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ABSTRACT
The main contribution of this paper is to introduce a compu-

tationally efficient iterative closest line (ICL) algorithm for de-
termining indoor position drift of a quadcopter using minimal
lidar data. In addition, we present the system-level design and
implementation of a new quadcopter both as hardware and flight
control algorithms. Such a platform allows us to develop and
experiment new control and system optimization techniques. As
an example, we discuss how the proposed ICL algorithm is used
for position hold and control purposes by plugging it into the
low level implementation of the flight control algorithm of the
quadcopter. For testing and validation we use simulations with
real world data. As part of the system-level design aspects, we
present an investigation of the quadcopter power consumption.
We are interested in power consumption because it is the major
factor that determines the flight time of a typical quadcopter. We
believe that this work is a contribution toward achieving better
quadcopter design and control for indoor autonomous naviga-
tion.

1 Introduction
Recently, aerial multi-rotor or drone systems have been ap-

plied in numerous applications such as surveillance, aerial pho-
tography, and other general consumer use. Owing to their afford-
ability and versatility, these applications continue to increase and
much research has been done regarding their future applications.
For example, Amazon Prime Air, an autonomous outdoor deliv-
ery system, has received widespread media coverage. However,
while outdoor applications for multi-rotor systems are numerous,

indoor autonomous use has been less discussed in the available
literature. That is in part because indoor autonomous control is
more difficult than outdoors where access to the global position-
ing system (GPS) is reliable. Also, minor positional drift out-
doors is generally of less consequence than indoors where space
is confined. Microelectromechanical systems (MEMS) based in-
ertial measurement units (IMUs) alone have limited or no capac-
ity to sense and prevent indoor positional drift. Consequently, a
variety of solutions have been proposed to address this issue. A
common such solution is to use infrared (IR) beacons and a net-
work of cameras to tag the drone and to determine its absolute
position. Another popular solution is to use an optical flow sen-
sor attached to the bottom of the drone to reduce positional drift.
However, these solutions generally are limited in their ability to
maintain absolute control of position.

An emerging approach for indoor autonomous position con-
trol is the use of a lidar sensor. A lidar is is a scanning 2D laser
range finder, which can provide accurate position information.
Lidars have been increasingly utilized in various applications and
their cost continues to decrease. An example application is the
Neato XV, which is an autonomous vacuum cleaner robot [1].
This robot uses a lidar sensor to map and navigate the envi-
ronment and employs the simultaneous mapping and localiza-
tion (SLAM) algorithm. However, while SLAM performs well
for ground based vehicles, it is more difficult to implement for
aerial multi-rotor systems due to positional drift. Consequently,
indoors SLAM for multi-rotor systems is an active area of re-
search. Here, we see mostly studies that use lidars which cost
thousands of dollars and utilize computationally expensive algo-
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rithms that require high performance processors and GB of RAM
memory.

To address these issues, in this paper, we focus on using a
low cost lidar for quadcopter position control and develop practi-
cal algorithms that can be run on sub GHz ARM processors with
minimal RAM memory. Specifically, our main contributions in-
clude: 1) We introduce a computationally efficient algorithm for
determining position drift with minimal lidar data, 2) We vali-
date this algorithm with data from an affordable lidar sensor, 3)
We integrate the proposed algorithm within the main flight con-
trol algorithm of our in-house built quadcopter, and 4) We present
also a discussion of energy consumption in drone systems, which
has not been done in the prior available literature.

2 Related Work
Drones, particularly quadcopters, have been studied by aca-

demic, commercial, and hobbyist communities. Quadcopters are
the most popular due to their very low moment of inertia and six
degrees of freedom, which results in better stability and agility
of the quadcopter. A strong and active online community of
professionals and hobbyists alike are contributing to the body of
knowledge regarding the hardware and software development of
drones.

2.1 Related Work on Drone Modeling and Develop-
ment

Looking at the available literature, we find previous stud-
ies that can be classified into several different types of contri-
butions: studies that investigate different system modeling and
control techniques, trajectory planning algorithms, autonomous
designs, and system hardware development using off-the-shelf or
in-house components.

As examples in the first category, various control techniques
have been studied, including PID control [2,3], backstepping [4],
nonlinear H∞ [5], and Kalman filtering [6].

Prior works in the second category deal with trajectory plan-
ning, which is very challenging. While most discussions assume
that the trajectory exists, the question of the feasibility of a given
trajectory has been studied too. Planning can be solved in two
steps. In the first step, trajectories containing no time information
are calculated from a class of motion primitives. Then, the trajec-
tory is parametrized in time by choosing the trajectory speed such
that dynamic feasibility constraints are enforced. An algorithm
that allows the calculation of flight trajectories by combining the
above two steps for quadrocopters is presented in [7].

In the case of autonomous flight, processing and decision
making has to be done on board. Operating at the optimal
tradeoff between flight performance, sensors, and computing re-
sources has its own challenges. Steps towards addressing these
challenges are studied in [8] within the context of indoor explo-
ration inside a house of known shape and dimensions in order to
detect objects and be able to return outside.

The online community has been very active and numerous
online articles report drone designs developed on a large vari-
ety of hardware platforms. In addition, we see an increasing
number of commercial offerings. The survey in [9] presents a
summary of publicly available open-source projects on quadro-
tor unmanned aerial vehicles, including Arducopter, Openpilot,
Paparazzi, and others. Because some commercial offerings such
as the AR.Drone provide application programming interfaces
(APIs), they can be used for educational and research purposes
with focus on position stabilization, object following, and au-
tonomous navigation [10].

Further details on the modeling and control of quadcopters
can be found in the excellent tutorial in [11]. Several key in-
sights discussed in this tutorial include: 1) blade flapping and
induced drag are fundamental effects that are of high importance
in understanding the natural stability of quadrotors and how state
observers operate, 2) smaller quadrotors can produce faster an-
gular accelerations while the linear acceleration is at worst unaf-
fected by scaling, 3) position estimation can be done via a variety
of means, including GPS, acoustic, laser-ranging, infrared, and
vision/camera systems, and 4) usually a hierarchical control ap-
proach is used for quadrotors to control the rotor rotational speed
(lowest level), vehicle attitude, and position along a trajectory.

2.2 Related Work on Lidar Usage in Drone Develop-
ment

The key state estimates required for the control of a quadro-
tor include its height, attitude, angular velocity, and linear veloc-
ity [11]. The attitude and angular velocity are the most impor-
tant because they are the primary variables used in attitude con-
trol. The most basic instrumentation carried by any quadrotor
is an inertial measurement unit (IMU) often augmented by some
form of height measurement, either acoustic, infrared, baromet-
ric, or laser based. A typical IMU includes a three-axis rate gyro,
three-axis accelerometer, and three-axis magnetometer. The ac-
celerometers and magnetometers can be used to provide absolute
attitude information on the vehicle while the rate gyroscope pro-
vides complementary angular velocity measurements. Because
we place special emphasis on the usage of lidar data for position
control of drones, we review here also literature related to this
topic.

There has been a lot of work done using lidar for position-
ing of unmanned ground vehicles and robots [12–14]. However,
there is little prior work done on using lidars directly for drone
control. The only previous work that we are aware is [15]. This
dissertation is a demonstration of using a lidar indoors to map in
real time the environment using the iterative closest point (ICP)
technique fused with IMU data. This approach is the closest to
our work. In contrast, we use a less powerful embedded proces-
sor with only 64KB or RAM versus 2GB and focus primarily on
position/localization control compared to simultaneous mapping
and localization.
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3 Background on Modeling and Control Goals
To design and develop flight control algorithms for quad-

copters we need to model their dynamics. In this paper, we adopt
a modeling approach and notation similar to that in [16]. This
modeling approach uses two frames of operation. The first one
is the so called drone body frame and is illustrated in Fig.1. The
second frame, inertial frame is defined by the ground, with grav-
ity pointing in the negative direction of z.
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FIGURE 1. (a) Simplified diagram of a quadcopter to illustrate the
three rotation angles in the body frame (roll, pitch, and yaw), gravitation
force, and torque. (b) Inertial frame, i.e., the ground frame of reference.

The roll, pitch, and yaw rotation angles are defined in the
body frame as φ , θ , ψ , with corresponding angular velocities
φ̇ , θ̇ , ψ̇ . These variables are used to control the orientation of
the drone. Therefore, when we want to control the orientation of
the drone while flying and performing different maneuvers (e.g.,
move forward, left, etc.) or hovering (i.e., z > 0 and constant) the
goal of the control algorithm can be expressed as:

φ → φr θ → θr ψ → ψr

φ̇ = 0 θ̇ = 0 ψ̇ = 0
(1)

Where φr, θr, ψr are the desired or target orientation angles that
the drone is controlled to attain.

The position and velocity of the drone is defined in the iner-
tial frame (i.e., with respect to the ground frame) as x, y, z and ẋ,
ẏ, ż. These are important in the position control. Hence, another
control goal is that of position hold, which can be expressed as:

ẋ = 0 ẏ = 0 ż = 0 (2)

The above goal is addressed in traditional approaches by
optical flow sensors, which have limitations as discussed ear-
lier. Equation 2 can be interpreted as the goal of maintaining
the drone at the current location, at a constant or fixed distance
(within the Cartesian system of coordinates as defined by the
ground or inertial frame) from the initial flight starting point. In
this paper, we attempt to achieve these two control goals by us-
ing IMU and lidar data fusion with new techniques for lidar data
processing integrated with the position and stability control al-
gorithm.

4 Computationally Efficient Aerial Lidar Data Pro-
cessing as Key to Indoor Position Control
In this section, we present a computationally efficient

method for processing lidar data. This method helps us to
achieve the control objective described in equation 2. By us-
ing MEMS IMU sensors alone, aerial vehicles cannot maintain
their absolute position and are subject to positional drift. To com-
bat this drift, additional techniques such as GPS or sensors such
as lidar or optical flow sensors can be employed. Lidar, a 2D
scanning laser range finder, provides crucial distance informa-
tion and is fully functional indoors. While highly useful, lidar
sensors previously were too expensive for common applications.
However, recently, the cost of general purpose lidars decreased
from several thousand to just a few hundred USDs and this trend
is expected to continue. For example, this project utilizes a li-
dar sensor that can be purchased for about 150 USD. This lidar
is a replacement component for a popular autonomous vacuum
cleaner, the XV-11.

With regards to aerial autonomous indoor navigation,
SLAM algorithms have been used to autonomously map un-
known environments with on-board sensors [15]. This is gen-
erally accomplished by the fusion of lidar and IMU sensor data.
While developments in this area are promising, existing algo-
rithms run on powerful processors that run at multiple GHz clock
speeds and use several GB of RAM. In contrast to SLAM, the
method proposed in this paper is used primarily for positional
control and can be used on sub GHz processors.

In addition to high data throughput, lidar data processing
algorithms are computationally expensive due to the iterative na-
ture of existing processing algorithms. That is because there is
no simple closed form solution that yields the Cartesian trans-
lation (movement) from one lidar data set to another, gathered

3 Copyright c© 2016 by ASME



during two consecutive revolutions. To illustrate that, we use the
example lidar data set from Fig.2.
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FIGURE 2. (a) Sketch of room inside which lidar experiments are
done. Lidar sensor is moved in the x direction. (b) The data clouds
collected from the lidar sensor for each revolution during the movement
from point a to point b.

The lidar outputs data in polar coordinates, (r∠θ), which
we then convert to Cartesian coordinates, x = r · cos(θ), y =
r · sin(θ). These coordinates are used to compute or estimate
the displacements in the x and y directions, ∆x and ∆y, between
multiple revolutions of the lidar sensor. In particular, we are
interested in computing these displacements between consecu-
tive revolutions because these displacements help us to find if
the drone drifted or not within the time duration between the
two lidar sensor revolutions. The challenge is that the estimation
cannot be done by directly summing up the individual displace-
ments of different points from the data set collected during any
one given revolution. We illustrate this issue with the help of the
example from Fig.3.a. Here, the mean of the resulting displace-
ment vector has components in both x and y. However, the true
displacement is only in the x direction. To identify that correctly,
we need a technique that knows to reject and invalidate false in-
dividual point displacements such as ∆y2 and ∆y3 in Fig.3.b.
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FIGURE 3. (a) Illustration of lidar reference frame issue observed
during a lateral movement in the x direction of the inertial frame. In
this diagram, points Prevolution,index represent the data points provided
by the lidar at different locations (indicated via index) during two con-
secutive revolutions indicated as revolution = 0 and revolution = 1. (b)
The desired resulting displacement vector is obtained with the proposed
technique, which uses the so called closest point, PCL, defined on a line
formed by two closest points collected during the previous revolution of
the lidar.

In this paper, we propose an algorithm to address this issue.
This algorithm is computationally efficient and targeted at ARM
Cortex based processors with only 64KB of RAM memory. This
algorithm is described in the next section.

4.1 Proposed Iterative Closest Line (ICL) Method
Here, we describe a simple, accurate, and computationally

efficient method to estimate the overall displacements ∆x and ∆y
between two consecutive revolutions of the lidar sensor. This
method, which we refer to as the iterative closest line (ICL), can
be seen as a variant of the iterative closest point (ICP) technique
[17–19]. The pseudocode description of the proposed method
is shown in Fig.4. Essentially, it calculates the displacements
∆x,∆y between two consecutive revolutions of the lidar sensor.

ICL uses a point to line metric in order to determine the over-
all resulting displacement between two point cloud sets. This
point to line metric represents the squared error that is mini-
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Algorithm: Gradient descent based ICL Method
1: Input: Cloud data sets of two consecutive revolutions, k−1, k
2: Output: ∆xk, ∆yk for second revolution, k
3: for u← 1 to n do // n: number of iterations of algorithm
4: for i← 1 to 360 do // measurements per revolution
5: δxk = δxk +(xk,i− xCL)
6: δyk = δyk +(yk,i− yCL)
7: end for
8: for i← 1 to 360 do // simultaneous update all xk,i,yk,i
9: xk,i = xk,i−αδxk // α is the learning rate

10: yk,i = yk,i−αδyk
11: end for
12: ∆xk = ∆xk +δxk // accumulate displacement
13: ∆yk = ∆yk +δyk
14: end for

FIGURE 4. Pseudocode of the proposed ICL method. It uses a gradi-
ent descent based technique, which employs the point to line metric, to
find out the displacements.

mized with a gradient descent based algorithm [20]. The point to
line metric error for a point Pk,i(xk,i,yk,i) from the point cloud set
collected during revolution k and assigned index i is denoted as
Jk,i and described by the following equation:

Jk,i = (xk,i− xCL)
2 +(yk,i− yCL)

2 (3)

Point PCL(xCL,yCL) represents the closest point with respect
to a point to line metric. This point is calculated based on a line
formed by the two closest points from the previous lidar revolu-
tion and a current data point, Pk,i(xk,i,yk,i). An example of such
a point is shown in Fig.3.b. Jk,i represents basically the squared
distance between points Pk,i and PCL. The summation of all such
distances for all points from a point cloud set gives the squared
error that is minimized with a gradient descent based algorithm.

To calculate the coordinates (xCL,yCL) for each data point of
a lidar revolution, first, a search must be performed to determine
the two previous closest points to a new sample point. Next step
is to define a line between these points using the general line form
equation. This is used as opposed to the slope-intercept form in
order to avoid potential divisions by 0. In this way, we find the
closest point on that line to the new data point as described by
the following well known equations:

xCL =
b(bx3−ay3)−ac

a2 +b2

yCL =
a(−bx3 +ax3)−bc

a2 +b2

a = y2− y1, b = x1− x2, c =−by1−ax1

(4)

Where (x1,y1) and (x2,y2) are the two closest points on a previ-

ous lidar revolution with respect to a new point (x3,y3) as illus-
trated in Fig.3.b. The gradient descent technique will minimize
the summation of all Jk,i. For that purpose, it uses the following
quantities for its update laws from Fig.4:

δxk =
N

∑
i=1

∂Jk,i

∂x
=

N

∑
i=1

(xk,i− xCL)

δyk =
N

∑
i=1

∂Jk,i

∂y
=

N

∑
i=1

(yk,i− yCL)

(5)

To estimate the overall displacement from an initial starting
point (i.e., many revolutions ago), we accumulate or integrate
∆x,∆y across all revolutions. As an example, the traditional ICP
and proposed ICL algorithms are used to estimate the overall dis-
placements ∆x and ∆y using the dataset from Fig.2.b. The results
of this estimation are reported in Fig.5.
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FIGURE 5. Demonstration of ICP and ICL algorithms using the
dataset from Fig.2.b.

We can see that the proposed ICL algorithm performs better
as its accumulated error is smaller than the error obtained with
the ICP algorithm. Our method can be applied on an embedded
microprocessor in real time without large matrix inversions or
large memory requirements. Note that the ICP algorithm can still
be successfully utilized as reported in [15], but it would require
a larger number of data points collected during a single revolu-
tion of the lidar. In addition, it also needs a more expensive and
powerful processor to be able to handle larger numbers of points
per revolution.

4.2 A Technique for Outliers and Dynamic Object Re-
jection

To improve the accuracy and reliability of the proposed ICL
algorithm, we implement an outlier rejection technique, which is
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described in this section. Such a technique is crucial for the prac-
tical application of the proposed ICL algorithm in a real world
setup. This is so because without a rejection mechanism, signif-
icant positional error can accumulate over time and mislead the
position control part of the flight control algorithm. Outliers can
include spurious lidar measurements as well as data points cor-
responding to highly dynamic objects such as humans. The pro-
posed outlier rejection technique is robust yet computationally
efficient. Its idea is to use the previous estimates ∆xk−1,∆xk−1
and checks if the cost of the current point Jk,i is significantly
larger than (∆x2

k−1 +∆y2
k−1), case in which the point is rejected.

We have tested this technique with good practical results. For
example, for the dataset shown in Fig.6, the total error in esti-
mating the displacements is very small as reported in Fig.7. This
figure also shows the performance of the ICL algorithm without
an outlier rejection technique.
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FIGURE 6. Lidar data with human movement in a stationary room.
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FIGURE 7. Dataset in Fig.6 with and without dynamic rejection.

4.3 Integration into the Main Flight Control Algorithm
In this section, we describe how the proposed ICL algorithm

is integrated with the main flight control algorithm of the quad-
copter drone. This is illustrated in Fig.8, where the lidar data
provided by the lidar sensor is fed into the ICL algorithm, which
then computes the displacement estimates ∆x and ∆y. In the ab-
sence of user input (which is received from the user’s hand-held
RC remote controller as φr,θr,ψr,hr) the objective of the flight
control algorithm is to hold the position of the quadcopter. In this
case, the displacement estimates ∆x and ∆y are used to achieve
position hold by eliminating positional drift.
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As the primary control technique, the flight control algo-
rithm employs several proportional integral derivative (PID) con-
trollers to control the orientation angles φ ,θ ,ψ and the height h.
Basically, the role of these PID controllers is to drive φ ,θ ,ψ and
h to the desired target values. The PID controllers that use the
inputs ∆x and ∆y are responsible with the elimination of posi-
tional drift. For height control, data from a sonar distance sensor
is utilized. The PID block with input hSonar controls the height
of the quadcopter.

In Fig.9, S represents the vector of individual motor speeds
[S1,S2,S3,S4] as calculated by each of the four PID blocks. The
calculation of S by each PID block is dependent on the physics
based model of the quadcopter. Example derivations of the
model can be found in [16] and are out of scope for this paper.

The flight control algorithm from Fig.8 was tested and val-
idated through simulations using a physics based model for the
quadcopter. To simulate positional drift, external forces were ap-
plied to the quadcopter frame. For example, the plot in Fig.9
shows how θ ,φ are attained by the PID controllers that use ∆x
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and ∆y as inputs. While our extensive simulations verify the cor-
rect operation of the overall flight control algorithm, we are cur-
rently working on the physical implementation and integration of
the lidar and sonar sensors on the quadcopter. This is a work in
progress.

0 200 400 600 800 1000
Time (ms)

-0.2

0

0.2

0.4

0.6

m
m

/s

Lidar Control System Results

3

?
"x
"y

-2

0

2

4

6

de
gr

ee
s

FIGURE 9. Plot showing how the flight control algorithm from Fig.8
drives ∆x and ∆y to 0 in order to eliminate positional drift.

5 Hardware Implementation - System Integration As-
pects
In this section, we describe the implementation of our in-

house built quadcopter drone. Specifically, we discuss system
integration and energy consumption aspects.

5.1 Overall System Integration
In building a drone, one must decide whether to do it using

off-the-shelf components or to design and build it from scratch.
The issue with systems built using off-the-shelf components is
that, while much easier, we have limited capability in customiz-
ing the system and in developing new flight control algorithms.
On the other hand, designing a drone system from scratch of-
fers flexibility in any design aspect: we can integrate into the
system any microcontroller unit (MCU) and sensors we would
like, we can customize the hardware (at the PCB level) to al-
low us to perform in depth performance and energy consumption
studies, and we can investigate any novel idea for flight control
algorithms without being limited by restrictive vendor specific
application programming interfaces (APIs). In this project, we
decided to implement the entire system from scratch because we
were particularly interested in several design exploration direc-
tions including: using specific IMU and lidar sensors, investi-
gating energy consumption, and experimenting with new flight
control algorithm ideas.

Designing and building a quadcopter from scratch is a
challenging undertaking. That is because the quadcopter sys-
tem combines several hardware (HW) electronic and mechan-

ical components as well as firmware components as shown in
Fig.10.a. The four brushless motors are supplied with power and
controlled by the four electronic speed controllers (ESCs). The
flight controller is responsible with tasks including data fusion
of data from sensors (inertial measurement unit, IMU, lidar, etc.)
and the primary flight control algorithm. The remote control of
the drone is done via a custom RF hand-held controller, which
communicates with the radio block from Fig.10.a. The battery
supplies power to all components on board of the quadcopter.
As software (SW) components, the quadcopter system has two
programs (shown as Firmware 1 and Firmware 2 in Fig.10.a),
which implement the main flight control algorithm and the con-
trol algorithm that runs of on the four ESCs.

Each of the four ESCs controls an individual brushless di-
rect current (BLDC) motor. The method that we use to control
each of the motors is using the so called back electromotive force
(back-EMF) technique [21–23]. The key to BLDC commutation
is to sense the rotor position, then energize the phases that will
produce the most amount of torque. The rotor travels 60 electri-
cal degrees per commutation step. The appropriate stator current
path is activated when the rotor is 120 degrees from alignment
with the corresponding stator magnetic field, and then deacti-
vated when the rotor is 60 degrees from alignment, at which time
the next circuit is activated and the process repeats [22].

Due to space limitations we cannot provide here comprehen-
sive datasheet specifications of the individual components that
we used in building our in-house drone. Instead we created a
website to document in detail both the hardware and software,
which we make publicly available as open source [26]. We do
however, present specifications of the lidar device that we use in
our experiments in the next section.

5.2 Lidar Specifications
In this section, we present the specifications of the lidar de-

vice that we use, XV-11, in order to compare it with the Hokuyo
UTM-30LX lidar that is used by the study in [15]. The pho-
tographs of these two lidar devices are shown in Fig.11 while the
technical specifications are presented in Table 1. We note that the
XV-11 lidar is significantly inferior, however it is much cheaper
and convenient especially during hardware prototyping.

TABLE 1. Specifications of the two lidars from Fig.11.

Lidar device: Hokuyo UTM-30LX Neato XV-11

Points per revolution 1,440 360

Revolution speed (ms) 25 250

Max range (m) 30 4

Cost (USD) 4,825 150
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FIGURE 10. (a) Block diagram of a typical quadcopter drone. All
major hardware components are illustrated, including the mechanical
frame. The two major software or firmware components are programs
that implement the main flight control algorithm and the control of the
four motors via the ESCs. (b) Photo of the in-house built quadcopter.
(c) Photo of the in-house built RC hand-held remote control.

(a) (b)
FIGURE 11. (a) Hokuyo UTM-30LX lidar used in [15]. (b) Neato
XV-11 lidar device used in this project.

5.3 Investigation of Energy Consumption
One of the goals in designing and implementing from

scratch our own quadcopter was to investigate energy consump-
tion of the entire system. Note that there is not much available
literature on the topic of energy consumption and techniques to
optimize it1. We wanted to understand what are the main vari-
ables that affect energy consumption and the rate of consumption
in order to identify ways to improve energy consumption, thereby
increasing flight time on a single battery charge. We are partic-
ularly interested in energy consumption because the rather short
flight time (directly determined by the power consumption for a
given drone design and battery technology) of currently available
quadcopters is we believe one of the primary reasons that hinder
a faster wide spread adoption of quadcopters for civil applica-
tions. For example, in our experience with Parrot’s AR.Drone
v1.0 [25], if the flight time was initially when the drone was new
about 14 minutes after two years of rare usage and about 50 bat-
tery charges, the flight time decreased to a merely 1-2 minutes.

In this section, we present our findings of the energy con-
sumption investigation, which we performed on our own in-
house built quadcopter. In our investigation, we focused on the
energy consumption of the major components that make up the
drone system (see Fig.10.a): the DC motors, the ESCs, and the
flight controller which includes the radio and sensor blocks. Our
measurements are done on an actual real implementation of our
quadcopter, which is shown in Fig.10.b. The results of our inves-
tigation are summarized in Fig.12.

We notice that the 95% lion-share of the overall power con-
sumption is attributed to the DC motors. The ESCs themselves
account for 4% while the flight controller consumes about a
merely 1%. One reason for which the flight controller does not
consume more is because the radio block in our current imple-
mentation does not include an amplifier (which would be more
power hungry) and because of which the user-control distance is
only tens of feet. Zooming into the ESCs, we notice that power

1Beyond the obvious means of selecting better batteries and motors, or lighter
mechanical frames [24].
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FIGURE 12. (a) Breakdown of the power consumption among the
main components of the quadcopter drone system. (b) Breakdown of
the power consumption at the level of the ESCs. (c) Breakdown of the
power consumption at the level of flight controller.

is dissipated as losses primarily into the field effect transistors
(FETs, i.e., commutation switches) and the low-dropout (LDO)
regulators. The LDO regulator is also accounting for the majority
of the power consumed by the flight controller.

Obviously, one could reduce power consumption by select-
ing high efficiency power converters and high performance FETs
(i.e., low ON resistance) and thus minimize losses. Additionally,
one could decrease the weight of the whole system by using light
weight materials for the frame. Furthermore, high performance
DC motors and propellers and improved battery technology (i.e.,
small volume and high energy capacity) would help to improve
the power consumption profile. However, once these hardware
design decisions are made2, the question is: Is there anything
else that one can do to improve the power consumption profile,
and thereby increase the flight time?

Looking at the pie-chart from Fig.10.a, one would think that
not too much could be done aside from selecting better motors.
However, the view offered by the charts in Fig.10 is only partial.
In other words, these breakdown charts only tell us which are
the major contributors to the power consumption of the overall
quadcopter system, but they do not capture how fast or at what
rate energy is consumed from the fixed capacity battery, which
is truly directly impacting the battery state of charge and thereby
the duration of the flight time. Currently, we do not have test and

2Indeed, one can assume that the best hardware components are used; most
likely at higher financial costs.

validation results of what we suspect might be the only factor un-
der our control which could have a significant impact on the rate
of battery energy depletion. Aside from the type of maneuvers or
flight characteristics3, the quadcopter performs and aerial condi-
tions (such as wind or air drifts), we suspect, based on our in-
sights gained while developing the current quadcopter prototype,
that the actual flight control algorithm (stabilization and position-
ing) may play a significant role in how fast energy is consumed
from the battery. Our insight essentially says that the amount of
energy and the rate of its consumption is less for flight control
algorithms that are more optimal in the sense that the stabiliza-
tion portion is smoother and less jittery. When such stabiliza-
tion is wobbly and the system is on the verge of being unstable
(the quadcopter would flip in such unstable mode of operation),
the motors are forced to operate at faster speeds and the speeds
are changed more often (i.e., motors spend more time in tran-
sient like operation mode). Such operation modes place a bigger
burden on motors, which thus consume energy faster. Note that
jittery flight can also be affected by the imperfections and dif-
ferences between motors and propellers themselves, which can
introduce difference between the current drawn by the motors.
We suspect that better flight control algorithms can impact the
rate at which energy is consumed and thus on the battery and
flight time. A more in depth investigation of this is left to our
future work.

6 Conclusion and Future Work
We introduced a computationally efficient iterative closest

line (ICL) algorithm for determining indoor position drift of a
quadcopter. We presented details of the implementation of the
proposed algorithm as well as of a technique for outlier and dy-
namic object rejection from lidar data clouds. We validated the
proposed algorithm using simulations with real world data. Fur-
thermore, we discussed how the proposed ICL algorithm was
integrated into the flight control algorithm of an in-house built
quadcopter drone. This integration was verified in simulation.
Finally, we discussed system-level design and implementation
aspects of the quadcopter, including an investigation of the quad-
copter power consumption.

While the the proposed ICL algorithm for position control
has been validated on real world data and its testing, as part of
the overall flight control algorithm, was done in simulation, and
while the in-house drone is completed, we still have to physically
place the lidar sensor on the drone and perform lidar and IMU
data fusion. This is part of our ongoing and future work.

3For example, if a quadcopter keeps some forward motion at all times, it
requires much less power than hovering. This is attributed to the so called heli-
copter translational lift phenomenon.
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