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Determination of the Minimum Break Point Set of
Directional Relay Networks based on k-trees of the
Network Graphs
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Abstract—We propose a new graph theory based algorithm  The remainder of the paper is organized as follows. Section
for the determination of the minimum break point set of meshed || presents the statement of the problem addressed in this
systems. We show that if there is a k-tree in the graptG(V, E)  naner. Also, our main contribution is outlined in this sesti
associated with the system, then the minimum break point set has . . .

a cardinality of |E|—|V|+k. The proposed algorithm implements S?Ct'(_)n I descrlb.es. the proposed algorlthm for the thferelet
an iterative procedure to identify such a k-tree and having Mination of the minimum set of break points. In Section 1V,
minimum k. It is found that the cardinality of the minimum  we report experimental results for several systems, imotud

break point set is 9 for the IEEE 14 bus system and 16 for the the IEEE 14 and 30 bus systems. The paper is concluded in
IEEE 30 bus system. These minimum values are smaller than Section V.

the previously best reported results of 10 and 18 for the same
systems.

Index Terms—Directional relays. Break points. Minimum num- Il. STATEMENT OF THE PROBLEM AND CONTRIBUTION

ber of break points. k-trees. Let N be the system or networkon which directional
relays are to be placed a@(V, E) be its associated graph,
|. INTRODUCTION where V' is the set of nodes and is the set of edges,
o o respectively. A bus of the network corresponds to a node
HE problem of directional relay coordination in a mesheg, 1/ and a line of N corresponds to an edge ifl. We
system requires the selection of a set of relays. Singgsyme that the network and therefore the associated graph
opening of these relays opens all directed simple 100ps M5 connected and has no self-loops [6]dikectional relay
the system, this set is called a break point set (BPS) [Hiaced on a line of the networX is represented by an arrow-
The minimum cardinality BPS is known as the minimunpeaq ajongside the corresponding edge of the graph. The
break point set (MBPS). Determination of the MBPS iR qy-head is called dire (short for directional relay). An
interconnected networks is the key step during calculadiush example networkV is shown in Fig.1.a and its corresponding

setting of overcurrent relays protection values. raph G(V, E) is shown in Fig.1.b. The graply’ has the
Even though the problem of locating the minimum set Qlgt of nodesy — {v1,v2,v3,v4} and the set of edges

break points of a meshed system has been studied extensively_ (c1 ¢2 e3, ¢4, ¢5,¢6}. A directional relay on lineL1

most of the previous solutions obtain a minimal and not & pyspB1 in network V is represented by dire along edge

minimum set. Generally, these solutions are based on the epyl near the node1 in the graphG, oriented away from the
meration of all loops in the network graph associated with th,5qe 1.

system. The enumeration process may become prohibitively

computationally expensive due to the exponential incredise v2
the time complexity [2], [3]. Recently, the authors of [4] el &2
have proposed an integer linear programming (ILP) solution B2 x
to find the optimal break point set. Their solution represent | KJ 2 . vl

the best result (break point set of cardinality 10 for IEEE |3 10 7 |

14 bus system) in the published literature and improves overB1 B3 r1|34

many other recent approaches cited and discussed in [4]. The L6 €6
ILP solution and the recent genetic algorithm based approac (@ (b)
studied in [5] have found the br_eak point set _Of cardinaliy 1Fi . 1. (a) Example system or netwaM with four buses. (b) The associated
for IEEE 30 bus system. In this paper, we introduce a negpgphg with four nodes and six edges.

algorithm for the determination of the minimum set of break
points. Our algorithm identifies a minimum set of cardinalit
9 and 16 for the IEEE 14 bus system and the IEEE 30 bg
system, respectively.

The problem of computing the minimum break points
gt (MBPS) is stated or formulated as followGiven the
connected associated gragh(V, E) of a networkN, place as

B.-R.V. Vinnakota and C. Ababei are with the Department ofcEleal few dires as pOSSIble, such that when one travels along each

and Computer Engineering, NDSU, Fargo ND, 58108, USA (e-nkaipr-
swara.rao@ndsu.edu; cristinel.ababei@ndsu.edu;) 1system and network are used interchangeably in this paper.
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loop in G (in any direction), at least one dire oriented againswill be provided in the next subsections) in the given graph
the direction of the travel is encountered G and is uniquely determined from the intendale [2, |V]].

In this paper, we introduce a new graph theory baséd this paper we propose an algorithm to find the minimkim
algorithm for the determination of the minimum set of breakhereby the minimum number of dire§ and identify the
points. Our main contribution is as follows: 1) The proposeldcation of dires. The proposed algorithm is based on an
deterministic algorithm is based on finding a k-tree whosterative procedure, which starts with the best case $itnat
complementary set of edges in the system gi@morresponds &k = 2 and may iterate untit = |V/|. In the next subsection, we
to the minimum set of directional relays if (i) each edgeresent the outline of proposed algorithm and then we peovid
in the complementary set has its vertices in different partetails in the subsequent subsections.
of the k-tree and (ii) no (k-1)-tree exists which satisfies th
first condition, 2) To address the computational time fogdar
systems we introduce novel techniques to simplify the netwoB. Outline of the Proposed Algorithm
graph without compromising the quality of the final resuftda | this subsection we present our algorithm for finding
3) We report experimental results, which improve on theesta§ — || — |V| + k and the location of dires for a given
of the art: the proposed algorithm can find a minimum bregjtaph. As mentioned in the previous subsection, the prapose
point set of cardinality 9 and 16 for the IEEE 14 and 30 bysrocedure is an iterative search process to find the minimum
systems respectively, which is smaller than the cardinalit integers; belonging to2, |V/|], and thereby 4, which satisfies
10 and 18 reported for the same systems in [4], [5]. the condition of having at least one dire oriented against th

direction of travel in any loop of the given gragh in any

[11. DETERMINATION OF THEMINIMUM BREAK POINT direction. The pseudocode of the proposed iterative dlyuri

SET OFDIRES is shown in Fig.3.

A. Range of Possible Values for the Cardinality of the Mini-
mum Break Point Set Algorithm 1: Determination of the MBPS

Let § be the minimum number of dires required to satisfy L' COMPUteMBPS()
the condition stated for a given graph in the MBPS proble 2 In: graphG(V, B) ;
’ i ! i M3 Out: ¢ and location of dires
formulation from the previous section. It is important tat&0 | 4. Setk 1
that, for a given grapliz(V, E), § can only be a number from| s: repeat
the integer interva!5l01uer_bou71,d7 5upper_bml,nd] = HEl - |V| + 6: ke—k+1
2,|E|]. The upper bound of the range of possible values of ! S |B| V]| +k
for the given graphG is § — |E| and represents | & K-tree_found < check_delta(9)
i ] upper_bound P 9: until 'k_tree_found OR k = |V|

the worst-case situation, when all lines of the netwdtrknust |10: return & and location of dires
have a directional relay. An example of a system graph, which
requiresd = dupper_bound 1S Shown in Fig.2.b. The lower Fig. 3. Pseudocode of the general algorithm for the detetinimaf the
bound of the range of possible valuessdfor the given graph _m|r|1:|_mljlm break point set of dires. The procedaheck delta() is described
G iS Sjower_bound = |E|— |V |42 and represents the best-case
situation, when only the minimurpossiblenumber of lines
of the network N must have a directional relay. The system
shown in Fig.2.a is an example when this situation occurAigorithm 2: Determination of k-tree
5 =6—4+2 =4 dires are needed for the graph with four 1 checkdelta@) _

. . - . 2: In: graphG(V, E), ¢ for a givenk
vertices (V| = 4) and six edges|{]| :_6)' In add't_'on’ It 13 out: ketree if any and location of dires
is also important to note that, the location of the dires i Np4: repeat
unique. For example, a different placement of the same numbe:  Enumerate new sef,,|_, of [V| — k edges
6 = 4 of dires for the graph from Fig.1.b is shown in Fig.2.g.6:  Build incidence sub-matrix corresponding &,

Because for a given gragh(V, E), § is an integer from the | 72 Compute rank- of the sub-matrix

interval [|E|—|V|+2, | E|], we can write it a$ = |E|—|V|+k, 8 ifr=|V|—k then

. ) 1o Find partsS,, S, ...
where the integek corresponds to a suitable k-tree (details if";.” gg;zs irfTiompz have ends in different partsen

11: Record that k-tree is found
12: Mark dires
KT 13: return true (k-tree found)
%, 14: end if
15: end if

16: until all possible combinations dV'| — k edges out off' have
been enumerated
17: return false (k-tree not found)

r

(a) (b) Fig. 4. Pseudocode of the procedwateeck delta@) for searching a k-tree.

Note that the enumeration process would stop in line 13 angrtbeedure call

Fig. 2. Example graphs with differedts (a) Graph withd = |E|—|V|+2. finishes once a k-tree is found. This procedure is utilizesitie the proposed
(b) Graph withd = |E|. algorithm from Fig.3.
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We start by checking if a break point set with= |E| — G must include some edges from the complementary edge set
V| + k,k = 2 dires is sufficient to satisfy the condition ofT¢om, = G — T, — 1. These edges form a cutset@fsince
having at least one dire oriented against the directionasielr the removal of these edges leavgsn two disconnected sub-
in any loop in any direction. If no such set exists, then wegraphs [6]. In addition, each loop i@ will contain an even
continue this process and check whether |E|—|V|+k,k = number of edges from this set. Thus, when one travels along a
3 dires are sufficient. If not, then we repeat the check faiven loop ofG, the traveling path must traverse an edge from
d =|E|—|V|+k,k =4 and so on. This iterative process catthe setT,,,,,; going towards a vertex i§, and later will be
continue until thek = |V is reached, whed = |E|, which leaving from a vertex irS, (in the opposite direction). Since
requires that all edges in the system graplmust be marked each edge of this set has a dire oriented away from the vertice
with a dire. of S,, the traveling will encounter at least one dire oriented

The proposed algorithm relies on the proceduragainst the direction of travel.
check_delta(d) (called in line number 8 from Fig.3), Searching for a 2-tree inside the procedure from Fig.4 is
which is detailed in Fig.4 and described in the followingpased on an enumeration process. We enumerate all possible

subsections. sets with|V| — 2 edges of thé E/| edges (a procedure for such
enumeration is presented in [7]). For the graph in Fig.5e¢hes
C. Networks for which = |E| — [V| + k, k = 2 sets are{el, e2,e3}, {el, e2, ed}, {el,e2,e5}, ..{e7, 68,.69}.
The procedure from Fig.4 is illustrated with respect to th'éOr each of the enumerat¢lf| — 2 edge sets, we build the

sub-matrix of the incidence matrix @¥ corresponding to the
edge set. Then, the following statement is valid [6]:

tatement 2:If this sub-matrix has its rank equal f&|—k =

V| — 2, then the enumerated edge set constitutes a k-tree of

graph G shown in Fig.5.a. Consider the 2-tree Gf formed
by the edgesl, UT, = {el,ed,e6}, whereT, = {el,ed}
and T, = {e6} represent the two parts (i.e., sub-trees) th
constitute the 2-tree (see Fig.5.b). L&t = {v1,v4,v5} be

the set of vertices off, and S, = {v2,v3} be the set of 7~

vertices ofT},. Note that in some cases, one of these sets miy!n addition, all edges from the complementary edge set
have only one element [6]. compl = G — T, —T;, have their ends in different parts of the

2-tree, then this sel,,, gives the edges which will have
dires placed on them (away from the verticesSg). At this

vl 2 o3 v4 point, the process of identification of the minimum number
€6 of break points is completed. It is also worth noting thag th
el c4 rows and columns of the sub-matrix can be arranged to make
it a block-diagonal matrix. The rows of one block correspond
V3 to the vertices of one par5() of the 2-tree while the rows of
(b) the second block correspond to the vertices of the other part

(Sp) of the 2-tree.

D. Networks for whichy = |E| — |V |+ k,k =3

£ This is the case of the second main iteration of the proposed
algorithm from Fig.3. The complete graph with five vertices
(© . g
is an example for such a case (see Fig.6). We now search for
Fig. 5. (a) Example graph. (b) The relevant 2-tree. (c) Grajth dires. g 3-tree formed byV'| — 3 edges of the graply. The 3-tree
) represents three separate parts [6]. Similar to the eardiee
The complement of the 2-tree is the set of ed@es,,; = (described in the previous subsection for 2-trees), onearem

vertices (or ends) inS, and the other inS,. Then, the pe the three parts of the 3-tree and alsodgt S, and S, be

the next paragraph):

Statement 1: The minimum number of dires for the graph vl vl

G is precisely the cardinality of the s&%,..,; (i.e., |E| —

VI eTs < A
Therefore, the minimum break point set of dires can be placed

on these edges near verticesSp (oriented away from the A A

vertex in S, at which each edge is incident). For example, ., V2

Fig.5.c shows the location of the minimum number of dires
marked along the edges T, (edges of the relevant 2-tree
are drawn with thick lines). It is important to emphasizetthdig. 6. (a) Complete graph with 5 vertices. (b) Relevant &tre
dires are not located on any of the edges of the 2-tree.

The justification of Statement 1 is as follows. Because [§tatement 3:Following a rationale similar to that of Statement
definition the treedl;, and T, contain no loops, any loop of 1, if each edge in the complementary set of ed@gs.,; =
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G-T,—T,—T. has its vertices in different parts of the 3-tree,
then those edges correspond to the minimum set of dires.
We place a dire on every edge present in the complementary
set which is incident to a vertex if,. It is placed near the
vertex in S, and is oriented away from it. Then, we place a
dire on every edge present in the complementary set which is
incident to a vertex irb,, if that edge is not already marked by
a dire. The dire is placed near the vertexSinand is oriented
away from it.

For the example in Fig.6.a the 3-tree has the paps=

{v1,v2}, Sy = {v3,v4}, and S. = {v5} and the minimum I | it 7 vertices | o of cesmhich
. ie - _ ig. 7. e complete graph with 7 vertices is an example of gfaptvhic

number of dires i = |E| — |V|+ k = 10-5+3 = 8. S Bl = [V]+h—2l—T+4= 15,

The edges of the 3-tree are shown by thick lines in Fig.6.b,

which also shows the marking of the dires. Note that the third

component of the 3-tree is an isolated vertex. 2 GB memory. The program can be downloaded from [8]. The
The search process for a 3-tree is similar to the case f@kults are summarized in Table | and discussed below g¢entri

searching for a 2-tree and described generally in Fig.4. Thenoted as “-” signify data are not available or not applieab
difference is that now we enumerate sets with — 3 edges

of the |E| edges.

. . - A. Small Systems
Statement 4: Following a rationale similar to that of State- ] )
ment 2, if the sub-matrix of the incidence matrix 6fthat Ve first apply the proposed algorithm to the 8 bus system

corresponds to one of these enumerated sets has its rarik efj@Q" [5] and to the 10 bus Petersen testcase from [4]. The
to|V|—k = |V|—3, then the enumerated edge set constitut@gtwork graphs of these testcases with the minimum number
a k-tree ofG. of dires found are shown in Fig.8.

If in addition, all edges from the complementary edge set
Teompt = G—T, —Ty, —T, have their ends in different parts of
the 3-tree, then this sé&t.,..,; gives the edges which will have
dires placed on them (away from the verticesSgfand S;).
Once this situation is identified, the process of identifzat

of the minimum number of break points is completed. Again,
note that the rows and columns of the sub-matrix can be
arranged to make it a three block-diagonal matrix. The eesti

in each block correspond to vertices in each part of the &-tre

(@) (b)
E. Generalizationy = |E| — |V| + k, k =4,5,...,|V] Fig. 8. (a) Network graph of the 8 bus system from [5]. (b) Nerkvgraph

. . . f the Pet 10b tem f 4].
If a 3-tree is not found from the iteration fdr = 3 as O " C oooen us system from [4]

described in the previous subsection, we then continuetivith

next main iteration in Fig.3 and look for a 4-tree. An example

of such a case is the complete graph with seven nodes for The IEEE 14 Bus System

which 6 = |E| — |V|+k = 21 — 7+ 4 = 18 (see Fig.7).  The graph of the IEEE 14 bus system is shown in Fig.9.a.
In general, this procedure can be continued for valuels of It may be verified that a 2-tree does not exist for which each
4,5,...,|V| (see Fig.3) until an appropriate k-tree is foundedge in the complementary set has vertices in differenspart
In the worst-case scenario, the procedure will continuél unef the 2-tree. However, a 3-tree exists. The edges of thee3-tr
k = |V| is reached. In that case= |E|, which means that are shown by thick lines in Fig.9.a. Note that such a 3-tree
all edges in the grapty must be marked with a dire. may not be unique. The sefs,, S, and S, are as follows:

To summarize the presentation of the proposed algorithi®y, = {v1,v2,v3}, S, = {v4,v5,v6,v7,v8,v11,v12}, and
the main result of this paper may be stated as folloWse S. = {v9,v10,v13,v14}. Thus the minimum number of dires
complementary set of edges of a k-tree corresponds to iR = |E| — |[V| +k = 20 — 14 + 3 = 9. The location and
minimum set of dires if (i) each edge of the complementagjrection of the dires is shown in Fig.9.a. We note that the
set has its vertices in different parts of the k-tree andr{@) minimum number of 9 dires found by our algorithm is less
(k-1)-tree exists which satisfies the first condition than 10, which is the best previously reported result [4].

IV. EXPERIMENTAL RESULTS C. Speeding-up Technique

In this section we present our experimental results. BasedThe complexity of the search process from Fig.4 can be
on the proposed algorithm, a computer program is written ieduced by first eliminating vertices of degree 1 and 2 from
C++. Several networks are analyzed by running the prograte graph. For example, using this simplifying technique th
on a Linux machine with a 2.8 GHz Intel Quad processor amptaph from Fig.9.a can be reduced to obtain the reduced
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TABLE |
COMPARISON OF THE PROPOSED ALGORITHM WITH THELP AND GENETIC ALGORITHMS STUDIED IN[4], [5].

Proposed algorithm ILP algorithm [4] Genetic algorithm [5]

Num. vertices/edges  Num. vertices/edges  Num. CPU Num. CPU ui. CPU
Testcase of initial graph of reduced graph dires runtime [s] dires runtime [s] dires runtime [s]
8 bus 8/9 - 3 <1 - - 3 10
Petersen 10 bus 10/15 - 7 <1 7 - - -
IEEE 14 bus 14/20 7/13 9 <1 10 - - -
IEEE 30 bus 30/41 11/22 16 2.6 18 - 18 80

13
. 4
12 A N 9
6 11~ 10~ -
5 A 7
1 4
=
b, A
2 3

(b)
Fig. 9. (a) IEEE 14 bus network graph. (b) Reduced graph.

graph shown in Fig.9.b. Second, if an edge is in parallel (b)
with an(_)ther edge (forming a loop), then we know we muﬂg. 10. (a) IEEE 30 bus network graph. (b) Reduced graph.
place dires on both these edges. In other words, those two
edges cannot be elements of a k-tree. Using these reduction
techniques, the search process to find a k-tree is narrowed
to fewer edges, which in turn will significantly reduce th
computational runtime. The reduced graph from Fig.9.b h

7 vertices and 13 edges. Among these 13 edges, there are 8
s s b it e, e st on g5 681 1 Tl | h proposed algorthn s e hores
other words, 8 out of the total minimum of 9 dires placed ig’;gmputatlonal runtime. CPU runtimes were not reported n [4

t

the IEEE 14 bus system are located on edges that form lo we sqspect them to b_e Io_nger than the CPU runtime_s of
of two edges as shown in Fig.9.b. e genetic algorithm studied in [5]. The proposed speeding

up techniques (discussed earlier) significantly reducedime-
putational complexity for the IEEE 30 bus system. How-
ever, because the proposed algorithm is an enumerati@tbas
D. The IEEE 30 Bus System approach, for larger systems the computational complexity
increases exponentially. To handle large systems, we peopo

The graph of the IEEE 30 bus system is shown in Fig.10.a.divide and conquer approach similar to the decomposition-
Using the reduction techniques discussed in the previobased solution discussed in [4]. This is based on applyiag th
subsection the graph is reduced to 11 vertices and 22 edpesposed algorithm to individual partitions of the systamy(,
(see Fig.10.b). Then, the proposed algorithm identifies theising from natural, administrative, etc. reasons) anehth
minimum break point set with 16 edges, which are also markadding additional necessary dires to form the (sub-opjimal
with dires in Fig.10.b. We note that the minimum number of 1Break point set for the whole network graph. Because such an
dires found by our method is less than 18 as the best preyiouapproach is not necessarily new, we do not propose to discuss
reported result [4], [5]. it in detall in this paper.

Computational Runtime Discussion
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V. CONCLUSIONS

We proposed a new graph theory based algorithm for the
determination of the minimum break point set for a meshed
system. It is based on finding a k-tree whose complementary
set of edges in the system graph corresponds to the minimum
set of dires if (i) each edge in the complementary set has
its vertices in different parts of the k-tree and (ii) no (k-1
tree exists which satisfies the first condition. The proposed
algorithm identified the minimum break point sets of 9 dires
for the IEEE 14 bus system and of 16 dires for the IEEE 30
bus system. These results are better than the previousty bes
reported values of 10 and 18 dires for the same systems.
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