Investigation of DVFS Based Dynamic Reliability Management for Chip Multiprocessors

Milad Ghorbani Moghaddam
Electrical and Computer Engr.
Marquette University
Milwaukee WI, USA
Email: milad.ghorbanimoghaddam@marquette.edu

Alexandre Yamamoto
Electrical and Computer Engr.
Texas A&M University
College Station TX, USA
Email: yama501@tamu.edu

Cristinel Ababei
Electrical and Computer Engr.
Marquette University
Milwaukee WI, USA
Email: cristinel.ababei@marquette.edu

Abstract—We investigate dynamic voltage and frequency scaling (DVFS) as a mechanism for dynamic reliability management (DRM) of chip multiprocessors (CMPs). The proposed DRM scheme operates as a control technique whose objective is to drive the operation of the CMP such that reliability changes towards a desired target. While the chip multiprocessor is continuously monitored and reliability is estimated in real time, the voltage and frequency of different cores in the CMP are dynamically adjusted such that reliability converges towards the target. When the temperature of cores increases and thus reliability degrades, the proposed DRM scheme throttles selectively the frequency of the cores with the highest temperature. This is turn, leads to a lower power dissipation in those cores whose temperature decreases, thereby improving reliability. We leverage existing simulation and estimation tools to develop the proposed DRM scheme. Simulations results show that the proposed DRM scheme provides an effective way to trade off reliability and performance.

Keywords—dynamic reliability management; dynamic voltage and frequency scaling; chip multiprocessors

I. INTRODUCTION

Wearout or aging failure mechanisms of CMOS integrated circuits include time-dependent dielectric breakdown (TDBB), negative bias temperature instability (NBTI), electromigration (EM), thermal cycling (TC), and stress migration (SM). The impact of these failure mechanisms has become increasingly adverse due to the increased power densities and system complexity. Faster aging leads to earlier performance degradation with eventual device breakdown and thus system failure due to errors. The shift from singlecore to multicore processors has somewhat alleviated the issue of increasingly large power densities. However, this issue persists especially with the advent of chip multiprocessors (CMPs) that integrate tens and hundreds of cores1 on the same chip; some cores must be shut off to keep power densities under control, thereby not utilizing fully the available computational power of chip multiprocessors (CMPs). This is commonly referred to as dark silicon problem. Therefore, reliability started to attract more attention and it has become an important design challenge.

Generally, we can classify reliability oriented design methods into two categories. The first category is that of static approaches, which address the problem of reliability at design time. Static design methods include guardbanding and fault tolerance techniques. For example, supply voltages are selected high enough to guarantee correct functionality despite variation in threshold voltage or in temperature and supply noise. In this way energy gained from downscaling is sacrificed to combat reliability problems. However, if this sacrifice becomes too large, downscaling may become detrimental [1]. Fault tolerance techniques are based on fault detection and recovery mechanisms, which require energy and area overheads. Previous work employed fault tolerant techniques based on 1) error detection implemented through coarse grained replication or redundancy [2]–[4], 2) failure prediction used to take preventative measures to avoid, or at least mitigate the effects of device failures [5]–[7], and 3) error masking [8]. Simulated annealing is used to optimize both energy and reliability in [9]. A sequential quadratic programming based approach is proposed in [10] to maximize the lifetime of a multiprocessor system considering the electromigration effects in communication links. A wearout aware schedulability analysis technique is introduced in [11] for real-time independent tasks mapped to processor with dynamic voltage and frequency scaling capabilities. A convex optimization based approach is proposed in [12] to maximize the lifetime reliability of the cores of a multiprocessor system subject to electromigration wearout. The study in [13] uses genetic algorithms to identify voltages and frequencies of the cores of a multiprocessor system to maximize the lifetime and minimize the soft-error susceptibility. The main challenge of this category of methods is to reduce the energy and area overheads while reliability is still improved.

The second category of reliability oriented design methods is that of dynamic approaches. The main idea of this class of approaches is to dynamically monitor the system during runtime and by using either reactive or proactive techniques to change the operation of the system such that reliability is improved. Note that these approaches may use support from the first category of static approaches discussed in the previous paragraph. A two phase DRM algorithm to address various aging mechanisms is introduced in [14]. In the first phase, an application is profiled to find the maximum performance that each hardware configuration can run while still maintaining the desired mean time to failure (MTTF). In the second phase, the configuration with the highest performance and satisfying MTTF is selected for the remaining application’s run. Dynamic reliability banking is proposed in [15] to address aging due to electromigration. Reliability slack is introduced in [16] and used for dynamic reliability management during periods of high processing demand. The authors of [17] exploit the natural

1It is predicted that actually future CMPs will integrate thousands of cores.
variation in workloads to assign jobs to cores in a manner that minimizes the impact of NBTI and TDBB on lifetime
reliability. The authors of [18] introduce Facelift, a technique to
hide aging through aging-driven application scheduling and
to slow it down by applying voltage changes at key times. A
DVFS control and look-up table reliability estimation based
DRM scheme is introduced in [19] for singlecore processors to
address process variation aware oxide breakdown. The impact of
job scheduling based power management on reliability is
investigated in [20]. A dynamic tile partition algorithm is
introduced in [21] to balance workload among active cores while
relaxing stressed ones. A system level HW/SW reliability
management scheme where a chip dynamically adjusts its own operating frequency and supply voltage over time as
the devices age due to NBTI is introduced in [22]. The authors of
[23] study a control theoretic approach that uses data from
aging sensors to compute the wearout degradation and to
maximize the lifetime of homogeneous multicore systems. The
same authors introduce a complete software implementation,
working on a real mobile hardware platform, of a workload-
aware dynamic reliability management technique to address
TDBB wearout [24]. A reinforcement learning algorithm is
proposed in [25] to optimize the lifetime of a multicore system
by controlling the average temperature and thermal cycling.
While the majority of previous work focus with their reliability
oriented design methods only either on the computational
portion of the system (i.e., singlecore or multicore) or on the
communication component (i.e., buses or networks-on-
chip), the authors of [26] concentrate on the combination of
both. They use a neural network based reliability estimator and
thread migration for dynamic reliability management of chip
multiprocessors.

In this paper, we investigate the use of dynamic voltage
and frequency scaling as a mechanism for dynamic reliability
management of chip multiprocessors. Because for CMPs either
the cores or the network-on-chip may become the reliability
bottleneck, we focus on the whole CMP system as the
combination of both components. We leverage existing full
system simulation and reliability estimation tools to develop
the proposed DRM scheme. We use these tools to conduct
simulations for different CMP architectures and report results
for several PARSEC benchmarks. Simulation results show that
the proposed DVFS based DRM scheme provides a mechanism
to trade reliability with performance. To the best of our
knowledge, no prior work investigated DVFS based dynamic
reliability management for CMPs treated as the combination of
both computational and communication units.

II. BACKGROUND

In this section we discuss briefly background information
on time-dependent dielectric breakdown (TDBB) and negative
bias temperature instability (NBTI) as the two failure
mechanisms that we deal with in this paper. We also discuss the
concept of dynamic voltage and frequency scaling (DVFS).

A. Wearout Failure Models

1) Time Dependent Dielectric Breakdown: Time dependent
dielectric breakdown (TDBB) is a wearout mechanism that is
caused by the formation of a conducting path through the gate
oxide to substrate inside CMOS transistors due to electron
tunneling current [27]. TDBB has become increasingly severe
as the thickness of the gate oxide decreased due to continuous
technology downsampling. It has been studied a lot in the past
and few modeling approaches exist. Here, we use the TDBB lifetime model described by the following expression [14]:

$$MTTF_{TDBB} \propto \left(\frac{1}{V} \right)^{a-bT} \times e^{\frac{X+Y+ZT}{kT}}$$

(1)

where k is the Boltzmann’s constant and a, b, X, Y, and Z are model fitting parameters and are determined from experimental data. In our implementation discussed later on, we use the same values as in [14] $a = 78$, $b = -0.081$, $X = 0.759 eV$, $Y = -66.8 eV K$, and $Z = -8.376 eV K$ based on the data from [28].

2) Negative Bias Temperature Instability: Negative bias
temperature instability (NBTI) is another wearout mechanism
that mainly affects PFET CMOS transistors, when they are
stressed at large negative gate voltages and high temperatures [29]. NBTI manifests as a gradual increase in the threshold
volatge and consequent decrease in drain current and transcon-
ductance. The degradation exhibits logarithmic dependence on
time. This aging phenomenon has also become more adverse
due to technology downsampling. Likewise TDBB, NBTI has
been investigated a lot. One of the most popular NBTI lifetime models gives for $MTTF_{NBTI}$ at a temperature T, and is described by the following expression [14]:

$$MTTF_{NBTI} \propto [(\ln(\frac{A}{1 + 2e^{\frac{X}{kT}}}) - \ln(\frac{A}{1 + 2e^{\frac{X}{kT}} - C})) \times \frac{T}{e^{\frac{X}{kT}}}]^\beta$$

(2)

where A, B, C, D, and β are model fitting parameters. We use the same values as in [14] $A = 1.6328$, $B = 0.07377$, $C = 0.01$, $D = -0.06852$, and $\beta = 0.3$ based on the data from [30].

B. Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling (DVFS) is a design
operation mode or design style where partitions of the same
system are supplied with different supply voltages and clock
frequencies that can be changed dynamically. The objective of
this design style is to reduce average power dissipation
without degrading performance. These partitions are referred
to as voltage-frequency islands (VFI) and the communication
between such islands must be done via first input first output
(FIFO) queues to buffer the data transmitted between different
isaands operating at different clock rates. Additional costs incur
due to the required voltage level converters.

There has been significant work done on DVFS based
design optimization. On one hand, previous studies focus on
computational cores. Specifically, chip multiprocessors
(CMPs) can especially benefit from DVFS that enables power
management while conducting computations under stringent
power considerations [31]. Consequently, we find prior works
addressing several design aspects including voltage island
formation [32], power management techniques [33], or thermal
management [34].

On another hand, previous studied focus on networks-
on-chip as the communication component in today’s chip
multiprocessors or complex multicore systems-on-chip. In this
context, previous DVFS techniques are typically applied at either router/link level or cluster of routers level. For example, in the first category, the authors of [35] use DVFS for NoC links. Frequency boosting is used to further improve the link performance [36] while in [37] DVFS is applied to the wire- lines of wireless NoCs. In the second category, many previous studies present methods to partition the NoC into several VFIs and methodologies for runtime energy management [38]. Because the granularity of VFIs is coarser in this case, the potential energy savings are generally less than when VF islanding is done at the router level.

In this paper, we use dynamic voltage and frequency scaling (DVFS) as the primary knob to control the application or benchmark behavior such that the per-tile power dissipation is geared in such a way that the overall CMP lifetime reliability moves towards the desired target value. While there are other techniques to change the power profile of a CMP system, such as core folding or per-core power gating [39], here, we focus on DVFS due to its popularity and support in today’s multicore systems and operating systems.

III. DVFS BASED DYNAMIC RELIABILITY MANAGEMENT

In this section, we describe the DVFS based dynamic reliability management scheme that we propose to investigate. The idea of dynamic reliability management is to continuously monitor the CMP system and then periodically make decisions to update or tune different control knobs with the goal of shifting the system’s operation to a mode where lifetime reliability is as close as possible to a desired value that is usually set by user. Such a target lifetime reliability is usually reached after several control periods because of the inertia or delay it takes for different portions of the CMP chip to heat-up or cool-off. The challenging aspect of any DRM scheme is to achieve the above goal with minimal performance penalty and hardware overheads. Consequently, even though the idea of dynamic reliability management is relatively new, there have been several attempts proposed to address that challenge. In this paper, our objective is to investigate the use of DVFS as a control knob to dynamically control lifetime reliability of CMPs seen as the unified combination of both cores and networks-on-chip.

There are two very important aspects regarding the construction of the DRM scheme that need to be emphasized. First, in order to be able to use it in real time, the DRM scheme must be very efficient such that its runtime overhead is very small and therefore performance is not significantly affected by the time it takes 1) to estimate current lifetime reliability and 2) to make decisions to update voltages and frequencies. To estimate reliability statically, we adopt the lifetime reliability estimation approach proposed in [26] because, as illustrated in Fig.1.a, it treats the CMP system as the combination of both cores and network-on-chip. In other words, this approach does not rule out major components that can become lifetime reliability bottlenecks, thereby minimizing estimation errors of MTTF of the whole CMP system. Obviously, using a reliability estimation approach as illustrated in Fig.1.a dynamically is not practical due to the rather long computational runtimes of McPAT power calculator [41], HotSpot temperature calculator [42], and REST lifetime reliability calculator tool [43]. Therefore, similar to [26], in the DRM scheme investigated in this paper, we use a neural network (NN) based estimator as shown in Fig.1.b. The NN based lifetime reliability estimator is very efficient because it translates to only the evaluation of a function that takes as input the activity counters and router powers (as indicated in Fig.1.a) as well as specific weights that are computed statically during the training process.

Fig. 1. (a) Block diagram of complete flow to statically estimate lifetime reliability (measured as MTTF) of the whole system as combination of cores plus network-on-chip. (b) Dynamic reliability management scheme uses DVFS controller to set voltages and frequencies of individual tiles in the next control period such that current MTTF approaches target MTTF. The CMP systems is composed of a number of tiles. A tile is the combination of one core and one NoC router.

The second important aspect regarding the construction of the DRM scheme is that to ensure that lifetime reliability estimations are accurate (and therefore the entire scheme to ultimately be accurate), we must include in such estimations both cores and network-on-chip because they are interdependent components of the same system. This is precisely what we do in our DRM implementation. This is very important because, as reported in [26], disregarding any of the two components during lifetime reliability estimation is prone to errors that can be as high as 60%, thereby significantly misleading any technique that attempts to optimize lifetime reliability.

The block diagram of the DRM scheme investigated in this paper is shown in Fig.1.b. It is essentially implemented as a control algorithm inside our customized Gem5 based full system simulation framework. During a regular simulation of a given benchmark, for a given architecture of the CMP, infor-
information about the activity counters (i.e., instructions executed by cores) and power values for all routers of the network-on-chip is used as input into the neural network based MTTF estimator. The projected or estimated MTTF is compared to the desired target MTTF by the DVFS controller, which then decides for each core whether the clock frequency must be throttled, increased, or left unchanged. The logic behind the DVFS controller is simple: if the estimated current MTTF is less than the target MTTF, then throttle the frequency of the core to the next lower frequency from the set of frequencies we work with (and lower its supply voltage too); otherwise, raise the frequency to the next higher frequency (and raise its supply voltage too); if the estimated current MTTF is within the vicinity (dictated though a user set parameter δ) of the target MTTF, then keep the same frequency for the core. The pseudocode of this control algorithm is shown in Fig.2.

Algorithm: DRM Scheme

1: In: Desired $MTTF_{\text{Target}}$, δ hysteresis bandwidth; γ maximum percentage of updated tiles in a control period; core activity counters and routers power
2: Out: Frequencies and supply voltages for all tiles for next control period
3: Use neural network based MTTF estimator to find current MTTF of each tile and of whole CMP
4: if $MTTF_{\text{CMP}} < MTTF_{\text{Target}} - \delta$ then
5: Sort all tiles in increasing order of their MTTF
6: for $i \leftarrow 1$ to γn do // n: number of tiles
7: if $MTTF_i < MTTF_{\text{Target}} - \delta$ then
8: Switch down frequency and voltage of this tile
9: end if
10: end for
11: else if $MTTF_{\text{CMP}} > MTTF_{\text{Target}} + \delta$ then
12: Sort all tiles in decreasing order of their MTTF
13: for $i \leftarrow 1$ to γn do
14: if $MTTF_i > MTTF_{\text{Target}} + \delta$ then
15: Switch up frequency and voltage of this tile
16: end if
17: end for
18: end if

Fig. 2. Pseudocode of the DVFS based DRM scheme. This control algorithm is implemented as a callable routine inside the Gem5 simulation framework. Parameters δ and γ can be set by user to allow for calibration of how aggressive the DRM policy is.

IV. SIMULATION RESULTS

We leverage existing simulations tools, Gem5 full system simulator [40] and REST reliability estimator [43], to implement the DRM scheme discussed in the previous section. We conduct full system simulations on several Parsec benchmarks [44] to investigate the DRM scheme for two different CMP architectures composed of 4 cores and 16 cores respectively. Each of these architectures use regular mesh NoCs: 2x2 and 4x4. The default architectural configuration parameters utilized in our custom Gem5 based simulations, unless otherwise specified, are shown in Table I.

A. Dynamic Reliability Management

In our simulations, we set as target or desired average MTTF a value that is with 100% longer than what it is when no DRM is applied, which is our reference case. In other words, we are interested in doubling the average lifetime of the investigated CMP architectures. Fig.3 — Fig.6 show the simulation results for blackscholes, canneal, bodytrack, and dedup Parsec benchmarks run as applications with 16 threads on a CMP architecture with 4x4 tiles. The plots show only the period of time that covers the so called region of interest (ROI) of the Gem5 simulation. For each simulation shown in these figures, the Gem5 simulator is stopped a number of times during the ROI (this number depends on the actual length of the ROI and the selected control period discussed in the previous section) to perform DRM and update the frequencies and voltages of each tile. Each of these stop-times corresponds to a data point out of the sampling points shown on the horizontal axis in Fig.3 — Fig.6.

TABLE I. ARCHITECTURAL CONFIGURATION PARAMETERS.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology node</td>
<td>65nm</td>
</tr>
<tr>
<td>Frequencies</td>
<td>2GHz downto 1.4GHz, with 100MHz step</td>
</tr>
<tr>
<td>VDDs</td>
<td>1.1V downto 0.95V, with 25mV step</td>
</tr>
<tr>
<td>Core</td>
<td>Alpha EV6 21264</td>
</tr>
<tr>
<td>Core CPU model</td>
<td>Out of order (Detailed CPU)</td>
</tr>
<tr>
<td>Branch predictor</td>
<td>2 bit counter</td>
</tr>
<tr>
<td>Reorder buffer</td>
<td>80-entries</td>
</tr>
<tr>
<td>L1 ICache</td>
<td>32KB</td>
</tr>
<tr>
<td>L1 DCache</td>
<td>64KB</td>
</tr>
<tr>
<td>L2</td>
<td>2MB</td>
</tr>
<tr>
<td>Network</td>
<td>2D regular mesh, 1 router per core</td>
</tr>
<tr>
<td>Tile floorplan</td>
<td>Router to the top of core ALU</td>
</tr>
<tr>
<td>Link bandwidth</td>
<td>32 bits</td>
</tr>
<tr>
<td>Routing algorithm</td>
<td>XY</td>
</tr>
<tr>
<td>Number of virtual channels (VCs)</td>
<td>2</td>
</tr>
</tbody>
</table>

Fig. 3. Gem5 with DVFS based DRM simulation of blackscholes benchmark.

Fig. 4. Gem5 with DVFS based DRM simulation of canneal benchmark.
B. Discussion

The results indicate that lifetime reliability can be effectively improved using DVFS based DRM schemes. However, this improvement is at the expense of some performance penalty, as shown in Table II. When compared to the thread migration based DRM scheme studied in [26], we note that the DVFS based DRM scheme is able to improve MTTF more but at larger performance penalties (the largest performance penalty reported in [26] is 9.16%). This suggests that, for applications where performance degradation is not acceptable, a thread migration based DRM scheme may be a better choice. In applications where performance degradation can be tolerated, the proposed DVFS based DRM scheme can be used to trade performance for larger MTTF improvements. Note that, frequency throttling can theoretically improve MTTF a lot — at the limit, if cores are completely stopped, MTTF becomes infinity. On the other hand, thread migration is limited in its ability to significantly improve MTTF even if it would be acceptable to degrade performance — that is because no matter how much one could shuffle jobs among cores, if the benchmark is computationally intensive and all cores are heavily utilized, temperature profile will be high anyways.

V. Conclusion

The main contribution of this paper is the investigation of DVFS as a control technique to develop dynamic reliability management schemes for chip multiprocessors (CMPs) to address TDBB and NBTI aging failure mechanisms. A notable merit of this study is that the online NN based reliability estimation is done in a unified manner: CMP systems are treated as the combination of both cores and network-on-chip, because each of these components can become the weakest link from a lifetime reliability perspective. Simulation results showed that lifetime can be doubled with acceptable performance degradation. This suggests that DVFS offers a better way to trade lifetime with performance degradation than thread migration based techniques.

ACKNOWLEDGMENT

This work was supported by the National Science Foundation (NSF), grant CCF-1360439. Any findings and conclusions or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the NSF.

REFERENCES

We consider the DRM scheme from [26] for comparison purposes because it is the only other DRM scheme that considers both cores and NoC in a unified manner. All other previous DRM schemes do not include the NoC component in their optimization, and therefore their reported MTTF values may be off by as much as 60% as reported in [26].