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Abstract—We propose an efficient protocol for secure
comparison of integers when both integers are shadebetween
two parties. Such protocols are useful for implemeing secure
auctions. The proposed protocol’s computational copiexity is
roughly half the complexity of the best known effieent protocol.
The efficiency of the proposed protocol stems frorthe removal
of the XOR computation which is a time consuming ogration.

Index Terms—Integer comparison, secure protocol, secure
auctions, exclusive-OR, privacy.

[1,2,5], and other adhoc techniques [6,7]. The nedftient
amongst these is the protocol of [1] because itasalse of a
smaller plaintext space for the encryption scheiwe.use the
same encryption scheme of [1] and describe it next.
Homomorphic encryption: To generate the keys for
encryption, parametefs t, andl are defined such th&t> t >

[. k is the number of bits in an RSA modulyssuch than =
pg, wherep andq are primesu andv,, andv, are another set
of primes that are chosen such thgt(p-1) andv,| (9-1) [2].

u has at least+2 bits andv = v, v, has at least bits. The

shares of X and Y are id,. We choose random elements
. INTRODUCTION g,h € Z;; such that the multiplicative order bfis v = v, v,
ECURE comparison can be used to perform secure auctioasdg has ordeuv. The public key is nowk = (n, g, h, u) and
as follows. The two parties performing the auctioe A the secret key isk = (p, g, V,, V). The plaintext space i3,

S

and B. A can be thought of as the auction houseBaad an
accounting company. A and B have shares of theeotrr
highest bid X. A’s share is Xand B’s share is X The next
bidder C sends the shares, anhd Yz of his bid Y to A and B
respectively. A and B then conduct a secure prétimcdecide

if Y > X or not. If Y > X then Y becomes the curtemighest
bid and the next bidder sends the shares of hetobddand B.
The comparison protocol is again repeated to cifdble new
bid is greater than the current highest bid. Weimssthat A
and B are semi-honest (or they follow the protodmyause
the actions of A and B can be checked after théienghave
completed. The proposed protocol is a modificatadnthe
most efficient known protocol of [1,2].

Our contributions are: The main reason why the protocol of
[1] is computationally complex is because the cotation of
X@Y with shares of bits of X and Y requires éncryptions
and 2 decryptions, wheré is the number of bits in X or Y.
The reason why Y is needed for comparison is to find out
which bits of X and Y are the same. We achieve thjs
simply computing the difference, D, between théividual
bits of X and Y. The digits of D can therefore helQor -1.
To check if a given subset of digits of D, are @, eheck if the
sum of the products of the digits of that subset @nsecutive
powers of 2 is 0. Note that if a subset of digitdoare all 0
then the corresponding bits of X and Y are equal.

Related work: Secure comparison protocols have bee
implemented using Yao’s garbled circuits [3],
encryption of bits as quadratic and non-quadragisidues

modulo an RSA modulus [4], homomorphic encryption”

R. S. Katti is with North Dakota State UniversiBargo, ND 58108 USA
(phone: 701-231-7369; fax: 701-231-8677; e-majerdra.katti@ ndsu.edu).

C. Ababei is with North Dakota State Universityrd@ ND 58108 USA
(e-mail: cristinel. Ababei@ndsu.edu).

using

and the ciphertext space4§. To encrypt a message € Z,,

we choose a randogi-bit integerr, to obtain the ciphertext

as follows, E,(m,r) = g™h” mod n. The decryption ofc
can be done as follows” = g™"h™ = g™, Sinceg’ has
orderuv andu is very small, one can build a table containing
values ofg™¥ mod n and corresponding values ot In our
protocol we just need to checkdfencrypts the message 0.
This can easily be done by checkingcifmod n = 1. The
following equations make the above encryption sahem
homomorphic.

Ep(m,1)Ep, (m', ") mod n = Ej(m +m' mod u,r +1').
Ep(m,1)° mod n = E,(ms mod u,rs).

Let thel-bit integers being compared be X 5(x., %) and Y
=, ..., Y. Parties A and B have additive shares of each bit
of X and Y. Therefore A hasX= (Xa , ..., Xa) @and Ya = (Yia

, --» Yia) @and B has X=(xg, ..., Xg) and s = (Vig , ---» Y1B)
such that x= x5 + Xg mod u, and y= yia + yig mod u, where
Xia X, YiaYis € Zy, i =1, ...,1. Note that xand y are bits. A
sharing of bit y is written as [y] and denotes sfares with A
and B; namely y and y, such that y = @yg mod u. The
protocol in [1] is given below for completeness.

Protocol 1: Secure comparison.

Input: A has X% and Y, and B has Xand Y;.

Output: Y > X or Y< X.

A and B compute shares]d =1, ...,I, where
d =x+V - 2xy; = x@®y;. Note d € {0,1}.
A and B compute sharesJici = 1, ..., I, where

C=X-Y+1+X 4.

If there existsi such that all the bits (x ..., X1) are
identical to the bits (y, ..., ¥i+1) and x—y + 1 = 0, then
Y > X. Note that (x, ..., X+1) and (y, ..., Y+1) are the
same if and only if (d ..., d.;) are all O or



5.

The problem with the above method is that step 1 E
computationally intensive. We illustrate this byvigg a

protocol for computing @q, where p,ce {0,1}. A has shares
pa and ¢ and B has shareg and g of p and g respectively
such that p = p+tps mod u, and g = g-gs mod u. Therefore

pbg =p +q-2pqg = (Prps) + (Ga+ds) - 2(Pa+Ps) (Cat0s)

equivalently}:_;,, d; = 0. protocol incorrect. This happens becauseath have a value
Let a; and; be the shares of that A and B have locally ©f -1. By multiplying the s by consecutive powers of 2 the
computed. A computes encryptions,(&, r) and sends SUm w=Xj_;.;d; 2'7/*! is 0 if and only if each;dj =i+1,
them all to B. , l'is 0 (see Lemma 1 below). Therefore if thexistsi such

B chooses randorg € Z, ands; as a 2t bit integer and that w=0and d+1=0,thenY > X. Thus a comparison can
computes a random encryption of the fornbe performed without explicitly computing any XOR.

Vi = (Bpi(a;, 1) gP)%ih% mod . . _
Note that if ¢ = O theny, is an encryption of 0, otherwise Lemma 1. Let w =Xj=1d; 2/, whered; € {0,1,—-1}. w = 0 if

it is a random non-zero value. B sends these etiong and onlyifd; = 0,vj =1,.., 1.

to A in randomly permuted order. Proof: If all d; = 0 then it follows that w = 0. Now we show

A uses his secret key to check if any of the remeiv that if w = 0 then all; = 0. Consider the digits (d ..., d),
encryptions are encryptions of 0. If this is thesedie whered; € {0,1, —1}. Let thei™ digit, d; be the leftmost non-
outputs Y > X, otherwise he outputsyX. zero dlglt in (¢, ..., d). Therefored, € {1, -1}. Since
2127 < 2%, it follows that w= 0 if any of its digits is non-
zero. Therefore all the digit§ must be O for w to be 0.

Remark: The largest power of 2 used in step 2 of Prot8dsl
2", Since u has [+2 bits it is always greater than™2

= (+0a) + (Po+G) - 2(h GatPo Gt Pa Gt Po Ga) (1) herefore W = i (dja+ dj ) 27T mod u =

A can compute (prgs) and p g and B can compute gpgs)  Zj=i+1dj 277 mod u = ¥4y, d; 277+, where dj, and
and  gs. However computing gz and g da is not straight d; are shares ad;. Note that the surE] i+14j 2 <y
forward. Protocol 2 below shows how to computegp becausel; € {0,1, -1} andZ;JI 2J < 2L,

Protocol 2: Compute R Q.

Input: A has g and and B hasgq . CONCLUSION
Output: Ahas pgg —rand B has . . .
1. Asends E(ps) to B. We have proposed a protocol for comparison of miegers,
2. B chooses € Z, and computes {pa G — r mod u) using X and Y, when two parties A and B have additiverehaf X
. u : i
the homomorphic property of the encryption scheme a @nd Y. Our protocol has half the computational clexipy of
sends it to A. the most efficient known protocol of [1]. Our protd
3. Adecrypts the received encryption to getop — . achieves efficiency by eliminating the computatimihXOR

Therefore the shares of gg are (R gg — I, ). [& ga Can be
similarly computed and hencéhg.

We present a method that eliminates the computaifon

which is a time consuming task. The communication
complexity of our protocol is the same as the potef [1].
The proof of security of our protocol when A ancdai2 semi-
honest consists of a simulator that is given thaute and
outputs of the corrupted party and produces messtt are
identically distributed to the messages it receives real run

Il. PROPOSEDPROTOCOL

xi@y; in step 1 of Protocol 1. This reduces the compfesf 5 ihe protocol.
Protocol 1 by half. Our protocol is given below.
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