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Abstract—We introduce a district level multiple buildings en-
ergy and power simulation framework. At the building level, the
proposed simulation framework, SmartBuilds, leverages Energy-
Plus as the core simulation engine for building energy assessment,
thereby benefiting from the capabilities of a widely accepted and
used state-of-the-art modeling tool. Building models may include
batteries for energy storage and renewable energy generators:
PV arrays and wind turbines. At the district level, one of the
main goals is to provide a versatile platform for the simulation
and optimization of the interaction between the electric grid
and buildings as well as of the interaction between buildings.
Because buildings can participate in intelligent social-like activi-
ties through which energy tokens/budgets can be exchanged, the
tools provides collective optimization opportunities beyond the
usual techniques applied at building level. The paper introduces
SmartBuilds’ architecture and demonstrates its usefulness in
scenarios where multiple buildings are simulated concurrently
to asses and seek operating schedules for battery energy storage
systems that minimize the overall energy consumption at the
district level.

Keywords-multiple buildings energy simulation; battery energy
storage system, ESS; scheduling; peak shaving; Energy Plus;
open source software, renewable energy; distributed generation;
smart grid

I. INTRODUCTION

The building sector is the largest energy consumer in the

world. For instance, buildings in the US account for more than

40 percent of the total energy consumption and greenhouse

gas emissions. Therefore, it is economically, socially, and

environmentally significant to increase the energy efficiency

and to reduce the energy consumption of buildings. Conse-

quently, a variety of technology programs − which seek to

develop high-impact, energy efficient building technologies,

accelerate movement of building technologies and solutions

to the market, and support a greater adoption of residential

and commercial building energy codes − are on-going in this

respect, some with direct support from the US Department

of Energy (DOE) [1], [2]. The problem of building controls,

usually addressed with standard heuristic control approaches,

is now being tackled with advanced techniques based on model

predictive control which incorporate predictions of weather,

occupancy, renewable energy availability, and energy price

signals [3], [4]. New multi-objective problem formulations are

solved to improve building thermal comfort, decrease peak

demand, and reduce total energy costs using a variety of

different techniques and algorithms including load shifting or

active storage and individual component optimizations.

In line with these efforts, we develop a new simula-

tion software framework, SmartBuilds, to combine building

and district models into an integrated approach to capture

energy consumption, distribution/supply network, and con-

trols/management in just one model. Of particular interest

is the incorporation in the simulation of renewable energy

generators, e.g. PV arrays and wind turbines, and of energy

storage devices, e.g. electrochemical batteries, such that the

models are suitable for studies for integrating distributed

energy generation at the building level in the context of the

fast development of future smart grid. The proposed simulation

framework is a versatile modular component-oriented and scal-

able framework for model and algorithm development, simu-

lation, and testing. It is intended as a platform for developing

novel optimization algorithms for new industrial applications

of energy storage for demand response, distributed energy

generation with renewable sources at building and district

level.

SmartBuilds overcomes current limitations (discussed in the

next sections) and bridges the gap between existing building

energy analysis and simulation tools, such as EnergyPlus [5],

and distribution network analysis and electric power system

simulations tools, such as MatPower [6]. While the proposed

simulation framework will serve as a platform to develop

and validate new optimization algorithms for the placement

and sizing of energy storage systems (ESS), installation of

renewable energy generators (PV and wind turbines), pre-

dictive controls and forecast of ESS needs to meet demand

response (DR) signals, ESS integration into enhanced building

management systems (BMS), and others, our main objective

in this paper is 1) to introduce SmartBuilds architecture and

2) to use it to solve the problem of finding optimal operating

schedules for battery energy storage systems to enable peak

shaving in multiple buildings set-ups.

II. RELATED WORK

A. Energy Simulation Software for Buildings

Developing smart building systems is challenging due to the

high cost of implementation and evaluation process which may

be very time consuming. Assessing a smart building before978-1-4673-7151-3/15/$31.00 c© 2015 IEEE



actually constructing it is a complex task because it must

model and capture a variety of sensors, home appliances, and

devices that form a complex heterogeneous system. Such an

assessment depends immensely on modeling and simulation

tools, which represent a necessary and crucial means towards

the realization of smart buildings.

Usually, the simulation of building energy and thermal

building systems, assessment of building topologies, and elec-

trical systems is done separately, using point tools. There are

many such point tools and a partial list is maintained for

instance online at [7]. One of the most popular and widely

used such tools is EnergyPlus, a building energy modeling tool

developed by DOE and Lawrence Berkeley National Labs [5].

It models heating, cooling, lighting, ventilation, other energy

flows, and water use. It was developed to provide an integrated

simulation for accurate temperature and comfort prediction.

This simulator does have some limitations with respect to

electric power modeling including handling of photovoltaic

arrays as well as with respect to its combination with electric

power system simulators, such as the widely used PSCAD

[8]. While EnergyPlus is free and open-source, there are

also commercial simulation tools. For instance, the Integrated

Environmental Solution Virtual Environment (IESVE) is a

robust energy analysis tool that offers a high degree of accu-

racy and interoperability with the building information model

(BIM) model [9]. Other examples include Design Builder,

which provides advanced modeling and simulation (based on

EnergyPlus) tools in an easy-to-use interface [10], eQuest [11],

as well as other reported smart building simulation tools [12]–

[15].

It is important to note that most of these point simulation

tools focus on individual buildings without the ability to handle

multiple buildings within the same simulation. However, the

importance of incorporating in the simulation, of multiple

interconnected building systems, the details of the electrical

distribution grid has been recently demonstrated by European

groups for net-zero buildings with PV generators [16]. They

developed Integrated District Energy Assessment by Simula-

tion (IDEAS), a Modelica library for the integrated modeling

and simulation of buildings and districts. IDEAS can describe

the built environment, energy consumption and supply, and

networks and control in just one model, giving rise to a more

effective analysis and better control of the energy system

under consideration [16]. Other researchers also recognize

the importance of the impact of building energy consumption

control actions on the grid, because these actions can lead

to supply/demand imbalance and voltage/frequency deviation

and thus, threaten grid stability [17]. Thus, they illustrate

a method for measuring the effects of individual building

management tools on the grid and provide this information to

the individual building simulation tools and, where warranted,

to the building operators to help find corrective actions.

Similarly, the authors of [18] recognize that wind turbines

and energy storage systems can be shared by the whole

microgrid community to reduce the investment cost for each

user. They propose a modeling framework, which coordinates

demand response (DR) and distributed energy resource (DER)

management with optimization, in order to reduce the overall

energy consumption cost in the community.

B. ESS Scheduling

Because one of the main focuses of this paper is to illustrate

how the proposed multiple buildings simulation tool can be

used for ESS scheduling − a problem closely related to that

of ESS placement and sizing − we also briefly review here

some relevant literature. Generally, energy storage systems can

be placed on the transmission systems to relieve transmission

congestion and on distribution systems to reduce peak loads

[19]. Reduction in currents produced by congestion relief

and peak reduction can result in reductions in line losses.

Furthermore, efficiency improvements can be realized by

optimizing the placement and scheduling of ESS for loss

reduction and efficiency improvement. For example, the study

in [20] introduces an analytical approach to identify the

optimal location, size and power factor of community energy

storage (CES) units to reduce energy losses at the peak load

level. However, ESS can also be used to mitigate other issues,

including outage costs and economics in distribution systems

or islanded microgrids [21], [22], voltage rises [23], and power

system vulnerability [24]. While early works focused on tradi-

tional distribution systems, recently, significant research efforts

focused on microgrids and with consideration of PV, wind,

and other renewables [25], [26]. Energy-oriented scheduling

can assist in reducing energy consumption of buildings. The

scheduling concept is applied to meetings in multiple rooms

of commercial buildings [27], [28]. In this paper, we use the

proposed simulation framework to solve the problem of ESS

scheduling with the objective of energy consumption and cost

minimization.

III. SMARTBUILDS SIMULATION FRAMEWORK

The idea of SmartBuilds simulation framework is to com-

bine building and district models into an integrated approach

to capture energy consumption, distribution/supply network,

and controls/management in just one model. Its novelty lies

in 1) the ability to run concurrently multiple building level

simulations and 2) the coupling between these simulations and

district level power simulations and optimization strategies.

With this holistic approach, we effectively address some of

the limitations of existing single building simulation tools and

extend into multiple buildings domain, which, while more

challenging, offers untapped optimization opportunities that

involve cooperation between multiple buildings. Because this

approach models a complete district-level system emulation

and simulation framework, we can easily simulate different DR

scenarios and investigate or fine-tune different optimization

strategies.

A simplified district level block diagram of the proposed

simulation framework is shown in Fig.1.a. Each of the nodes

in the distribution network represents an agent, which is

associated with a building controlled by an individual building

management system (BMS). At the top level − distribution



network or district level − SmartBuilds has the ability to

invoke electric power system simulators and to solve multi-

objective optimization problems that involve multiple build-

ings. For instance, during the simulation of a multiple build-

ings testcase, multiple EnergyPlus instances are launched in

parallel to concurrently simulate all buildings at the same time.

In addition, each of these instances can be paused with desired

control periods for the purpose of updating the inputs into

these instances based on optimization decisions made at the

top-level. More specifically, this functionality is implemented

on top of the Building Controls Virtual Test Bed (BCVTB)

[29], which allows users to couple different simulation pro-

grams to enable an integrated analysis of building systems that

require the use of multiple simulation programs whose func-

tionalities complement each other. In this context, individual

buildings represent clients, which are simulated by building

level simulator instances. The communication with individual

building simulators is facilitated via the infrastructure that

the BCVTB already provides, and which is constructed using

Berkeley Software Distribution (BSD) sockets using TCP/IP.

Because SmartBuilds simulation framework is implemented

in Matlab, we integrated it with BCVTB using an adapted

version of the MLE+ building level optimization tool [30],

which provides the mechanics to launch and communicate

with EnergyPlus simulator from within Matlab.

The block diagram of each agent (corresponding to each

building in Fig.1.a) is shown in Fig.1.b. The BMS architecture

is developed following three core design principles: 1) It is

constructed using a combination of multi-agent and multi-

layer architectures, drawing from previous studies on multi-

agent and multi-domain solutions [31]–[34]. This combined

approach has several advantages in that it naturally provides

a platform to enable hierarchical composition (hierarchical

localization via zones), domain separation, and automatic

learning of zone preferences. 2) It incorporates renewables

and energy storage systems. The integration of these elements

into the proposed framework allows us to formulate scheduling

algorithms discussed later on. 3) It integrates novel methods

to educate and influence building owners and users toward

consumption behaviors that promote energy savings. These

methods are based on novel energy consumption reporting

services.

In our current implementation, the Physical systems and

System integration components from Fig.1.b are captured

by the models used for EnergyPlus simulations. However,

optimization controls come to these models through the com-

munication channels discussed earlier. These communications

represent the coupling between the top-level simulation engine

and optimization algorithms of SmartBuilds and the individual

buildings simulators. The Business integration component −

which is the end-user-facing layer where information on

how the building is performing, how its performance can

be optimized, etc. − depicted in Fig.1.b is not supported

yet. Instead, the user has access to all the output files that

individual EnergyPlus simulations produce. Closely related is

the planned feature of the I/O link illustrated as Smartphone
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Fig. 1. (a) District level block diagram of the proposed simulation framework.
At the building level, the EnergyPlus software is employed as a computational
tool. (b) Individual agent associated with each building. Renewable sources
include PV arrays and wind turbines.

in Fig.1.b. This is a feature that will be implemented as a

smartphone app to provide building owners and users with

customized dashboards that show energy usage history and

incentive plans that are meant to shift behavior towards lower

energy consumption and reduced overall costs. In this way, we

envision the inclusion of user behavior into the set of variables

that affect system dynamics.

The tool that is closest to the proposed simulation frame-

work is the IDEAS library [16], discussed in the previous

section. While the basic philosophy is similar to that of

IDEAS, the proposed multiple buildings simulation framework

is different in several aspects. First, at the building level, we

harness the more accurate EnergyPlus as the core simulation

engine for building energy assessment. Second, one of our

goals is to provide a versatile platform for the simulation

and optimization of the interaction between the electric grid

(i.e., distribution network) and buildings (i.e., loads with

local DG and energy storage systems) as well as of the

interaction between buildings which can participate in social-

like intelligent activities through which energy tokens/budgets

can be exchanged, thereby providing collective optimization

opportunities beyond the usual techniques applied at building

level.



IV. OPTIMIZATION ALGORITHMS

In our current implementation, the district level optimization

algorithms (shown as one of the components in Fig.1.a)

include ESS scheduling algorithms for energy consumption

and monetary cost minimization.

A. The Problem of ESS Scheduling

Here, we describe our formulation of the problem of op-

eration scheduling of battery energy storage systems (ESS).

Given are the following components:

• B = b1, b2, ..., bN a set of buildings representing loads in

the distribution network (i.e., district) whose topology is

known. For each building, the energy consumption is cal-

culated with granularity of minutes by EnergyPlus, based

on the building characteristics and weather conditions.

• S = s1, s2, ..., sM (M < N , usually) a set of battery

ESS whose location is also known. Each battery ESS can

supply only a subset of buildings, which are normally

clustered together geographically. For simplicity, it is

assumed that each building can be supplied with energy

from a single battery ESS (i.e., a given building cannot

belong to different clusters, where clusters are determined

through battery assignment). However, more complex

formulations may relax this assumption to allow overlap

between clusters (i.e., a building can belong to clusters

of different batteries).

• Energy pricing tables or policies. This information is

known for 24 h time periods with 1 h granularity. While

in reality prices can change dynamically, here we assume

prices are known and fixed the day before.

Then, the problem of ESS scheduling for a 24 h period (i.e.,

the next day) is to determine when each building should have

its battery ESS access turned on/off and when each ESS should

be connected to the grid for charging such that peaks of energy

consumption at each building are shaved as much as possible

while overall energy costs are minimized.

B. Simulated Annealing

A straightforward solution to the ESS scheduling problem

is exhaustive enumeration (illustrated in the next section on

a small testcase), which is practically feasible only for small

size testcases. As the number of buildings increases, one needs

to resort to more efficient solutions. In this paper, we use

simulated annealing (SA) as an example solution to showcase

the proposed SmartBuilds simulation framework. However,

other algorithmic solutions can be added to the portfolio of

optimization methods available in SmartBuilds.

Simulated annealing is a probabilistic method proposed in

[35], [36] for finding the global minimum of a cost function

that may possess several local minima. It has been applied

successfully to a vast array of optimization problems from

different application domains [37]. The classic simulated an-

nealing algorithm was motivated by an analogy to annealing

in solids. This algorithm simulates the cooling process by

gradually lowering the temperature of the system until it

converges to a steady, frozen state. The major advantage of SA

is the ability to avoid being trapped at local minima. It employs

a random search, which not only accepts changes that decrease

the objective function, but also some changes that increase it.

Another advantage of SA is that it can easily be applied to

multi-objective optimization problems, by usually constructing

the primary cost function as a weighted sum of the individual

objective costs. The solution space exploration − going from

one feasible solution to another − is achieved by performing

so called moves, which effectively generate new solutions by

minimal alteration of previously generated solutions. What

exactly a move does depends on the application. For example,

in the famous traveling salesman problem − where a solution

represents a permutation of the cities to be visited − a move

may be defined as the swapping of the order of any two

successive cities in a previously generated solution.

In our case, a solution to the problem of ESS scheduling

is simply represented as start and stop times (sampled from

allowable time periods of a given day) of battery usage

for each of the buildings comprising the studied testcase.

Generating a new ESS schedule solution can be conveniently

done by simply randomly generating new start and stop usage

times for one or more buildings, or by randomly shifting

forward or backward the schedule of one of the buildings

with a random amount (this amount can be large at the

beginning of the annealing process and then restricted to

smaller values during subsequent iterations), or by randomly

increasing/decreasing the duration of the schedule of one of

the buildings with a random amount, etc. One key aspect

of implementing an effective SA algorithm is the ability to

initially generate solutions that may be far from the existing

solutions while gradually restricting the distance between the

parent and child solutions. In this way, a good coverage of

the solution space and rapid convergence is ensured. The

pseudocode of the SA implementation is shown in Fig.2.

Simulation results are reported in the next sections.

In our current implementation of the SA algorithm, we

define a move as the shifting forward or backward of the the

ESS schedule of a randomly picked building. The objective

cost function is defined as the equally weighted (i.e., α = 0.5)

summation of the individual objective costs:

Objectivecost = α ∗ EnergyConsumptioncost +

(1− α) ∗Monetarycost
(1)

V. CASE STUDY: ESS SCHEDULING FOR PEAK SHAVING

IN A FOUR BUILDING TESTCASE

A. SmartBuilds Used Inside Top-level Optimization Loop

The power of an efficient simulation framework like Smart-

Builds becomes evident when it is used to evaluate numerous

schedule solutions inside a larger solution space to search

for the best solution. This search can be done exhaustively

or inside the top-level loop of an optimization algorithm

(such as simulated annealing, genetic algorithm, ant colony

optimization, etc.).

In this section, we implement an exhaustive search, which

we apply to a synthetic testcase of a district comprised of
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Fig. 6. Plots showing all evaluated ESS schedule solutions during the solution
space exploration for the efour building testcase. Total Energy corresponds to
EnergyConsumptioncost from equation 1 and Monetary Cost corresponds
to Monetarycost, respectively. (a) Exhaustive enumeration. (b) Simulated
annealing.

cost with which an energy demand is met. The ESS schedule

solution represented by the data point closest to the origin

of the plot from Fig.6.a is one solution point from the

Pareto frontier. This schedule solution has battery s1 supply

building b1 during 11am-11pm and building b2 during 6am-

6pm while battery s2 supplies building b3 during 9am-9pm and

building b4 during 6am-6pm. It has a total energy consumption

of 2358.55 kWh. The combined load profiles (b1, b2 and

b3, b4) are shown in Fig.7. The total computational runtime

of SmartBuilds to evaluate all the solutions points in Fig.6.a

is about 330 sec.

B. Simulated Annealing

While the exhaustive enumeration discussed in the previous

section is straightforward, it quickly becomes very expensive

computationally, which translates in unacceptable computa-
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Fig. 7. Load profiles of the combinations b1, b2 and b3, b4 for the solution
from the Pareto frontier closest to the origin in Fig.6.a.

tional runtimes. The simulated annealing algorithm (discussed

in Section IV-B) is one approach to address this problem.

Here, we report the simulation results obtained with our SA

implementation for the same testcase with four buildings. The

plot showing all investigated solutions (440 of them in total)

is shown in Fig.6.b, where again one can identify a similar

Pareto frontier that indicates the optimal solutions with respect

to the total consumed energy and monetary cost. The best

solution was found to have a total energy consumption of

2405.33 kWh, which is only slightly worse then the solution

found using the exhaustive enumeration approach. Note the

similarity to the plot from Fig.6.a, but with far fewer solutions

being explored/evaluated in this case. The total computational

runtime of SmartBuilds to evaluate all the solution points in

Fig.6.b is about 10 seconds.



Fig. 8. Plot showing all evaluated ESS schedule solutions during the solution
space exploration based on simulated annealing for the eight building testcase.

VI. CASE STUDY: EIGHT BUILDING TESTCASE

In order to study the scalability of the proposed simulation

framework, here we again use the SA algorithm to seek the

best ESS schedule for a synthetic testcase of a district com-

prised of eight buildings. The network topology of this testcase

is shown in Fig.4, which also shows three batteries, which are

configured to supply the eight buildings partitioned into three

clusters b1, .., b5, b6, and b7, b8. The simulation setup is similar

to the one that we described for the four building testcase in the

previous section. However, in this case we use SmartBuilds to

run only the simulated annealing algorithm as the exhaustive

enumeration approach require long computational runtimes.

The plot showing all investigated solutions is shown in Fig.8,

where we again identify the Pareto frontier that indicates the

optimal solutions with minimal monetary cost with which an

energy demand is met. The total computational runtime of

SmartBuilds to evaluate all the solutions points in Fig.8 is

about 30 minutes. The best found schedule solution in this

case has a total energy consumption of 3492.9 kWh.

To further experiment with the SA algorithm, we studied the

quality of the results for different cooling schedules. A cooling

schedule is defined through the rate at which temperature is

decreased between consecutive iterations of the main loop of

the SA algorithm. Faster cooling schedules use a faster rate,

thereby shortening the computational runtime of the algorithm,

but they tend to lead to worse solutions. In our simulations,

the use of faster cooling schedules, allowed us to run the SA

algorithm many more times, each time starting from a different

initial solution generated randomly. Thus, for example, the last

column in Table I, shows the simulation results for the fastest

cooling schedule, which was run 1000 times. The results in

Table I confirm that slower cooling schedules can offer better

solutions at the expense of longer computational runtimes.

TABLE I
INVESTIGATION OF DIFFERENT COOLING SCHEDULES FOR THE SA

ALGORITHM.

Item Cooling 1 Cooling 2 Cooling 3

Number of runs 10 100 1000
Avg. runtime per run 32.8 min 11.94 min 3.7 min
Total solutions per run 76005 15499 598
Best Solution 3492.9 kWh 3513.3 kWh 3512.0 kWh

VII. CONCLUSION

We introduced, SmartBuilds, a district level multiple build-

ings energy simulation framework. The key aspects of Smart-

Builds include: (1) it leverages EnergyPlus, a state of the

art building energy modeling tool as the core simulation

engine for building energy assessment, including renewable

energy generation and energy storage devices, (2) it provides

a versatile platform for the simulation and optimization of the

interaction between the electric grid and buildings, and (3) it

models the interaction between buildings that can participate

in intelligent social-like energy exchange activities, which can

provide collective optimization opportunities beyond the usual

techniques applied at building level. We use the proposed

simulation framework to rapidly simulate multiple buildings

to asses and seek operating schedules for battery ESS that

minimize overall, district level, energy consumption and mon-

etary cost.

In ongoing and future work, we will continue to develop

SmartBuilds by implementing more optimization algorithms

to solve several problems including: placement and sizing of

renewable energy generators, especially PV array, and of ESS

together with predictive controls and forecasts to meet demand

response signals. In addition, we plan to consider user behavior

as one variable that affects the system dynamics and therefore

overall energy consumption. SmartBuilds is open source and

the source code will be made publicly available.
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