 − 7 + 4 = 18.

2 GB memory. The program can be downloaded from [8]. The
results are summarized in Table I and discussed below (entries
denoted as “-” signify data are not available or not applicable).

A. Small Systems

We first apply the proposed algorithm to the 8 bus system
from [5] and to the 10 bus Petersen testcase from [4]. The
network graphs of these testcases with the minimum number
of dires found are shown in Fig.8.

(a) (b)

Fig. 8. (a) Network graph of the 8 bus system from [5]. (b) Network graph
of the Petersen 10 bus system from [4].

B. The IEEE 14 Bus System

The graph of the IEEE 14 bus system is shown in Fig.9.a.
It may be verified that a 2-tree does not exist for which each
edge in the complementary set has vertices in different parts
of the 2-tree. However, a 3-tree exists. The edges of the 3-tree
are shown by thick lines in Fig.9.a. Note that such a 3-tree
may not be unique. The setsSa, Sb and Sc are as follows:
Sa = {v1, v2, v3}, Sb = {v4, v5, v6, v7, v8, v11, v12}, and
Sc = {v9, v10, v13, v14}. Thus the minimum number of dires
is δ = |E| − |V | + k = 20 − 14 + 3 = 9. The location and
direction of the dires is shown in Fig.9.a. We note that the
minimum number of 9 dires found by our algorithm is less
than 10, which is the best previously reported result [4].

C. Speeding-up Technique

The complexity of the search process from Fig.4 can be
reduced by first eliminating vertices of degree 1 and 2 from
the graph. For example, using this simplifying technique the
graph from Fig.9.a can be reduced to obtain the reduced
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TABLE I
COMPARISON OF THE PROPOSED ALGORITHM WITH THEILP AND GENETIC ALGORITHMS STUDIED IN [4], [5].

Proposed algorithm ILP algorithm [4] Genetic algorithm [5]
Num. vertices/edges Num. vertices/edges Num. CPU Num. CPU Num. CPU

Testcase of initial graph of reduced graph dires runtime [s] dires runtime [s] dires runtime [s]
8 bus 8/9 - 3 < 1 - - 3 10
Petersen 10 bus 10/15 - 7 < 1 7 - - -
IEEE 14 bus 14/20 7/13 9 < 1 10 - - -
IEEE 30 bus 30/41 11/22 16 2.6 18 - 18 80

(a)

(b)

Fig. 9. (a) IEEE 14 bus network graph. (b) Reduced graph.

graph shown in Fig.9.b. Second, if an edge is in parallel
with another edge (forming a loop), then we know we must
place dires on both these edges. In other words, those two
edges cannot be elements of a k-tree. Using these reduction
techniques, the search process to find a k-tree is narrowed
to fewer edges, which in turn will significantly reduce the
computational runtime. The reduced graph from Fig.9.b has
7 vertices and 13 edges. Among these 13 edges, there are 8
edges that form loops of two edges in parallel and thus we
know that these 8 edges must have dires placed on them. In
other words, 8 out of the total minimum of 9 dires placed in
the IEEE 14 bus system are located on edges that form loops
of two edges as shown in Fig.9.b.

D. The IEEE 30 Bus System

The graph of the IEEE 30 bus system is shown in Fig.10.a.
Using the reduction techniques discussed in the previous
subsection the graph is reduced to 11 vertices and 22 edges
(see Fig.10.b). Then, the proposed algorithm identifies the
minimum break point set with 16 edges, which are also marked
with dires in Fig.10.b. We note that the minimum number of 16
dires found by our method is less than 18 as the best previously
reported result [4], [5].

(a)

(b)

Fig. 10. (a) IEEE 30 bus network graph. (b) Reduced graph.

E. Computational Runtime Discussion

As seen in Table I the proposed algorithm has the shortest
computational runtime. CPU runtimes were not reported in [4]
but we suspect them to be longer than the CPU runtimes of
the genetic algorithm studied in [5]. The proposed speeding-
up techniques (discussed earlier) significantly reduce thecom-
putational complexity for the IEEE 30 bus system. How-
ever, because the proposed algorithm is an enumeration-based
approach, for larger systems the computational complexity
increases exponentially. To handle large systems, we propose
a divide and conquer approach similar to the decomposition-
based solution discussed in [4]. This is based on applying the
proposed algorithm to individual partitions of the system (e.g.,
arising from natural, administrative, etc. reasons) and then
adding additional necessary dires to form the (sub-optimal)
break point set for the whole network graph. Because such an
approach is not necessarily new, we do not propose to discuss
it in detail in this paper.
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V. CONCLUSIONS

We proposed a new graph theory based algorithm for the
determination of the minimum break point set for a meshed
system. It is based on finding a k-tree whose complementary
set of edges in the system graph corresponds to the minimum
set of dires if (i) each edge in the complementary set has
its vertices in different parts of the k-tree and (ii) no (k-1)-
tree exists which satisfies the first condition. The proposed
algorithm identified the minimum break point sets of 9 dires
for the IEEE 14 bus system and of 16 dires for the IEEE 30
bus system. These results are better than the previously best
reported values of 10 and 18 dires for the same systems.
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