
 1

Abstract—We propose an efficient protocol for secure

comparison of integers when both integers are shared between
two parties. Such protocols are useful for implementing secure
auctions. The proposed protocol’s computational complexity is
roughly half the complexity of the best known efficient protocol.
The efficiency of the proposed protocol stems from the removal
of the XOR computation which is a time consuming operation.

Index Terms—Integer comparison, secure protocol, secure
auctions, exclusive-OR, privacy.

I. INTRODUCTION

ECURE comparison can be used to perform secure auctions
as follows. The two parties performing the auction are A

and B. A can be thought of as the auction house and B as an
accounting company. A and B have shares of the current
highest bid X. A’s share is XA and B’s share is XB. The next
bidder C sends the shares, YA and YB of his bid Y to A and B
respectively. A and B then conduct a secure protocol to decide
if Y > X or not. If Y > X then Y becomes the current highest
bid and the next bidder sends the shares of her bid to A and B.
The comparison protocol is again repeated to check if the new
bid is greater than the current highest bid. We assume that A
and B are semi-honest (or they follow the protocol) because
the actions of A and B can be checked after the auctions have
completed. The proposed protocol is a modification of the
most efficient known protocol of [1,2].
Our contributions are: The main reason why the protocol of
[1] is computationally complex is because the computation of
X⊕Y with shares of bits of X and Y requires 2l encryptions
and 2l decryptions, where l is the number of bits in X or Y.
The reason why X⊕Y is needed for comparison is to find out
which bits of X and Y are the same. We achieve this by
simply computing the difference, D, between the individual
bits of X and Y. The digits of D can therefore be 0, 1, or -1.
To check if a given subset of digits of D, are 0, we check if the
sum of the products of the digits of that subset and consecutive
powers of 2 is 0. Note that if a subset of digits of D are all 0
then the corresponding bits of X and Y are equal.
Related work: Secure comparison protocols have been
implemented using Yao’s garbled circuits [3], using
encryption of bits as quadratic and non-quadratic residues
modulo an RSA modulus [4], homomorphic encryption

R. S. Katti is with North Dakota State University, Fargo, ND 58108 USA

(phone: 701-231-7369; fax: 701-231-8677; e-mail: rajendra.katti@ ndsu.edu).
C. Ababei is with North Dakota State University, Fargo, ND 58108 USA

(e-mail: cristinel.Ababei@ndsu.edu).

[1,2,5], and other adhoc techniques [6,7]. The most efficient
amongst these is the protocol of [1] because it makes use of a
smaller plaintext space for the encryption scheme. We use the
same encryption scheme of [1] and describe it next.
Homomorphic encryption: To generate the keys for
encryption, parameters k, t, and l are defined such that k > t >
l. k is the number of bits in an RSA modulus n, such that n =
pq, where p and q are primes. u and vp, and vq are another set
of primes that are chosen such that vp | (p-1) and vq | (q-1) [2].
u has at least l+2 bits and v = vp vq has at least t bits. The
shares of X and Y are in Zu. We choose random elements
�, � ∈ ��

∗ such that the multiplicative order of h is v = vp vq
and g has order uv. The public key is now pk = (n, g, h, u) and
the secret key is sk = (p, q, vp, vq). The plaintext space is Zu
and the ciphertext space is ��

∗ . To encrypt a message m ∈ Zu,
we choose a random 2t-bit integer r, to obtain the ciphertext c,
as follows, 	
��, �� � 	�

��� 	��	�. The decryption of c
can be done as follows, �� � ������ � ��� . Since gv has
order uv and u is very small, one can build a table containing
values of ��� mod n and corresponding values of m. In our
protocol we just need to check if c encrypts the message 0.
This can easily be done by checking if cv mod n = 1. The
following equations make the above encryption scheme
homomorphic.
	
��, ��	
�	�

�, ���	��	� � 		
�� � �	��	�, � � ���.
	
��, ��

�	��	� � 		
���	��	�, ���.

Let the l-bit integers being compared be X = (xl , …, x1) and Y
= (yl , …, y1). Parties A and B have additive shares of each bit
of X and Y. Therefore A has XA = (xlA , …, x1A) and YA = (ylA

, …, y1A) and B has XB = (xlB , …, x1B) and YB = (ylB , …, y1B)
such that xi = xiA + xiB mod u, and yi = yiA + yiB mod u, where
xiA, xiB, yiA,yiB ∈ Zu, i = 1, …, l. Note that xi and yi are bits. A
sharing of bit y is written as [y] and denotes y’s shares with A
and B; namely yA and yB, such that y = yA+yB mod u. The
protocol in [1] is given below for completeness.
Protocol 1: Secure comparison.
Input: A has XA and YA and B has XB and YB.
Output: Y > X or Y ≤ X.
1. A and B compute shares [di], i = 1, …, l, where

di = xi + yi - 2xiyi = xi⊕yi. Note di ∈ {0,1}.
2. A and B compute shares [ci], i = 1, …, l, where

ci = xi – yi + 1 + ∑ �!
"
!#$%& .

If there exists i such that all the bits (xl , …, xi+1) are
identical to the bits (yl , …, yi+1) and xi – yi + 1 = 0, then
Y > X. Note that (xl , …, xi+1) and (yl , …, yi+1) are the
same if and only if (dl , …, di+1) are all 0 or

Secure Comparison Without Explicit XOR

Rajendra S. Katti and Cristinel Ababei
Department of ECE, North Dakota State University, Fargo, North Dakota, USA

S

 2

equivalently ∑ �!
"
!#$%& � 0.

3. Let (i and)i be the shares of ci that A and B have locally
computed. A computes encryptions Epk((i, ri) and sends
them all to B.

4. B chooses random si ∈ Zu
* and �$

� as a 2t bit integer and
computes a random encryption of the form

*$	 � �	
��($, �$��
+,��,��,

-
	��	�.

Note that if ci = 0 then *$	is an encryption of 0, otherwise
it is a random non-zero value. B sends these encryptions
to A in randomly permuted order.

5. A uses his secret key to check if any of the received
encryptions are encryptions of 0. If this is the case he
outputs Y > X, otherwise he outputs Y ≤ X.

The problem with the above method is that step 1 is
computationally intensive. We illustrate this by giving a
protocol for computing p⊕q, where p,q ∈ {0,1}. A has shares
pA and qA and B has shares pB and qB of p and q respectively
such that p = pA+pB mod u, and q = qA+qB mod u. Therefore
p⊕q = p + q – 2pq = (pA+pB) + (qA+qB) - 2(pA+pB) (qA+qB)
 = (pA+qA) + (pB+qB) - 2(pA qA+pB qB+ pA qB+ pB qA) (1)
A can compute (pA+qA) and pA qA and B can compute (pB+qB)
and pB qB. However computing pA qB and pB qA is not straight
forward. Protocol 2 below shows how to compute pA qB.
Protocol 2: Compute pA qB.
Input: A has pA and and B has qB.
Output: A has pA qB – r and B has r.
1. A sends Epk(pA) to B.
2. B chooses r ∈ Zu and computes Epk(pA qB – r mod u) using

the homomorphic property of the encryption scheme and
sends it to A.

3. A decrypts the received encryption to get pA qB – r.
Therefore the shares of pA qB are (pA qB – r, r). pB qA can be
similarly computed and hence p⊕q.

II. PROPOSED PROTOCOL

We present a method that eliminates the computation of
xi⊕yi in step 1 of Protocol 1. This reduces the complexity of
Protocol 1 by half. Our protocol is given below.
Protocol 3: Secure comparison.
Input: A has XA and YA and B has XB and YB.
Output: Y > X or Y ≤ X.
1. A and B compute shares [di], i = 1, …, l, where

di = xi - yi. Note di ∈ {0,1, -1}.
2. A and B compute shares [ci], i = 1, …, l, where

ci = xi – yi + 1 + ∑ �!
"
!#$%& 2"/!%&.

The rest of the protocol is the same as Protocol 1.

Protocol Correctness: If there exists i such that all the bits (xl

, …, xi+1) are identical to the bits (yl , …, yi+1) and xi – yi + 1 =
0, then Y > X. This is equivalent to: If there exists i such that
all the bits (dl , …, di+1) are 0 and di + 1 = 0, then Y > X (di’s
are from step 1 of Protocol 3). Let wi = ∑ �!

"
!#$%& 2"/!%& =

2�" � 2
0�"/& �⋯� 2

"/$�$%&, where �! ∈ 20,1, 415. Note

that if we had left wi = ∑ �!
"
!#$%& (like in step 1 of Protocol 1),

then wi can be 0 even if all the dj’s are not all 0, making the

protocol incorrect. This happens because dj can have a value
of -1. By multiplying the dj’s by consecutive powers of 2 the
sum wi = ∑ �!

"
!#$%& 2"/!%&, is 0 if and only if each dj, j = i+1,

…, l is 0 (see Lemma 1 below). Therefore if there exists i such
that wi = 0 and di + 1 = 0, then Y > X. Thus a comparison can
be performed without explicitly computing any XOR.

Lemma 1: Let w = ∑ �!

"
!#& 2!, where �! ∈ 20,1, 415. w = 0 if

and only if �! � 0, ∀7 � 1,… , 9.
Proof: If all �! � 0 then it follows that w = 0. Now we show
that if w = 0 then all �! � 0. Consider the digits (dl , …, d1),
where	�! ∈ 20,1, 415. Let the ith digit, di be the leftmost non-
zero digit in (dl , …, d1). Therefore di ∈ {1, -1}. Since
∑ 2! :	2$$/&
!#& , it follows that w ≠ 0 if any of its digits is non-

zero. Therefore all the digits �! must be 0 for w to be 0.

Remark: The largest power of 2 used in step 2 of Protocol 3 is
2l-1. Since u has l+2 bits it is always greater than 2l-1.
Therefore wi = ∑ �d!= � d!> 	�

"
!#$%& 2"/!%&	��	� �

	∑ d! 	
"
!#$%& 2"/!%&	��	� � 	∑ d! 	

"
!#$%& 2"/!%&, where d!=	and

d!> are shares of d!. Note that the sum ∑ d! 	
"
!#$%& 2"/!%& : �

because d! 	 ∈ 20,1, 415 and ∑ 2! :	2$$/&
!#& .

III. CONCLUSION

We have proposed a protocol for comparison of two integers,
X and Y, when two parties A and B have additive shares of X
and Y. Our protocol has half the computational complexity of
the most efficient known protocol of [1]. Our protocol
achieves efficiency by eliminating the computation of XOR
which is a time consuming task. The communication
complexity of our protocol is the same as the protocol of [1].
The proof of security of our protocol when A and B are semi-
honest consists of a simulator that is given the inputs and
outputs of the corrupted party and produces messages that are
identically distributed to the messages it receives in a real run
of the protocol.

REFERENCES
[1] I. Damgard, M. Geisler, and M. Kroigard, “Homomorphic encryption

and secure comparison,” Int. J. Applied Cryptography, Vol. 1, No. 1, pp.
22-31, February 2008.

[2] I. Damgard, M. Geisler, and M. Kroigard, “A correction to “Efficient
and secure comparison for on line auctions”,” Int. J. Applied
Cryptography, Vol. 1, No. 4, pp. 323-324, August 2009.

[3] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and
mechanism design,” EC’99, New York: ACM Press, pp. 129-139, 1999.

[4] M. Fishlin, “A cost-effective pay-per-multiplication comparison method
for millionaires,” in CT-RSA’01 and Lecture Notes in Computer
Science, Springer, Vol. 2020, pp. 457-472, 2001.

[5] J. Garay, B. Schoenmakers, and J. Villagas, “Practical and secure
solutions for integer comparison,” Lecture Notes in Computer Science,
Springer, Vol. 4450, pp. 330-342, 2007.

[6] I. F. Blake and V. Kolesnikov, “Conditional encrypted mapping and
comparing encrypted numbers,” in AsiaCrypt’04, and Lecture Notes in
Computer Science, Springer, Vol. 3329, pp. 515-529, 2004.

[7] I. F. Blake and V. Kolesnikov, “Strong conditional oblivious transfer
and computing on intervals,” in FC’06, and Lecture Notes in Computer
Science, Springer, Vol. 4107, 2006.

