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Abstract—The most popular algorithm for solving the routing
problem for field programmable gate arrays (FPGAs) has virtu-
ally remained the same for the past two decades. It is essentially
an iterative maze technique, such as Dijkstra’s algorithm, applied
to each net in the circuit repeatedly. During multiple routing
iterations, nets are ripped-up and rerouted via different paths to
resolve competition for routing resources or to improve circuit
delay. The most popular implementation of such a routing
approach is the PathFinder algorithm used inside the VPR
tool [1]. The quality of the routing solution depends however
on the order in which nets are processed during each of the
routing iterations. This is commonly referred to as the net
ordering problem. PathFinder addresses this problem through
continuous updates of the cost associated with overusing routing
resources. After each routing iteration, the cost of overusing a
routing resource is increased based on the routing so far, so that
probability of resolving all congestion during future iterations
increases.

To further address the net ordering problem, in this paper,
we investigate the effectiveness of two combined techniques to
enhance PathFinder. We change the order in which nets are
ripped-up and rerouted to give higher priority to nets with two,
three, and more than eleven pins because these nets have the
largest impact on the quality of the routing solution. Also, we
alter the cost calculation during wave expansions for two-pin
nets based on the global routing solution obtained by solving
an equivalent multicommodity flow problem. Preliminary results
suggest that the conventional FPGA routing solutions can still be
improved.

Keywords-FPGAs; global routing; net reordering; multicom-
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I. INTRODUCTION

Routing is an essential step in the design automation of

standard-cell based very large scale integration (VLSI) and

FPGA circuits. It is a back-end design step where routing paths

must be found for each of the circuit nets by utilizing a limited

number of routing resources. Typically, this is accomplished

by routing each net sequentially. The main issue with this ap-

proach has always been that the quality of the solution depends

on the order in which nets are processed, and that it is hard

to find a good net ordering [3]. The most popular approach

to address the net ordering issue is the rip-up and reroute

method. In this method, each net is routed first individually

without considering congestion, usually constructing Steiner

minimum trees for each net. After all of the nets have been

routed, the congested areas are identified and the nets in those

areas are ripped-up and rerouted through less congested areas.

In the case of VLSI circuits, this approach is used during

both global and detailed routing steps. Global routing, which

is done first on a coarser routing graph, serves as a guide

and helps to speed up and improve the quality of the detailed

routing step. Because rip-up and reroute based global routing

also suffers from the net ordering issue, multicommodity flow

algorithms have been studied to address this problem [4].

In the case of FPGA circuits, the most successful routing

approach has also been the rip-up and reroute method. For

instance, the widely popular academic place and route tool,

VPR [1], [2], uses an improved version of the Pathfinder

routing algorithm [5]. However, despite the ever growing

size and complexity of FPGA circuits, routing has remained

largely a one-level rip-up and reroute approach, with increased

computational runtimes and unknown quality gap between the

actual and the optimal routing solutions. In this paper, we

revisit routing for FPGAs. Specifically, we investigate whether

multicommodity flow (MCF) based global routing can also be

used in the context of FPGAs to guide the detailed routing step

in an effort to improve the quality of the final routing solution.

To further mitigate the net ordering problem, we change the

order in which nets are ripped-up and rerouted to give give

higher priority to nets with two, three, and more than eleven

pins because these nets have the largest impact on the routing

solution.

II. PREVIOUS WORK

As the most successful routing algorithm for FPGA circuits,

PathFinder [5] introduced the idea of negotiated congestion. It

repeatedly rips-up and reroutes each net in the circuit until all

congestion is resolved. In this way it converges to a solution in

which all nets are routed and no routing resource is overused.

Routability is achieved by forcing nets to negotiate for a

routing resource and thereby determine which net needs the

resource the most. Delay is minimized by allowing the more

critical nets a greater say in this negotiation. The VPR router

improves the performance of Pathfinder through smarter maze

routing wavefront expansions [1], [2].

These routers are essentially detailed routing algorithms.

Some authors however do utilize the term global routing to

refer to the portion of the above algorithms that is responsible978-1-4799-5944-0/14/$31.00 c© 2014 IEEE



with the rip-up decisions and the calls of the core routine that

performs wavefront expansions for individual nets [1]. While

some authors distinguish between global and detailed routing

[6], others refer to the entire routing problem for FPGAs as

global routing [7].

Even though global routing was studied for FPGAs before

[6], it is not clear what is the impact of a global routing step on

the quality of the final detailed routing solution. For instance,

Haritaoglu and Ayakanat [6] report results in terms of channel

densities for testcases that are not part of the widely popular

VPR tool. To address the net ordering problem, Lee et al. [8]

propose to route simultaneously all nets connected to a given

logic block using a min-cost flow computation based routing

method. To alleviate the block ordering problem, they use an

iterative refinement scheme based on Lagrangian relaxation.

However, results are reported only for nine small testcases

which are different from the twenty testcases included in

the VPR tool package [10]. The study in [9] introduces a

genetic algorithm based routing approach which selects the

best routing solution for each net from a set of pre-computed

routings. They report results that are similar to previous

routing approaches. While the VPR placement algorithm has

been improved in several occasions (see for instance [11]),

the VPR routing remained the same during almost the last

two decades.

III. RELATION BETWEEN STRUCTURE OF TESTCASES AND

THE QUALITY OF ROUTING

The quality of routing1 is affected by multiple factors. To

gain insights into how the distribution of the number of pins

of each net as well as the number of nets affect the circuit

delay, we have modified the VPR tool and used it to perform

an investigation whose results are reported and discussed here.

This investigation is done using the testcases listed in Table I

from Section V-B. These testcases include all twenty testcases

of VPR 4.3 [10]. All simulations are run using default values

for the user-controlled parameters of the VPR tool.

The analysis data are reported in the plots from Fig.1,

where the values reported in Fig.1.b and Fig.1.c represent

averages of all individual values obtained for each of the

testcases from Table I. It can be observed that the circuit

netlists are formed mostly of nets with a small number of

pins (i.e., two and three pins) as seen in Fig.1.a. The number

of pins includes the source and all sinks of a given net.

Consequently, the aggregated contribution of all these nets’

delay to the total circuit delay is the most significant as shown

in Fig.1.b. However, large nets with more than eleven pins

contribute noticeably as well to the total circuit delay as seen

in Fig.1.b. This contribution becomes even more significant at

the expense of a lesser contribution from nets with two and

1Quality of routing can be measured as the final circuit delay after detailed
routing or as the minimum channel-width required for successful routing or the
computational runtime of the routing algorithm (directly affected by the total
number of iterations until successful routing is achieved) or total wirelength
(WL).
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Fig. 1. (a) Percentage of nets whose number of pins is {2, 3, ..., 11,≥ 12},
(b) Contribution of nets’ delay to the total circuit delay, (c) Contribution of
nets’ delay to the critical-path delay in the circuit.

three pins when we look at only the critical-path in the circuit

(see Fig.1.c).

These plots suggest that one needs to concentrate primarily

on the nets with two and three pins and nets with more than

eleven pins in order to have a first order impact on the total and

critical-path delays. These insights motivate us to investigate

the following techniques to enhance the quality of routing:

1) We change the conventional random net ordering during

detailed routing to give higher priority to nets with two and

three pins as well as to nets with more than eleven pins. One

can see this technique as a form of preconditioning of net

ordering.



2) Because two-pin nets represent the vast majority of nets, we

introduce a multicommodity flow based global routing step

which processes only these nets. An efficient approximation

algorithm is used to solve the equivalent multicommodity

flow problem, thereby simultaneously and globally routing

these nets. The global routing result is used later during the

detailed routing step to modify the internal expansion costs

such that detailed routing paths follow as closely as possible

the global routes. This technique mitigates the net ordering

issue for two-pin nets.

IV. GLOBAL ROUTING AS A MULTICOMMODITY FLOW

PROBLEM

The proposed global routing for two-pin nets is similar to

the conventional global routing used in standard-cell based

digital design flows. It is formulated on a global routing graph

(GR-graph), which in this case is constructed as illustrated in

Fig.2. The entire FPGA area is partitioned into a number of

tiles as indicated by the hashed lines in Fig.2.b. Each tile has

an associated node in the GR-graph. Arcs of the GR-graph

connect only nodes corresponding to adjacent tiles. Thus, the

GR-graph is a regular mesh graph. The tiles on the four edges

of the FPGA area include also the IO pads as shown in Fig.2.b.

Each arc is assigned a capacity which depends on the channel-

width internal variable of the VPR tool. The channel-width

represents the number of routing resources in a vertical or

horizontal routing channel.

The global routing problem is defined as the problem of

finding routing paths on the GR-graph for all two-pin nets

from the netlist of a given testcase such that arcs’ capacities

are not violated. This problem is solved by mapping it into

a multicommodity flow (MCF) problem, which is then solved

using an efficient polynomial time approximation algorithm.

Multicommodity flow problems represent a class of network

flow problems in which it is necessary to distinguish among

the flows in the network [12]. More formally, the MCF prob-

lem is formulated on a given network of nodes connected by

edges. Each edge has a particular capacity (a.k.a. “bandwidth”)

u, as well as a cost c associated with it. Given is also a set

K of k commodities, where a commodity i is defined by a

triple (si, ti, di) − source, sink and demand. Traffic can flow

along each edge consuming some of the bandwidth. The total

traffic flow is made up of all node-to-node demands that can go

through multiple hops along their routes in order to get from

source to destination. The objective of the MCF problem is to

find a feasible and optimal (i.e., minimum cost) set of routes

through the network for each of those demands, subject to joint

capacity constraints. In addition, the traffic demands cannot be

split onto different routes, that is, the complete connection for

any commodity must be routed through a single path.

In our approach, the GR-graph is utilized as the network to

formulate the MCF problem. This is achieved by associating a

new commodity in the MCF problem to each two-pin net from

the global routing problem. For instance, the MCF problem

with three commodities from Fig.3 is constructed for a global

routing problem which must route three two-pin nets.

The MCF problem is solved using an efficient polynomial

time approximation algorithm studied in [13], [14]. This

polynomial time approximation algorithm is based on the re-

cent advancements in polynomial time approximation schemes

(PTAS) [15] and can achieve (1+ǫ) optimal solutions, where ǫ

is an input accuracy threshold. The basic idea of this algorithm

is that it proceeds in phases and each phase is composed

of a number of k iterations. In iteration j of the ith phase

we route dj units of commodity j in a sequence of steps. In

each step, a shortest path from source sj to destination tj is

computed using a so called length function. The solution found

using this algorithm is a fractional flow solution, meaning

that the flow for a given source-destination pair may be split

between multiple paths. Because we cannot use directly such a

fractional flow solution, we use a simple heuristic to round the

fractional flows to integral flows such that only one routing

path is selected for each source-destination pair. The heuristic

simply rounds flows along the paths with highest fractions.

Since the polynomial time approximation algorithm itself is

not part of the actual contribution of this paper, we refer the

reader to [13], [14] for further implementation details.

The solution of the MCF problem found by the above poly-

nomial time approximation algorithm represents essentially the

solution to the global routing problem. This solution can be

utilized to guide the detailed routing step later on such that

detailed routing paths follow as closely as possible the global

routing solution. For instance, the detailed routing path for the

two-pin net whose source is CLB(1, 1) and sink is CLB(3, 3)
shown in Fig.2.b follows the global routing solution given by

the sequence of nodes {1, 4, 5, 6, 9} which is found as the path

though which the associated commodity is transported in the

MCF problem formulation.

V. ENHANCED PATHFINDER

A. Enhanced PathFinder Routing Algorithm

The proposed modified PathFinder routing algorithm is

shown in Fig.4. In the first phase, the MCF problem is con-

structed for two-pin nets. Commodities in the MCF problem

formulation are associated to two-pin nets as discussed in the

previous section. Then, the MCF problem instance is solved

using the polynomial time approximation algorithm. The

global routing paths for all commodities represent preferred

routing paths for the corresponding two-pin nets. PathFinder

is changed in the second phase to guide the routing of the

two-pin nets to follow as closely as possible the preferred

global routing paths. The change consists in penalizing more

the usage of routing resources which are outside the preferred

global routing paths during wavefront expansions of the de-

tailed routing. The order in which nets are ripped-up and

rerouted is also changed. Nets with 2, 3, and greater than 11

pins are processed after the rest of the nets during each outer

loop iteration. In this way, nets with a number of pins between

4 and 11 are always ripped-up and rerouted first during a new

iteration while nets with 2, 3, and greater than 11 pins are

left with the routing solution from a previous iteration if their

routing was successful. Because initially all nets are routed





B. Simulation Results

We have modified the PathFinder routing algorithm inside

the VPR tool to integrate the techniques described in the

previous sections. We applied these changes to both the

routability- and timing-driven routing algorithms. We report

simulation results collected for all twenty testcases of VPR

4.3 [10] and listed in Table I. These results are obtained for

a channel-width equal to the minimum channel-width found

with the reference2 PathFinder for each testcase.

TABLE I
LIST OF INVESTIGATED TESTCASES. NETS REPRESENTS THE NUMBER OF

NETS IN THE NETLIST OF EACH TESTCASE.

Testcase Nets Testcase Nets

ex5p 1072 s298 1935
tseng 1099 bigkey 1936
apex4 1271 frisc 3576

misex3 1411 spla 3706
alu4 1536 elliptic 3735

diffeq 1561 pdc 4591
dsip 1599 ex1010 4608
seq 1791 s38417 6435
des 1847 s38584.1 6485

apex2 1916 clma 8445

First, we investigate the routability-driven routing algorithm.

In this case, we expect the proposed enhanced PathFinder to

reduce circuit delay because of the net reordering. We also

expect for routability to be improved due to the global routing

based cost alteration during wavefront expansions during the

detailed routing step of two-pin nets. Indeed, the global routing

of two-pin nets provide an initial routing solution for these

nets that is closer to the actual final routing than what would

otherwise the conventional initial routing provide. In other

words, the initial routing solution (starting with the first

iteration of the outer loop in Fig.4) starts with fewer overused

routing resources and this in turn results in fewer routing

iterations to reach a feasible routing solution for all nets.

This is confirmed in Fig.5.a where we report the difference

between the number of iterations required to reach a feasible

routing solution when the enhanced PathFinder is used versus

the case when the reference PathFinder is used. Fig.5.b shows

the difference as percentage between the critical path delays

achieved with the enhanced and reference PathFinder routers.

We do not plot here the total wirelength, which on average

remained the same in both cases.

In the second set of experiments, we investigate the timing-

driven routing algorithm. The timing driven routing algorithm

of VPR is also based on PathFinder but uses a cost function for

wavefront expansions that combines congestion and Elmore

delay cost components. Therefore, in this case, we expect

the proposed enhanced PathFinder to have a lesser impact on

routability but a larger impact on circuit delay. Fig.6 shows the

results in this case where we can see that critical path delay

is improved for several testcases while the number of routing

iterations remains virtually the same on average.

2VPR tool is run using default values for all user-controlled parameters.
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Fig. 5. (a) Difference between the number of routing iterations of routability-
driven enhanced PathFinder and of the reference case for each of the twenty
testcases. A negative value means the enhanced PathFinder finishes in fewer
routing iterations. (b) Difference as percentage between the critical path delay
obtained in the two cases.
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Fig. 6. (a) Difference between the number of routing iterations of timing-
driven enhanced PathFinder and of the reference case for each of the twenty
testcases. (b) Difference as percentage between the critical path delay obtained
in the two cases.

VI. DISCUSSION AND FUTURE WORK

We notice that most testcases have several nets with a very

large number of pins and they are always on the timing critical

path. Practically, the pins of these nets are spread over the

entire area of the FPGA. These cases are very difficult to

improve in terms of wirelength and circuit delay. That is on

one hand because the bounding box of such nets is already



very large (as a result of the placement step and cannot be

reduced during routing) and on the other hand because the

reference PathFinder is already finding good enough routing

paths for these nets through its negotiated congestion rip-up

and reroute process. This suggests that larger improvements

could potentially be achieved through techniques that include

logic restructuring to eliminate nets with very large number

of pins and buffering.

In the routability-driven case, for most testcases the en-

hanced PathFinder reaches a feasible routing solution in fewer

iterations. While a reduction in the the total number of

iterations results into reduction of the computational runtime

(hence this strategy can be seen as an alternative to [16] to

reduce runtime), in this case, the reduction is overwhelmed

by the runtime spent on constructing and solving the MCF

problem.

The total computational runtime of all the routing steps is

longer with about a quarter of the reference runtime for the

small size circuits from Table I. This difference scales up with

the circuit size primarily because the computational runtime of

the proposed global routing step increases due to the increase

of the MCF problem. This can be addressed by working with

global routing graphs which are coarser: a node of the GR-

graph can be associated, for instance, with clusters of four or

more CLBs. Another idea is to implement hierarchical global

routing, thereby speeding up the computational runtime. To

further mitigate the net ordering problem, we can globally

route nets with more than two pins as well. This can be

done by transforming these nets into separate two-pin nets

and then adding them to the MCF problem formulation. This

transformation can be done by first using a Steiner minimal

tree (SMT) algorithm for each net and then splitting the net at

the Steiner points. Such investigations are left to future work.

VII. CONCLUSION

Aimed at addressing the net ordering problem for FPGA

routing, we investigated two enhancement techniques for

PathFinder, the most popular routing algorithm during the

last two decades. The first technique changes the order in

which nets are ripped-up and rerouted to give give higher

priority to nets with two, three, and more than eleven pins.

The second technique modifies the cost calculation during

wave expansions of two-pin nets to take into account the

global routing solution obtained by solving an equivalent

multicommodity flow problem. Preliminary results show that

these techniques can reduce the number of routing iterations

while slightly improving the critical path delay in the case

of routability-driven routing. In the case of timing-driven

routing, these techniques result in improved critical path delay

for several testcases. The total wirelength remains virtually

the same in both cases. The source code of the enhanced

PathFinder router is publicly available at [17].
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