
A New Scalable Fault Tolerant Routing Algorithm

for Networks-on-Chip

Hamed Sajjadi Kia1, Cristinel Ababei2, Sudarshan Srinivasan1, and Shaista Jabeen1

1Department of Electrical and Computer Engineering

North Dakota State University, Fargo ND, 58102 USA

Email: {hamed.sajjadikia, sudarshan.srinivasan, shaista.jabeen}@ndsu.edu
2Electrical and Computer Engineering

Marquette University, Milwaukee, WI, 53233, USA

Email: cristinel.ababei@marquette.edu

Abstract—In this paper we propose a distributed routing
algorithm for networks-on-chip (NoCs) that can dynamically
detect permanent failures in NoC links and recalculate routing
paths using healthy links. What sets the proposed methodology
apart from the previous works is that it provides a better
tradeoff point between the improvement in fault tolerance and
performance penalty due to the required redundancy and extra
logic. An NoC prototype is implemented and simulated in Verilog-
HDL to show the correct operation of the proposed adaptive
routing.

I. INTRODUCTION

Continuous shrinking of the feature size in deep-submicron

domains has resulted in an increase in the adverse effects

of process variations and aging mechanisms. These adverse

effects translate into reliability issues in both components of

multi-processor systems on chip (MPSoCs): processing cores

and Network-on-Chip (NoC). Reliability has become a first

class design concern aside from the traditional objectives

that include performance, power dissipation, and area cost

[1]. To deal with the reliability challenge, previous research

has mostly focused on the processing elements of MPSoCs.

However, the NoC as the communication unit, represents a

significant portion of MPSoCs and only recently, reliability of

NoC is being addressed. However, it is still largely an ongoing

problem.

In this paper, we propose a new fault-tolerant adaptive

routing algorithm for NoC that compared to previous works

explores a larger solution space of possible routing scenarios.

This improvement comes with an increase in the complexity

of the routing algorithm. One of the main contributions of our

new routing algorithm is the way we address this complexity.

As an additional difference compared to previous works, the

need to run the routing algorithm each time the system enters

test mode is now eliminated. This helps to reduce the amount

of time required for test mode and the power consumed during

the process of updating the routing tables.

II. RELATED WORK

Adaptive routing has been investigated as a primary mech-

anism to mitigate congestion and improve network perfor-

mance. Many of these algorithms borrow ideas from routing in

computer networks. For example, DyAD [2] is a combination

Fig. 1. Illustration of partitioning of a given NoC architecture into regions.
Each region is managed by a local control unit (LCU).

of a static algorithm called oe-fix and an adaptive algorithm

based on the turn-even model, while [3] is based on deflection

routing. Other previous adaptive routing algorithms include

region-based routing (RBR) [4], default-backup path (DBP)

[5], and Vicis architecture [6].

Generally, routing algorithms can be classified as distributed

or centralized. Centralized algorithms [7] utilize a central

manager that collects information on the status of the links and

routers. The manager computes region boundaries, new routing

paths, various set-up control signals, etc., to reflect changes in

network traffic. The advantage of this approach is that the

manager always has a global view of the network. However,

additional global control signals are required for collecting

information about the network status and to update routing

tables. Distributed algorithms [8], [9], on the other hand, do

not use a central manager [10]. Routing decisions are made

by local routing controllers typically based on congestion or

stress information about the neighboring routers.

III. PROPOSED DISTRIBUTED ADAPTIVE ROUTING

Fault tolerance via adaptive routing comes at the expense

of an increase in area and power consumption required by

the additional hardware. To minimize this penalty, we design

our adaptive algorithm as a distributed routing approach.

We partition the NoC architecture into several regions. Each

region has an associated local control unit (LCU), which is

responsible with the routing activities of all packets that enter



any router contained within the region. The NoC example

in Fig. 1 is partitioned into 9 equally sized regions. These

regions do not need to be of equal area. We will present

our discussion however in the situation when all partitions

are equal for convenience and ease of explanations.

Each LCU is responsible with the routing of data to routers

in its designated region and to the first-order neighboring

routers adjacent to their designated region. For example in

Fig.1, LCU5 is responsible for routing packets that enter the

region formed by the routers {14, 15, 20, 21}. The origin of

the packets can be either the PEs connected to these routers

or the routers in the neighboring adjacent regions.

Once a packet is injected into a router at one of its

input ports, its corresponding output port is determined by

simply reading from the routing table also located inside

the router. When links suffer from permanent faults, routing

paths are recalculated and routing tables are updated with

new routing paths information. The updates are done by the

routing controllers located inside each router. The routing

paths recalculation is performed by LCUs. This is done by

switching the whole system periodically to a testing mode

state or on demand by the detection of a new hardware fault.

Initially, when the network is hardware fault free, all routing

tables implement a traditional static XY routing algorithm. As

the system ages and hardware faults occur, the adaptive routing

algorithm is triggered and new routing paths are calculated.

A. Description of the Local Control Unit (LCU)

Once the system enters the test mode, the status of each

link is determined by an error detection mechanism integrated

within each link and the results are reported to LCUs. For

this purpose we use the error detection mechanism proposed

in [11]. Each LCU uses the acquired data about the status of

the 16 links in its designated region to determine the output

port for the packets that enter the routers in its region. In our

design, a given LCU does not need to know the status of the

links that enter its designated region from neighboring regions;

hence, the total number of links an LCU has to monitor is 16.

To more easily describe how an LCU and the adaptive rout-

ing algorithm work, let us focus our discussion on router14,

which is part of the partition controlled by LCU5 of the NoC

illustrated in Fig.1. Fig.2 describes the routing algorithm to

determine the output port for the packets injected to router14
from either PE14 or any of the neighboring routers based on

their destinations and the status of the links in the region. Note

that similar algorithms are run at the level of routers 15, 20,

and 21. Also, note that although there are 16 links in each

region, we only need the information about the status of 9

of them to determine the output port for the packets injected

to each router in each region. These 9 links for router14 are

shown in Fig.3. The information about the status of the rest of

the links in this region (to run the algorithm for router14) is

redundant. For example, the links that enter router14 from the

south and the east in this figure can bring data to it. However,

since we are interested in routing data out of router14 their

status is not considered in the routing algorithm of router14.

The algorithm from Fig.2 is rather complex from the point

of view of required area and power overheads if implemented

in hardware. Therefore, to address this issue, we run the

algorithm offline and save the results in a look up table. This

look up table will then be later utilized online directly by

LCU5 to update the routing tables located inside the routers

that it monitors.

When a failure occurs in a link, a failure signal will be set

to indicate the link failure. We refer to this signal as errori.

For example, an assertion of the error1 signal means that

link 1 is broken. These error signals indicate the status of all

links in the network and are used by the routing algorithm

in deciding the output ports in a given router where packets

can be forwarded. They are also used as the address bits to

indicate the location inside the look up table where the results

of running the algorithm offline are stored. When the number

and location of failures is such that LCUs cannot route packets

toward their destinations, a system failure signal is asserted to

signal that the system cannot be utilized any more.

Also each routing path should satisfy the following condi-

tion: packets should always be routed toward their destination

in either X or Y direction. Packets are routed first in the X

direction, unless that is not possible due to failed links or

because the packets are at a router that already has the same

Y coordinate as the destination. In such cases, packets are

attempted to be routed in the Y direction. If that is not possible,

the LCU sets the system failure signal.

Based on the (X,Y) location of destinations, all possible

destinations are divided into 9 groups (see Fig.2). For example,

group 1 includes all routers that are in the same row or column

as router14. Group 2 includes the routers whose X coordinate

is smaller than the X coordinate of router14 and their Y

coordinate is larger than the Y coordinate of router14 (routers

{0, 1, 6, 7} in Fig.1).

The algorithm from Fig.2 has primarily two for-loops. It

starts with the first destination j = 0 (router0) under the

assumption that all 9 links (Fig.3) are functional i = 0, and

repeats the process for all destinations (j = 0...(N−1)). Once

the loop is completed, the results are saved in the first row of

the look up table in the following order: first 3 bits of the first

row of the look up table hold the output port id for packets that

enter router14, and whose destination is router0 (under the

assumption that all 9 links are functional). The 4th bit indicates

if the system can identify a routing path for these packets or

not. In this case, because all of the 9 links are functional it is

set to 0. The routing information for the remaining destinations

is saved in the same order in the first row of the look up table

− as shown in Fig.2. The above process is repeated under the

assumption that only link 0 is broken (i = 1 or i[0] = 1). The

corresponding routing information is saved in the second row

of the look up table. This process is repeated until we generate

and save the routing information for all possible destinations

under all link failure situations.

The operation of the routing algorithm is further described

in the following scenario examples. Consider a situation where

a packet arrives to router14 and its destination is router17.



Fig. 2. Block diagram of the proposed adaptive routing algorithm for router14.

router17 is in the first destination group. Based on the

assumption that packets should always move toward their

destination either in X or Y direction, we see that there is only

one path to the destination. The algorithm checks the status

of link 2 (Fig.3). If it is healthy, the packet will be routed to

the east output port (to router15). At this stage, the algorithm

will not check the status of link 5. Once the packet enters

router15, the algorithm for router15 will check the status of

link 5 and if it is broken it will generate a system failure signal.

As another example, let us consider the source destination pair,

router14 and router5 in Fig.1. router5 is located in group 4

(Xrouter5
> (Xrouter14

+1) and Yrouter5
> Yrouter14

(Fig.2)).

Because the destination is in region 3, the LCU5 should send

the packets to one of the routers {8, 9, 16} in regions 2 and

6. The routing algorithm first tries the X direction. If link 2

and one of the links 4 or 5 (Fig. 3) are healthy, the packets

will be routed to the east output port (this is because once the

packets enter router15 there will be at least one path open to

send the packets toward region 3). Otherwise, the algorithm

will check the status of link 1. If it is healthy, packets will be



routed to the north output port. Otherwise the system failure

signal will be asserted.

As mentioned earlier, the routing algorithm is run offline for

all destinations under all possible link failure scenarios and

the results are recorded in a look up table (as is illustrated

in Fig. 2). Therefore, there is no need to run the algorithm

again and update the tables. As already described, the error

bits are utilized to address different locations in the look

up table. This technique effectively allows the LCUs to get

pre-computed routing information easily under different link

failure situations. Fig.4 illustrates the process of updating the

routing tables by the routing controllers integrated inside the

routers using the look up tables in LCUs.

Fig. 3. The 9 links used for routing data for router14.

Fig. 4. Illustration of the process of updating the routing tables.

IV. EXPERIMENTAL RESULTS

We developed and implemented a complete regular mesh

NoC that has no support for adaptive routing and compared

our proposed NoC against it. Both these NoC architectures

are coded in Verilog, synthesized and simulated with Xilinx

ISE WebPack. We find that the proposed custom NoC requires

5.1% more area compared to the traditional NoC, it consumes

on average 7.1% more power. The maximum achievable

operation frequency is only 3.86% lower, compared to the

traditional XY routing algorithm. Table I depicts a comparison

of the area and power overheads between the proposed fault

tolerant algorithm and some of the previously proposed fault

tolerant routing algorithms.

TABLE I
AREA AND POWER OVERHEAD OF DIFFERENT FAULT TOLERANT ROUTING

ALGORITHMS FOR NOC.

Fault tolerant routing algorithm Area overhead Power overhead
(compared to XY algorithm) (compared to XY algorithm)

Proposed adaptive routing algorithm 5.1% 7.1%

DyRS-NM [12] 5.64% NA
DSPIN [8] 8% NA
FT XY3 [13] 6.1% 5.2%

Negative first [14] 33.2% NA

V. CONCLUSION

We proposed a fault tolerance oriented adaptive routing

algorithm for regular networks-on-chip. The proposed algo-

rithm helps to provide improved fault tolerance and graceful

performance degradation in the face of increasingly adverse

hardware faults due to ageing mechanisms. A 4× 4 NoC pro-

totype implemented on a Virtex-5 FPGA validated the correct

operation of the proposed routing algorithm. In addition, the

hardware implementation allowed us to realistically estimate

the performance penalty due to the extra hardware.

REFERENCES

[1] J.D. Owens, W.J. Dally, R. Ho, D.N. Jayasimha, S.W. Keckler, and
L.S. Peh, Research challenges for on-chip interconnection networks,
IEEE Micro, 27 (5) (2007) 96-108.

[2] J. Hu and R. Marculescu, DyAD - smart routing for Networks-on-Chip,
Proc. Design Automation Conf., 2004, pp. 260-263.

[3] A. Kohler and M. Radetzki, Fault-Tolerant Architecture and Deflection
Routing for Degradable NoC Switches, Proc. 3rd Int. Symp. on
Networks-on-Chip, 2009, pp. 22-31.

[4] J. Flich, A. Mejia, P. Lopez, and J. Duato, Region-Based Routing:
An Efficient Routing Mechanism to Tackle Unreliable Hardware in
Network on Chip, Proc. first Int. Symp. on Networks-on-Chip, 2007,
pp. 183-194.

[5] M. Koibuchi, H. Matsutani, H. Amano, and T. Pinkston, A Lightweight
Fault-tolerant Mechanism for Network-on-chip, Proc. second Int.
Symp. on Networks-on-Chip, 2008, pp. 13-22.

[6] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw,
A highly resilient routing algorithm for fault-tolerant NoCs, Proc.
Design Automation and Test in Europe, 2009, pp. 21-26.

[7] T. Skeie, F.O.S. Jacobsen, S. Rodrigo, J. Flich, D.Bertozzi, and S.
Medardoni, Flexible DOR Routing for Virtualization of Multicore
Chips, Proc. Int. Symp. on System-on-Chip, 2009, pp. 073-076.

[8] Z. Zhang, A. Greiner, and S. Taktak, A reconfigurable routing algorithm
fora fault-tolerant 2D-mesh Network-on-Chip, Proc. Design Automa-
tion Conf., 2008, pp. 441-446.

[9] A. Vitkovskiy, V. Soteriou, and C. Nicopoulos, A highly robust
distributed fault-tolerant routing algorithm for NoCs with localized
rerouting, Proc. Workshop on Interconnection Network Architecture,
2012, pp. 29-32.

[10] M. Li, Q.A. Zeng, and W.B. Jone, DyXY - a proximity congestion-
aware deadlock free dynamic routing method for Network-on-Chip,
Proc. Design Automation Conf., 2006, pp. 849-852.

[11] H.S. Kia and C. Ababei, Improving fault tolerance of Network-on-Chip
links via minimal redundancy and reconfiguration, Proc. Int. Conf. on
Reconfigurable Computing and FPGAs, 2011, pp. 363-368.

[12] F. Ge, N. Wu, and Y. Wan, A Network Monitor based Dynamic Routing
Scheme for Network on Chip, Proc. Asia Pacific Conf. on Postgraduate
Research in Microelectronics and Electronics, 2009, pp. 133-136.

[13] M. Valinataj, S. Mohammadi, and S. Safari, Fault-aware and Recon-
figurable Routing Algorithms for Networks-on-Chip, IETE Journal of
Research, 57 (3) (2011) 215-224.

[14] H. Zhu, P.P. Pande, and C. Grecu, Performance evaluation of adap-
tive routing algorithms for achieving fault tolerance in NoC fabrics,
Proc. Int. Conf. on Application Specific Systems, Architectures and
Processors, 2007, pp. 42-47.


