
2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2018.2870438, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 1, JANUARY 2018 1

Dynamic Energy Optimization in Chip
Multiprocessors Using Deep Neural Networks

Milad Ghorbani Moghaddam, Student Member, IEEE, Wenkai Guan, Student Member, IEEE,
and Cristinel Ababei, Senior Member, IEEE

Abstract—We investigate the use of deep neural network (DNN) models for energy optimization under performance constraints in chip
multiprocessor systems. We introduce a dynamic energy management algorithm implemented in three phases. In the first phase,
training data is collected by running several selected instrumented benchmarks. A training data point represents a pair of values of
cores’ workload characteristics and of optimal voltage/frequency (V/F) pairs. This phase employs Kalman filtering for workload
prediction and an efficient heuristic algorithm based on dynamic voltage and frequency scaling. The second phase represents the
training process of the DNN model. In the last phase, the DNN model is used to directly identify V/F pairs that can achieve lower
energy consumption without performance degradation beyond the acceptable threshold set by the user. Simulation results on 16 and
64 core network-on-chip based architectures demonstrate that the proposed approach can achieve up to 55% energy reduction for
10% performance degradation constraints. In addition, the proposed DNN approach is compared against existing approaches based
on reinforcement learning and Kalman filtering and found that it provides average improvements in energy-delay-product (EDP) of
6.3% and 6% for the 16 core architecture and of 7.4% and 5.5% for the 64 core architecture.

Index Terms—chip multiprocessors; energy optimization; Kalman filter; reinforcement learning; deep neural network

F

1 INTRODUCTION

THE evolution of the internet and the emergence of
mobile devices have created an environment where we

interface computing continuously. Much of the computa-
tions (e.g., web searches, e-mail services, social networks,
etc.) consumed by this emerging market are done by chip
multiprocessors (CMP) in massive datacenters also called
warehouse scale computers (WSCs). In 2013, U.S. datacen-
ters consumed an estimated 91 billion kilowatt-hours of
electricity, enough to power twice the households in New
York City. By 2020, estimated consumption will increase to
140 billion kilowatt-hours, costing American businesses $13
billion per year in electricity bills and causing the emis-
sion of nearly 150 million metric tons of carbon pollution
annually [1]. According to the U.S. Energy Information
Administration, that is about 7% of total commercial electric
energy consumption and it is projected that this number
will increase [2]. Improving the efficiency of WSCs has
been identified as one of the top priorities of web-service
companies as it improves the overall total cost of ownership
of WSCs. As noted by the Environmental Protection Agency,
improving efficiency is not only important for the cost to
companies, but for the environmental footprint of these
WSCs as this computing domain rapidly expands [3].

Therefore, there is a strong motivation to seek new
methods to reduce energy consumption in these WSCs. In
this paper, we propose a new dynamic energy management
(DEM) method to reduce energy consumption in future chip

• M.G. Moghaddam, W. Guan, and C. Ababei are with the Department of
Electrical and Computer Engineering, Marquette University, Milwaukee
WI, 53233.
E-mail: milad.ghorbanimoghaddam; wenkai.guan; cristinel.ababei @mar-
quette.edu

Manuscript received November 30, 2017; revised May 15, 2018.

multiprocessors with 16 and 64 cores, that are projected
to be increasingly used in WSC servers. The proposed
method is based on dynamic voltage and frequency scal-
ing (DVFS) and on machine learning theories that reveal
unprecedented prediction success. Specifically, we propose
to use DNN models and develop related self-adaptive su-
pervised learning methods to identify optimal V/F pairs
in chip multiprocessor systems. We see machine learning
techniques, such as the one proposed here, as a potentially
new enabler in pushing the frontier of energy optimization
in CMP systems because they are known to have the ability
to capture complex relations between input features and
output labels. Researchers in machine learning attribute the
immense success of DNN models in domains such as speech
recognition, image processing, pattern recognition, etc. in
the last decade to this ability.

The remainder of this paper is organized as follows.
In the next section, we discuss related literature. Then, we
present background information on neural networks as well
as on a Kalman filtering based DVFS technique, which we
use during the process of collection of training data. The
proposed energy optimization method is then presented in
section 5. In section 6, we report and discuss simulation
results. We summarize our findings in the conclusion section
7.

2 RELATED WORK

Energy optimization in single and multicore processors
received a lot of attention in previous literature. The most
popular techniques utilized by previous optimization solu-
tions include DVFS and task migration. These techniques
are used as primary control mechanisms to drive the oper-
ation of processors toward low energy consumption such

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2018.2870438, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 1, JANUARY 2018 2

that performance is not significantly degraded. The control
decisions are made based on estimations or predictions
of the energy or other related variables in a reactive or
proactive manner as part of the algorithm that implements
the optimization solution. System monitoring and decision
making are usually done periodically, at intervals called
control periods or epochs. It is the prediction mechanism
that differentiates the impact of a given energy optimiza-
tion solution. For brevity, we limit ourselves to mainly
discussing previous work that employed techniques that fall
in the general area of machine learning.

The study in [4] proposes a multinomial logistic
regression-based classification technique, that classifies the
workload at runtime, into a fixed set of classes, which are
then utilized to design a DVFS algorithm. In [5], a multi-
nominal logistic regression classifier is built using a large
volume of performance counters for offline workload char-
acterization. This classifier is queried at run-time for a given
application to predict the workload, and then selection of
the frequency and thread packing are done to maximize
performance under a given power budget. The techniques in
[6], [7], [8] use online learning to select the most appropriate
frequency for the processing cores based on the workload
characteristic of a given application. The study in [10] uses
supervised learning in the form of a Bayesian classifier for
processor energy management. This framework learns to
predict the system performance from the occupancy state of
the global service queue. The predicted performance is then
used to select the frequency from a pre-computed policy
table. Reinforcement learning (RL) based optimization algo-
rithms are proposed in [11], [12], [13], [14]. For example, the
study in [13] used RL to learn the relationship between the
mapping of threads to cores, clock frequencies, and temper-
atures, and employed that mapping information to develop
better task mapping and DVFS solutions. The work in [11]
used RL to learn the optimal control policy of the V/F levels
in manycores and then exploited that to develop an efficient
global power budget reallocation algorithm. The authors
of [14] proposed an online DVFS control strategy based
on core-level modular reinforcement learning to adaptively
select appropriate operating frequencies for each individual
core. Q-learning was used by the work in [15] to develop an
algorithm that identifies V/F pairs for predicted workloads
and given application performance requirements. In the
context of dynamic VFI control in manycore systems with
different applications running concurrently, the study in [16]
investigated imitation learning and reported higher quality
policies.

The studies in [17], [18] predicted workload in CMPs
using Kalman filtering and long short term memory (LSTM)
models. The predictions are then used inside efficient
heuristics to identify V/F pairs for each CMP core in
order to reduce energy consumption under performance
constraints. The authors of [19] develop an artificial neu-
ral network (ANN) based mechanism for network-on-chip
(NoC) power management. The offline training of the ANN
is augmented with a simple proportional integral (PI) con-
troller as a second classifier. The ANN is used to predict the
NoC utility, which is then used to make DVFS decisions that
lead to improvements in the energy-delay product. A neural
network (NN) based model with eight outputs for different

Input layer Hidden layer Output layer

✞☛

✞�

✄

✁✂

☎✆✞✝

✟☛

✟�

✟✠

✁☛

✄ ✄ ✄

✡☞☞

✡✌✌

✡✍✎

✡☞☞

✡✌✌

✡✎✏

✑✒

Transfer function

Activation

function

✄
✓

Input Output✔
✕✖✗✘✙✖✚

✛
✜✕✙✢✕

Fig. 1. Typical neural network architecture.

interface configurations of a mobile device was presented
in [9] to do classification. Such classification is used as the
basis for setting the mobile device into the configuration
state that reduces energy consumption. It was reported that
NN and support vector machine (SVM) models provided
the best prediction accuracy. In particular, NN and k-nearest
neighbor (KNN) based solutions outperformed the logistic
regression based solution. The study in [20] proposed a
DNN model to model plant performance and to predict
power usage effectiveness (PUE) in datacenters. Testing and
validation at Google’s datacenters showed that the DNN
model can be an effective approach to exploit existing sen-
sor data to model datacenter performance and to identify
operational parameters that improve energy efficiency and
reduce the PUE [20].

While there has been significant work, it is not clear
how far the existing DVFS based energy optimization tech-
niques are from the optimal solutions. We believe there is
still room for improvement, and generally, we see this as
the only limitation of previous works. As such, our main
motivation for this work is the need to investigate whether
DNN models can be of any help in pushing the frontier
of energy optimization in chip multiprocessors. This idea
in turn is motivated by the immense success that DNN
models had in the last decade in many application domains
including speech and pattern recognition, image processing,
and datacenter operation. Our comprehensive simulation
experiments on sixteen benchmarks show that DNN models
can indeed provide improvements over existing approaches.
That is the main contribution of this paper.

3 BACKGROUND ON NEURAL NETWORKS

The simplest and most popular NN architecture is the feed-
forward neural network, which is illustrated in Fig. 1. The
information in this network is transferred from one layer
to the next in the forward direction only and no cyclic
connections exist between layers. Each node represents a
neuron that receives its weighted inputs from the nodes on
the previous layer and calculates the output (i.e., decision)

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2018.2870438, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 1, JANUARY 2018 3

✄ ✄ ✄

Input

layer

Output

layer

Hidden

layer 1

� ✄

Hidden

layer 2

Hidden

layer N

✁

✞☛

✞✂

✞☎

✆✝

✆☎

✆☛

✆✟

✆☎

✆☛

✆✠

✆☎

✆☛

✡☞

✡☎

✡☛

Fig. 2. A deep neural network is a neural network with many hidden
layers.

that is passed to the next layer. The transfer function of the
node sums together all the decisions from the nodes in the
previous layer and adds them to a bias value. The result
then is passed through an activation function to generate
the output. This process takes place in the forward direction
through all layers up to the output layer, which produces the
final output decisions. The values of weights and biases are
crucial as they affect the accuracy of the final decision. These
values are determined during the training process of the
network. In supervised training, for a set of known features
and labels (i.e., inputs and their corresponding output de-
cisions), the final decisions produced by the NN model are
compared to the labels by means of a cost function. Then,
an optimizer is employed to minimize the generated cost
by updating the weights through the network going in the
backward direction as a backpropagation process. Usually,
the optimizer uses a gradient descent optimization approach
[21]. The training process is repeated on different sets of fea-
tures and labels, thereby determining the optimized weights
and biases. Once trained, the NN model can be utilized to
provide estimations on new data of interest. That is, the out-
puts of the final layer can be used directly for classification
purposes. Structurally, a DNN model is just a feed-forward
neural network with many hidden layers [22], as illustrated
in Fig. 2. The main difference compared to traditional NNs
is that DNNs have more hidden layers. That helps DNNs to
capture more complex nonlinear relationships [23].

4 ENERGY OPTIMIZATION USING KALMAN FILTER-
ING FOR WORKLOAD PREDICTION AND DVFS
In this section, we briefly describe the dynamic energy
management algorithm from [17] because it serves as the
basis for implementing the first phase (described later) of
the proposed energy optimization approach in this paper.

4.1 Kalman Filtering as Prediction Technique
The Kalman filter is an algorithm applied to predict the
state x in a discrete-time controlled process. It uses a set of
recursive equations as well as a feedback control mechanism
to minimize the variance of the estimation error [24]. The
process can be described by the following state and output
equations, using the notation from [25]:

xn = Axn−1 +Bun−1 + wn−1 (1)

✌✞�☛✁✂✄=☎ ✁✂✄✆✝ ✟ ✠✡✄✆✝
a priori

☞✍✄=☎☞✄✆✝☎
✎
✟ ✏

a priori error covariance

✁✂✄= ✁✂✍✄ ✟ ✑✄ ✒✄ ✓ ✔ ✁✂✍✄
a posteriori

☞✄= ✕ ✓ ✑✄✔ ☞✍✄

a posteriori error covariance

✌✞☛

✖☛

✗☛=✖�☛✘
✙✚✘✖�☛✘

✙ ✛ ✜✢✣✤

Gain

✖�☛

✌✞☛✣✤

✖☛✣✤

Predict Phase Update Phase

✥

Process noise

covariance

✦

Measurement

noise covariance

Fig. 3. Block diagram of the Kalman filtering control loop used to evalu-
ate and reduce the estimation error.

zn = Hxn + vn (2)

whereA is the state transition model applied to the previous
state xn−1 at time steps n − 1 and n, in the absence of
control input or process noise. B is the optional control
input model applied to the control vector u, and the matrix
H relates the state x to the measurement or observation
z. The random variable wn−1 models the process noise
assumed to be a white Gaussian noise with zero mean
and covariance Q, w ∼ N(0, Q). Similarly, the random
variable vn is the measurement noise also assumed to have
a Gaussian distribution with zero mean and covariance R,
that is independent from Q, v ∼ N(0, R).

A Kalman filter is constructed in two phases (see Fig. 3).
The first phase is called the predict phase and also called the
time update phase. Here, the state x is predicted a priori as
x̂−n . The second phase is called the update phase and also
called the measurement update phase. This is where the
predicted x̂−n is updated a posteriori as x̂n. In the predict
phase, the filter uses the previous state x̂n−1 and the input
un−1 to project the state. It also uses the error covariance of
the a posteriori error Pn−1 and the process noise covariance
Q to project the error covariance P−

n for the a priori error.
The two equations used in this phase are:

x̂−n = Ax̂n−1 +Bun−1 (3)

P−
n = APn−1A

T +Q (4)

The update phase begins after the predict phase with
the measurement of the actual state value at time n. It first
computes the Kalman gain Kn. Kn is chosen to minimize
Pn. Then, the current state matrix x̂n and Pn are updated.
The three equations utilized in this phase are:

Kn = P−
n H

T (HP−
n H

T +R)−1 (5)

x̂n = x̂−n +Kn(zn −Hx̂−n) (6)

Pn = (1−KnH)P−
n (7)

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2018.2870438, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 1, JANUARY 2018 4

Freq Inst #

DVFS controller per core

Application

CPI

Inst #

Inst #

Inst # P

P-1

P-m
�

Period

History table

CPI

CPI

CPI

P+1

Period

Allowed PL

P

Period

CPIInst #

User level Kalman

filtering

based

prediction

Full system

CMP

✁ Estimate PL up to control period

P+1 for available frequencies

✁ Use heuristic to identify lowest

voltage/frequency pair that

satisfies given PL threshold

Stats for

period P

Core

Core

Core

Core

Core

Core

Core

Core

R R R

R R R

R R R

Core

V/F pair for period P+1

V/F

Instr. #

CPI

Fig. 4. Diagram of the energy optimization algorithm from [17] con-
structed as a combination of DVFS and Kalman filtering based prediction
techniques.

where R is the measurement noise covariance. H relates the
observation or measurement z to the state x.

In the context of dynamic voltage scaling for MPEG ap-
plications, the study in [25] proposed an extended Kalman
filter to estimate the processing time of workloads. Also in
the context of high performance processors, the authors of
[26] proposed a sparse Kalman filter to estimate the states of
a dynamical network system. They then applied their solu-
tion to the thermal model network of manycore processors
to solve the problem of finding the minimum number of
in-situ sensors that can be used for both thermal profile
estimation and tracking of hotspots in dynamic thermal
management solutions. Recently, we used a similar Kalman
filtering technique to estimate the average cycles per instruc-
tion (CPI) and the instruction count inside a method for
dynamic energy management for chip multiprocessors with
16 and 64 core architectures [17]. We found that the Kalman
filtering based predictions are very accurate and allow the
proposed energy reduction heuristic to provide consistent
energy savings under a given performance constraint for all
benchmarks that we investigated. We describe this in the
next subsection.

4.2 Energy Optimization using DVFS
We assume that the execution of a given benchmark is
split into consecutive control periods and that the energy
optimization algorithm is applied at the end of each such
period. This is the case of the study in [17], which relies
on performance loss estimations that are calculated at the
end of each control period for each core of the CMP. A
Kalman filtering based approach is employed to predict the
workload in the next control period for which V/F pairs
must be selected and set. This selection is done with a
DVFS based heuristic algorithm whose objective is to reduce
energy consumption but without degrading performance
beyond a user set threshold.

The idea behind the optimization method in [17] is to
predict the workload in the next control period and then
find the lowest V/F pair for each core so that the execution

of the predicted workload will not violate a predetermined
performance degradation threshold. To facilitate that, the
concept of the performance loss (PL) that is incurred over all
the control periods was introduced, which can be calculated
by the following expression [17]:

PL =
N∑

P=1

IPDone
× (

CPIP (
fH
fP

−1)

fH
)

T
(8)

where:
N : Total number of control periods
fH : Highest available CPU frequency
IPDone

: Number of instructions done in period index P
CPIP : Average CPU cycles per instruction in period P
fP : CPU clock frequency in period P
T : Duration of the control period
The expression in equation (8) provides an estimation

technique for the performance loss incurred due to the
application of DVFS compared to the case when no DVFS
were applied at all and the CMP would be kept running at
the highest V/F level.

The overall energy optimization algorithm is constructed
as a heuristic algorithm that uses DVFS in combination with
the Kalman filtering based prediction. The block diagram
is shown in Fig. 4 as implemented inside a custom Sniper
based system simulator. The algorithm is fed by the periodic
statistics (i.e., number of instructions executed by each core
and CPI) during a regular simulation of a given applica-
tion. The statistics are recorded for a moving window of
m past control periods and utilized to make predictions
about the next control period instruction count and CPI
using the Kalman filtering technique. Then, the algorithm
uses the predictions to estimate the performance loss using
the expression from equation (8) for available frequencies
and to decide the best V/F pairs for all cores for the next
control period. The V/F pairs are selected to maximize
energy savings but without violation of the performance
loss constraint set by the user.

To summarize, essentially, the Kalman filtering makes
predictions of the average cycles per instruction and the
instruction count (these represent the workload of each core
in the next control period), based on which then, equation
(8) estimates the performance loss, which finally, at its turn
is used to decide about V/F pairs for the next control period.

5 ENERGY OPTIMIZATION USING DVFS AND DNN
BASED PREDICTION

5.1 Top-level Description
The main idea of the dynamic energy optimization approach
proposed in this paper is to use DNN models for prediction
or classification. Note that, as in the case of many other
application domains including speech recognition, pattern
recognition, and recommending systems that have been
revolutionized lately by the use of DNN models, the merit
of this work lies in the application of the DNN model to a
specific practical problem rather than the DNN model itself,
which has been known for decades already.

The system level block diagram of the proposed op-
timization framework is shown in Fig. 5, as it is imple-
mented in our Sniper based full system simulation tool

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2018.2870438, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 1, JANUARY 2018 5

DVFS controller per core
Application Allowed PL

User level

DNN

based

controller

Full system

CMP

Core

Core

Core

Core

Core

Core

Core

Core

R R R

R R R

R R R

Core

V/F pair for period P+1

V/F

Instr. #

CPI

Kalman

controller,

DVFS

heuristic

Phase 1,2 Phase 3

Fig. 5. The proposed dynamic energy optimization algorithm switches to
DNN based prediction once the DNN model has been constructed. The
Kalman filtering based controller block operates similarly to that in Fig.
4.

discussed later in the paper. The proposed framework is
implemented mainly in software and is responsible for man-
aging all related activities, including creating, maintaining,
and storing specific information about the DNN controller.
The information about the DNN topology, related weights,
as well training data represents what is denoted as DNN
data. The primary objective of the proposed dynamic energy
optimization approach is to reduce the energy consump-
tion of the CMP. This can be achieved by throttling CMP
core frequencies to the lowest possible V/F levels while
meeting as much as possible the execution deadline of all
executed tasks. Two of the key elements of the optimization
framework include 1) the DNN controller with its associated
Kalman controller and self-learning technique and 2) the
DVFS algorithm that decides the V/F levels for each of the
cores for the next control period.

The Kalman controller is implemented with the help of a
series of Kalman filters and works with a sliding window of
m previous control periods. Thus, in generating a training
data pair, we consider past history covering the last m
control periods. We choose to use the Kalman technique
due to both the ease of implementation and the very good
performance demonstrated in workload estimation. In our
previous work, the Kalman technique provided excellent
results for workload estimation. In addition, having in place
an existing approach for dynamic energy optimization pro-
vides a way to achieve energy reductions also during the
first two phases of the proposed approach, when we collect
training data and train the DNN model.

The implementation of the DNN model based energy
optimization algorithm includes three phases as illustrated
in Fig. 6. In the first phase, we collect input samples (i.e.,
input features) and their corresponding outputs (i.e., labels)
as the initial training data set. The features capture the
benchmark behavior and the labels represent the V/F pairs
identified to lead to energy reduction. In the second phase,
the training data is used to train the DNN model. Lastly,
in the last phase, the DNN model is employed to directly
predict optimal V/F pairs for each CMP core for given
workload at runtime. These phases are described in more
details next.

Phase 1

Collection of

training data

Phase 2

Training

Phase 3

DNN based DEM

Period 1

Pair 1

(W, V/F)

Pair 2

(W, V/F)

Pair 3

(W, V/F)

Pair n

(W, V/F)

DNN data

Periodic

workload

characteristics

V/F

per cores

6 steps

W: Workload characteristics as features

V/F: Optimal V/F pair for each core as

label

Control period

PL threshold

Training

DNN

Trained

DNNInput

Output

1 2 3 n

V/F V/F V/F V/F

�

�

�

W W W W

Period 2 Period 3 Period n

Fig. 6. Illustration of the three phases of the implementation and usage
of the DNN model.

1. Kalman controller predicts cores

workload

2. Identify best V/F pairs

3. Operation during next period

4. Measure the actual workload at

end of period

5. Correct V/F pairs, possibly

6. Store workload characteristics and

corrected V/F pairs in DNN data

Fig. 7. Steps of the procedure to generate one training data point during
one control period in Phase 1.

5.2 Phase 1: Collection of Training Data

One of the main challenges of working with DNN models is
training. This is a two-faceted challenge: first, labeled data is
necessary for training and second, the training process may
become computationally intensive and require long training
times for increasingly large training data sets. In addition,
workloads can vary greatly and developing a representative
training data set is very difficult because a DNN well trained
for certain workloads may perform very poorly on different
workloads. To address the lack of training data when it
comes to chip multiprocessors, we propose to use a new
self-adaptive supervised training technique. We develop
the ability to generate training data automatically in three
phases as illustrated in Fig. 6.

Phase 1 begins when a new CMP system starts to be used
in a datacenter. This is the time when the CMP operation
starts to be monitored for the purpose of generating input-
output training data pairs in Fig. 6. The generation of
training data is done for each control period. For each such
control period we generate, at the end of the period, training
data pairs by recording input values and the corrected out-
puts (as V/F levels) which would have been better if set at
the beginning of the control period. The six steps followed
to generate the corrected V/F pairs in a given control period

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2018.2870438, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 1, JANUARY 2018 6

are shown in Fig. 7.

1) The Kalman controller is used to make predictions
about the workload of each CMP core in the next
control period.

2) Then, equation (8) is used to estimate the perfor-
mance loss and to identify the lowest available
V/F pairs at which energy could be saved without
violating the performance loss threshold in the next
control. The selection of these V/F pairs is done
with the efficient DVFS heuristic algorithm from
[17].

3) Proceed with the execution of the next control pe-
riod at selected V/F pairs for all CMP cores.

4) At the end of the just executed control period,
measure the actual just executed workload.

5) Repeat Step 2 but use the actual measured workload
to find possible corrections to the just used V/F
pairs. The corrected V/F pairs are the ones that
ideally should have been identified earlier in Step 2.
These corrected V/F pairs are used as outputs in the
training data set because they would have helped
reduce energy without violation of the performance
degradation threshold.

6) The above steps are done for a moving window of
m control periods in order to generate one training
data point of input features and corrected V/F pairs
added to the DNN data. These will be used later for
the actual training of the DNN model.

It is important to note that, in theory, one could conduct
the whole process of collecting training data with a set-
up that does not use the Kalman filtering based prediction
combined with the DVFS heuristic. Instead, one could just
run the selected benchmark testcases at the default (highest
frequency and voltage pair) all the time during Phase 1.
While this would eliminate the need for the Kalman filtering
and simplify the overall implementation of the proposed
framework, the issue would be that the training data would
not be diverse and would always have as input features
values that would characterize core operations at the max-
imum frequency all the time. When the Kalman filtering
based technique is used, training data points are generated
also for input features that characterize core operations at
throttled frequencies as well. Therefore, the training data
resulting from the proposed approach is more diverse and
characterizes better the operations of all cores (among the
16 or 64) at many different clock frequencies. In addition,
as already mentioned, the Kalman filtering based technique
provides an alternative way to achieve energy reductions
also during the first two phases of the proposed approach.

5.3 Phase 2: Training of the DNN Model

By this time, we have collected runtime statistics and con-
structed the training data set. Instruction count and average
CPI values together with the corrected V/F pairs have been
recorded as the features and the labels of the DNN data
characterizing all the control periods of Phase 1. Note that
the labels are transformed into the one hot format before
actual use. In the one hot format, for each class in the
output we consider a digit which can be zero or one. If

the label belongs to class number k, the k-th digit is set
to "1" while the other digits are set to "0". The collected
training data set is now used for supervised training of
the proposed DNN model. The input features are passed
to the feed-forward model. At each node, the weights and
biases are applied to the given inputs and then the result
gets activated through an activation function. We use the
RELU function (like that shown in Fig. 1) as the activation
function because it helps to mitigate the vanishing gradient
problem described in [27]. The final result of the output
layer is used to calculate the cost. That is, the cross entropy
cost function compares the generated output with the stored
labels (recall, these are the corrected V/F pairs) to calculate
the cost based on the prediction error. The gradient decent
optimizer uses this cost to optimize the weights and biases in
the backward direction. Specifically, as the gradient decent
optimizer algorithm we use the AdaGrad method, which was
shown to give the best results [21]. This method adapts the
learning rate to the model parameters and performs larger
updates for infrequent parameters and smaller updates for
frequent ones. Thus, it is well suited for dealing with sparse
data, which we see in our case.

5.4 Phase 3: Prediction Using the DNN Model

Now, that we have trained the DNN model as the DNN
controller from Fig. 5, we can use it in realtime to identify
V/F pairs at any time. Note that the same trained DNN
model is replicated as many times as cores in a given
architecture and used individually. This is the phase where
the role of making predictions and deciding the V/F pairs is
switched from the Kalman controller and the DVFS heuristic
to the DNN controller. Collection of training data can still
be performed in parallel, in order to prepare for future
periodic retraining of the DNN model to address application
variability. However, we do not do this in this paper.

6 SIMULATION RESULTS

6.1 Experimental Setup

We leverage existing simulation tools and develop an in-
house full system simulation framework inside which we
have implemented all the algorithms described in this pa-
per. Specifically, we use the Sniper system simulator [28]
integrated with the McPAT power estimator [29]. Our simu-
lation framework has implemented three energy optimiza-
tion approaches: the reinforcement learning (RL) approach
described in [14], the Kalman filtering approach from [17],
and the proposed DNN model based approach. This makes
the collection of simulation results easier and all the compar-
isons consistent because all simulations are done within the
same simulation tool and on exactly the same benchmarks.
The simulation framework includes all the functions to
implement the three phases of the proposed energy opti-
mization approach. We implemented the RL algorithm as it
is described in Algorithm 1 of [14]. The number of modules
is equal to the number of cores of the CMP architecture.
Similarly to [14], each state is defined as a 2D tuple st =
(ht, µt), where ht = num_busy_cyclest/time_elapsedt is
the core throughput in terms of busy-cycle-count per unit
time and µt = num_cycles_stalledt/num_busy_cyclest is

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2018.2870438, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 1, JANUARY 2018 7

TABLE 1
Architectural configuration parameters.

Parameter Value
Technology node 45nm
Core Intel X86 Gainstown
Core CPU model Out of order (Detailed CPU)
Frequencies(f) 2GHz downto 1GHz, with 100MHz step
VDDs [f>=1.8G:1.2V],[1.8G>f>=1.5G:1.1V],[1.5G>f>=1G=1V]
Cores/socket 1
Transition latency 2000 ns
Branch predictor 2 bit counter
Reorder buffer 80-entries
L1ICache/1core 32KB
L1DCache/1core 64KB
L2/1core 256KB
L3/4cores 8MB
Network 2D regular mesh, 1 router per core
Link bandwidth 64 bits

the so-called CPU intensiveness. As in [14], the reward was
selected so that improvement in the energy-delay-product
is encouraged. For training the DNN model, we employ
Google’s Tensorflow machine learning library [30]. All sim-
ulations are conducted on a Linux Ubuntu 16.04 machine
that runs on an Intel Xeon eight core processor equipped
with a K40c Tesla GPU.

We conduct simulations on Parsec and Splash2x bench-
marks [31] and provide comparisons against both RL and
Kalman filtering based approaches. We test the proposed
energy optimization algorithm for two different CMP ar-
chitectures with 16 and 64 cores. Communication between
cores is facilitated via 4x4 and 8x8 regular mesh networks-
on-chip. All the measurements and reported results are for
the region of interest (ROI) portion of the execution of each
application benchmark because that is the region where
most of the calculations take place. The default architec-
tural configuration parameters utilized in our custom Sniper
based simulations are shown in Table 1.

As discussed, the objective of the optimization algorithm
is to minimize energy under user set performance con-
straints. The user can set such constraints based on known
or assumed application criticality levels, which translate
into acceptable performance losses. For example, a video
streaming application could be categorized as high critical-
ity while an email application can be treated as a rather
low criticality level in the sense of expected response or
execution time. In this context, a certain criticality level can
be assigned a performance loss (PL) threshold or constraint.
In this paper, for simplicity, we assume the same criticality
for all simulated benchmarks, by setting the PL threshold
to PL = 10%. This threshold can easily be changed in
our framework; we do not report here results for differ-
ent thresholds due to lack of space. A PL threshold of
PL = 10% means that the user wants the proposed algo-
rithm to save as much as energy possible but without de-
grading the performance of the application with more than
10% compared to the case when no energy optimization
were done. Thus, the proposed DNN model should ideally
be able to suggest the best set of V/F pairs for all cores
to ensure energy reduction but within the acceptable per-
formance degradation. To achieve that, Phase 1 discussed
earlier in the paper must first be done for the given PL
threshold such that the training data is collected for that

PL. Then, in Phase 2, the training data is used to train the
DNN model, which will then be plugged in into the DNN
controller used to proactively provide V/F settings to all
cores during all control periods within the execution time
of the application. In cases where applications are highly
critical and could not tolerate any performance degradation,
the energy optimization scheme could be turned off and all
cores run at the highest clock frequency available. Other-
wise, as an alternative scheme, we could construct multiple
DNN models, each trained for a specific PL value, and then,
build in an enhanced scheme that could switch between
models.

All algorithms of the proposed framework are imple-
mented in C++. Some tasks however such as the use of the
Google’s Tensorflow are done in Python. Specific details
on how these development tasks were done cannot be
described in detail here. That is because of lack of space and
because this would be description of coding/programming,
which cannot be presented as technical contributions. More-
over, we note that we will make the entire implementation
of this project publicly available to facilitate replication of
results as well as investigations for different PL values.
Details of the code architecture can be seen directly in the
implementation.

6.2 Collection of Training Data

We have implemented all six steps discussed earlier in the
paper in the custom Sniper simulator, which is paused
during each control period for the purpose of collecting
training data points. During Phase 1, we use the Kalman
filtering based prediction, as illustrated in Fig. 5. We used
half of the benchmarks (i.e., fmm, lu.cont, ocean.cnt, radiosity,
raytrace, facesim, freqmine, and swaptions), selected arbitrarily,
for collection of training data. But, only 70% of that training
data is actually used for training; the remaining 30% is
used for model testing and validation. The Kalman filtering
technique is used to predict the instruction count and the
average CPI for each core of the CMP architecture during
each control period. Because we have the implementation
from [17], we use the same values for the filter parameters:
A = 5, H = 1, Q = 1, R = 0.5 and B = 0. These Kalman
parameters were found to provide good results.

For example, Fig. 8 shows the values of the CPI and the
instruction count predicted by the Kalman filter as well as
their actual values for a sample core while running the fmm
benchmark with 16 threads on a 16 core CMP architecture
and 10% PL constraint. These are values predicted during
each control period in step 1 above. Note that, Kalman
filtering provides excellent prediction accuracy, which is
the reason we use it for collection of training data as well
as for comparison. The Kalman filtering prediction does
not perform very well though during abrupt changes of
the predicted variable. The corresponding frequency values
calculated in step 2 from Fig. 7 are plotted in Fig. 9, which
also shows the adjusted or corrected frequency values. It is
the corrected values that are then used as labels together
with performance counters of the cores, caches, memory,
and NoC to create training data points. Recall that a training
data point is constructed with input features for a moving
window of m past control periods. In our simulations, we

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2018.2870438, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 1, JANUARY 2018 8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

0

0.5

1

1.5

2

2.5

3

Control Period

C
P

I

Actial Value Predicted by Kalman

(a)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

Control Period

In
st

ru
ct

io
n
 C

o
u
n
t

Actual Value Predicted by Kalman

(b)

Fig. 8. CPI and instruction count values collected during step 1.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200

Control Period

C
o

re
 F

re
q

u
en

cy
 (

M
H

z)

Kalman Method Corrected Kalman Method

Fig. 9. Frequency values calculated in step 2 from Fig. 7.

use a value of m = 5 to always capture the workload behav-
ior of the 5 past control periods. However, this parameter
can be changed by the user. In this example, during each
control period we collected 62 performance counters plus
the frequency value for which the counters values were
generated. These performance counters include statistics
from CPU performance counters, different levels of caches,
stalls, uncore memory accesses, TLBs, branch predictors,
ALU activities including int, fp, mul/div operations and
others that are available inside the Sniper simulator. We do
not list them all here, but, the documentation that we will re-
lease with the complete source code of our implementation
describes this to aid in the use of the simulation framework.
In summary, each training data point (saved in the DNN
data) includes a vector of 5x63 values as the input feature
plus one value as the output label; that is a total of 316
values that required roughly 2.5KB per core. Thus, we need
16x2.5KB=40KB and 64x2.5KB=160KB of memory for the 16
core and 64 core CMP architecture, respectively.

Note that, in our simulations, the length of each control
period is 1 ms of actual region of interest (ROI) application
benchmark simulated execution time. Note that typical ROI
duration for Parsec and Splash2x benchmarks is in the order

of tens of ms, which are simulated by full system simulators
for much longer durations (sometimes up to a few hours)
as wallclock simulator runtime. We are forced to work with
such a small control period because the total length of the
region of interest (ROI) of the benchmarks that we use
in simulations is relatively short. However, this parameter
would be changed to larger values in real-life deployment
where workload benchmarks are executed continuously or
for very long times and not for just tens or hundreds of ms
that is the typical length of the ROI in full system simulators
like Sniper and Gem5. This phase took 2 days to complete
for both 16 core and 64 core architectures, due to fact that the
Sniper framework was instrumented to pause to be able to
collect DNN data. Also, full system simulators, while very
accurate, are inherently relatively slow compared to the case
when benchmarks would be executed on real systems rather
than inside simulators.

6.3 Training of the DNN Model
At this point, we needed to decide about the exact topology
of the DNN model. Previous literature does not provide
helpful recipes in terms of how one should size-up a DNN
model. Most often, previous literature just reported the exact
DNN topology without further elaborations. In our case,
we conducted a design space exploration type of search to
identify the topology for the DNN model that provided the
best results for a few selected benchmarks. We started with
one hidden layer and increased the number of layers until
no further improvement was noticed. For a given number of
layers, we varied the number of units per layer as 300, 400,
or 500. At the end of this search, we have found empirically
that an eight layer DNN model was a good topology that
provided good results, yet it is manageable in terms of
training times and required storage. The final selected DNN
models are shown in Fig. 10. While not necessary, we found
that conducting a separate search to identify the topology
for the DNN model for any new CMP architecture, leads to
slightly better results.

Once the DNN models were selected, training was done
using the training data set collected as described in the
previous section. Tensorflow generated the DNN model (i.e.,
information about the network topology, number of hidden
layers, number of units on each layer, and all weights),
which used about 2 MB of memory. During training, we
used a learning rate of 0.001 and a number of training
steps of 2000. The trained DNN model provided about 80%
accuracy on the testing and validation data set, which con-
tained 30% out of the collected training data set. This phase
required about 15 minutes for the 16 core CMP architecture
and 1.5 h for the 64 core CMP architecture.

6.4 Runtime Prediction using the DNN Model
Once the DNN model is trained, we are ready to evaluate
its performance. This corresponds to Phase 3 in Fig. 6.
Essentially, the DNN model is used directly to identify V/F
pairs for all cores during each control period during the
execution of a given benchmark. Evaluation of the DNN
model is pretty fast on the machines we used in our sim-
ulations. V/F pairs for all cores are found in about 10 ms
of wallclock runtime of the simulator. This should not be

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2018.2870438, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 1, JANUARY 2018 9

✄

Input layer

5x63 = 315

H1

500

Output layer

1

✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄

H2

500

H3

500

H4

300
H5

500

H6

500

H7

400

H8

300

(a)

✄

Input layer

5x63 = 315

H1

500

Output layer

1

✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄

H2

500

H3

500

H4

500
H5

300

H6

300

H7

400

H8

400

(b)

Fig. 10. Topologies of the DNN models for a) 16 core CMP architecture
and b) 64 core CMP architecture.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

Control Period

C
o
re

 F
re

q
u
en

cy
 (

M
H

z)

Corrected Kalman Method DNN Method

Fig. 11. Comparison of the predicted frequencies by the DNN model to
those calculated by the Kalman filtering technique.

an issue in practice where applications run for much longer
times (or even continuously) in datacenter servers. In such
cases, the control period would be selected much longer
too, compared to the region of interest (ROI) duration that
system simulators like the one used in this paper focus on.

As an initial test of the DNN model, we compare its V/F
predictions to those computed using the Kalman filtering
based heuristic for the fmm benchmark testcase. Fig. 11
shows some of the results of this comparison, corresponding
to only one of the cores of the 16 core CMP architecture. We
observe that, the DNN model is pretty good at predicting
the right frequencies (i.e., V/F pairs).

In a first set of simulations, we compare the proposed
DNN model based dynamic energy management algorithm
to the case when no DEM algorithm is used at all. The results
of this comparison are reported in Fig. 12 and Fig. 13 for
the two CMP architectures. These figures report percentages
in energy reduction, in total performance (i.e., benchmark
execution time) degradation, and in energy-delay-product
improvement. In the second set of simulations, we compare
the proposed DNN model based approach to the reinforce-
ment learning approach described in [14] and the Kalman
filtering approach from [17]. As in [17], we selected to work

0

5

10

15

20

25

30

35

40

45

Benchmarks

E
n
er

g
y
 R

ed
u
ct

io
n
 (

%
)

(a)

0

5

10

15

20

25

Benchmarks

P
er

fo
rm

an
ce

 D
eg

ra
d
at

io
n
 (

%
)

(b)

-20

-10

0

10

20

30

40

50

Benchmarks

E
D

P
 I

m
p
ro

v
em

en
t

(%
)

(c)

Fig. 12. Comparison of the proposed DNN model based energy opti-
mization algorithm vs. no optimization at all for 16 core CMP. (a) percent-
age of energy reduction, (b) percentage of performance degradation,
and (c) percentage of EDP improvement.

with a moving window of control periods of length m = 5
for the DNN model based approach. The results of this
comparison are reported in Fig. 14 and Fig. 15 for the two
CMP architectures.

6.5 Discussion

Looking at Fig. 12 and Fig. 13, we note that in the majority
of cases, the proposed DNN model based approach achieves
significant energy reduction while keeping the total perfor-
mance loss under the user specified performance constraint
fairly well. Nevertheless, the performance degradation is
slightly larger than expected in some benchmarks. We at-
tribute this to the fact that the DNN model is not a perfect
oracle. Most importantly, we see that the EDP is improved in
most of the cases. However, in some instances that is not the
case. This is possible for difficult benchmarks that have their
ROI fully packed with workload at all times. In such cases,
there is practically very little room that could be exploited
effectively towards energy reduction with minimal perfor-
mance degradation via frequency throttling. Looking at Fig.
14 and Fig. 15, we note that the proposed DNN model based
approach provides consistently better energy-delay-product

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2018.2870438, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 1, JANUARY 2018 10

0

10

20

30

40

50

60

Benchmarks

E
n
er

g
y
 R

ed
u
ct

io
n
 (

%
)

(a)

0

2

4

6

8

10

12

14

Benchmarks

P
er

fo
rm

an
ce

 D
eg

ra
d
at

io
n
 (

%
)

(b)

-5

0

5

10

15

20

25

30

35

40

Benchmarks

E
D

P
 I

m
p
ro

v
em

en
t

(%
)

(c)

Fig. 13. Comparison of the proposed DNN model based energy opti-
mization algorithm vs. no optimization at all for 64 core CMP. (a) percent-
age of energy reduction, (b) percentage of performance degradation,
and (c) percentage of EDP improvement.

(EDP) values than both RL and Kalman filtering approaches.
On average, the EDP improvement is 6.3% and 6% for the
16 core CMP architecture and 7.4% and 5.5% for the 64 core
CMP architecture, respectively. This is summarized in Table
2.

TABLE 2
Average improvement in terms of EDP values.

Comparison 16 core CMP 64 core CMP
architecture architecture

DNN vs. RL 6.3% 7.4%
DNN vs. Kalman 6% 5.5%

While the improvement is within the range of 5.5%-
7.4% on average, we consider that this is valuable. Aside
from the fact that this study does improve results over
the existing approaches, and despite that DNN models
require training data collection and training, the work in this
paper sheds light on what a relatively straightforward DNN
based approach for energy optimization would be able to
achieve. This can be useful information for other researchers
who may be interested in employing DNN models at the

processor level - our results would provide an informed
starting or reference point. We consider our work as a step
towards what other researchers see as a necessity to address
the complexity in designing CMP systems and machine
learning techniques [32].

7 CONCLUSION

We proposed for the first time the use of DNN models
for energy optimization in CMP systems. We introduced
a novel algorithm for dynamic energy management under
performance constraints. It uses a DNN model to directly
specify optimal voltage-frequency pairs for each core in the
CMP architecture. The proposed method is implemented
in three phases including training data collection, model
training, and model use in the dynamic energy management
algorithm. Simulation results using a variety of benchmarks
executed on 16 core and 64 core network-on-chip based
CMP architectures demonstrated that the DNN model based
energy optimization can achieve up to 55% energy reduction
for 10% performance degradation constraints, compared to
the case when no optimization is done. The proposed DNN
approach was also compared against existing approaches
based on reinforcement learning (RL) and Kalman filtering.
We found that it provides average improvements in energy-
delay-product of 6.3% and 6% for the 16 core CMP architec-
ture and of 7.4% and 5.5% for the 64 core CMP architecture,
respectively.

In future work, it would be interesting to extend the
DNN model to situations when both DVFS and task map-
ping are used for energy optimization. Currently, it is un-
clear how the accuracy of the DNN model would be affected
if it were used in a system that combines DVFS and task
migration.

REFERENCES

[1] J. Whitney and P. Delforge, “Data center efficiency
assessment - scaling up energy efficiency across the data
center industry: evaluating key drivers and barriers,"
Natural Resources Defense Council (NRDC) Report, 2014.
[Online]. Available: https://www.nrdc.org/sites/default/
files/data-center-efficiency-assessment-IP.pdf

[2] Annual Energy Outlook, U.S. Energy Information Adminis-
tration (EIA), 2016. [Online]. Available: http://www.eia.gov/
forecasts/aeo/data.cfm#enconsec

[3] United States Environmental Protection Agency, “Report to
Congress on server and data center energy efficiency," Report,
2007. [Online]. Available: https://www.energystar.gov/ia/
partners/prod_development/downloads/EPA_Datacenter_
Report_Congress_Final1.pdf

[4] A. Das, A. Kumar, B. Veeravalli, R.A. Shafik, G.V. Merrett, and
B.M. Al-Hashimi, “Workload uncertainty characterization and
adaptive frequency scaling for energy minimization of embedded
systems," ACM/IEEE Design, Automation & Test in Europe Confer-
ence (DATE), 2015.

[5] R. Cochran, C. Hankendi, A.K. Coskun, and S. Reda, “Pack &
cap: adaptive DVFS and thread packing under power caps,"
ACM/IEEE Int. Symposium on Microarchitecture (MICRO), 2011.

[6] G. Dhiman and T.S. Rosing, “Dynamic voltage frequency scaling
for multitasking systems using online learning," ACM/IEEE Int.
Symposium on Low Power Electronics and Design (ISLPED), 2007.

[7] H. Shen, J. Lu, and Q. Qiu, “Learning based DVFS for simul-
taneous temperature, performance and energy management,"
ACM/IEEE Int. Symposium on Quality Electronic Design (ISQED),
2012.

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2018.2870438, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 1, JANUARY 2018 11

-4
-2
0
2
4
6
8

10
12
14
16

Benchmarks

E
n
er

g
y
 R

ed
u
ct

io
n
 (

%
)

DNN vs. RL DNN vs. Kalman

(a)

-6

-4

-2

0

2

4

6

Benchmarks

P
er

fo
rm

an
ce

 D
eg

ra
d

at
io

n
 (

%
)

DNN vs. RL DNN vs. Kalman

(b)

-10

-5

0

5

10

15

20

Benchmarks

E
D

P
 I

m
p

ro
v

em
en

t
(%

)

DNN vs. RL DNN vs. Kalman

(c)

Fig. 14. Comparison of the proposed DNN model based energy optimization algorithm against the RL and the Kalman filtering based approaches
for 16 core CMP. (a) percentage of energy reduction, (b) percentage of performance degradation, and (c) percentage of EDP improvement.

[8] R. Ye and Q. Xu, “Learning-based power management for mul-
ticore processors via idle period manipulation," IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 33, no. 7, pp. 1043-1056, July 2014.

[9] B.K. Donohoo, C. Ohlsen, S. Pasricha, Y. Xiang, and C.W. An-
derson, “Context-aware energy enhancements for smart mobile
devices," IEEE Trans. on Mobile Computing, vol. 13, no. 8, pp. 1720-
1732, July 2014.

[10] H. Jung and M. Pedram, “Supervised learning based power
management for multicore processors," IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 29, no.
9, pp. 1395-1408, Sep. 2010.

[11] Z. Chen and D. Marculescu, “Distributed reinforcement learning
for power limited many-core system performance optimization,"
ACM/IEEE Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2015.

[12] H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu, “Achieving au-
tonomous power management using reinforcement learning,"
ACM Trans. on Design Automation of Electronic Systems (TODAES),
vol. 18, no. 2, article 24, March 2013.

[13] A. Das, R. Shafik, G. Merrett, B. Al-Hashimi, A. Kumar and
B. Veeravalli, “Reinforcement learning-based inter- and intra-
application thermal optimization for lifetime improvement of
multicore systems,” ACM/IEEE Design Automation Conference

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2018.2870438, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 1, JANUARY 2018 12

-5

0

5

10

15

20

25

30

35

Benchmarks

E
n
er

g
y
 R

ed
u
ct

io
n
 (

%
)

DNN vs. RL DNN vs. Kalman

(a)

-6

-4

-2

0

2

4

6

Benchmarks

P
er

fo
rm

an
ce

 D
eg

ra
d

at
io

n
 (

%
)

DNN vs. RL DNN vs. Kalman

(b)

-10
-5
0
5

10
15
20
25
30
35
40

Benchmarks

E
D

P
 I

m
p

ro
v

em
en

t
(%

)

DNN vs. RL DNN vs. Kalman

(c)

Fig. 15. Comparison of the proposed DNN model based energy optimization algorithm against the RL and the Kalman filtering based approaches
for 64 core CMP. (a) percentage of energy reduction, (b) percentage of performance degradation, and (c) percentage of EDP improvement.

(DAC), 2014.
[14] Z. Wang, Z. Tian, J. Xu, R. Maeda and H. Li, “Modular reinforce-

ment learning for self-adaptive energy efficiency optimization
in multicore system,” ACM/IEEE Asia and South Pacific Design
Automation Conference (ASP-DAC), 2017.

[15] D. Biswas, V. Balagopal, R. Shafik, B. Al-Hashimi and G. Merrett,
“Machine learning for run-time energy optimisation in many-
core systems,” ACM/IEEE Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2017.

[16] R.G. Kim, W. Choi, Z. Chen, J.R. Doppa, P.P. Pande, D. Mar-
culescu and R. Marculescu. “Imitation learning for dynamic VFI
control in large-scale manycore systems,” IEEE Trans. on VLSI

Systems, vol. 24, no. 9, pp. 2488-2501, Sep. 2017.
[17] M.G. Moghaddam and C. Ababei, “Dynamic energy manage-

ment for chip multiprocessors under performance constraints,”
Microprocessors and Microsystems, vol. 54, pp. 1-13, Oct. 2017.

[18] M.G. Moghaddam, W. Guan and C. Ababei, “Investigation of
LSTM based prediction for dynamic energy management in
chip multiprocessors,” IEEE Int. Green and Sustainable Computing
Conference, 2017.

[19] J.Y. Won, X. Chen, P. Gratz, J. Hu, and V. Soteriou, “Up by their
bootstraps: online learning in artificial neural networks for CMP
uncore power management,” HPCA, 2014.

[20] J. Gao, “Machine learning applications for data center

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2018.2870438, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 1, JANUARY 2018 13

optimization,” Google White Paper, 2014. [Online]. Available:
https://static.googleusercontent.com/media/research.google.
com/en//pubs/archive/42542.pdf.

[21] S. Ruder, “An overview of gradient descent optimization algo-
rithms,” arXiv preprint arXiv:1609.04747, Sep. 2016.

[22] Kevin P. Murphy, Machine Learning: A Probabilistic Perspective,
MIT Press, 2012.

[23] Y. LeCun, “Learning invariant feature hierarchies,” ECCV, 2012.
[24] G. Welch and G. Bishop, An Introduction to the Kalman Filter,

Chapel Hill, NC: Univ. North Carolina, Chapel Hill, 1995.
[25] S. Bang, K. Bang, S. Yoon, and E. Chung, “Run-time adaptive

workload estimation for dynamic voltage scaling,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 28, no. 9, pp. 1334-1347, Aug. 2009.

[26] S. Sarma and N. Dutt, “Minimal sparse observability of complex
networks: application to MPSoC sensor placement and run-time
thermal estimation & tracking,” (DATE), 2014.

[27] The vanishing gradient problem, 2017. [Online]. Available: http:
//neuralnetworksanddeeplearning.com/chap5.html

[28] T.E. Carlson, W.Heirman, and L. Eeckhout, “Sniper: exploring the
level of abstraction for scalable and accurate parallel multi-core
simulation,” Int. Conf. for High Performance Computing, Network-
ing, Storage and Analysis, 2011.

[29] S. Li, J.H. Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, and
N.P. Jouppi, “McPAT: an integrated power, area, timing model-
ing framework for multicore and manycore architectures,” Int.
Symposium on Microarchitecture (MICRO), 2009.

[30] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G.S., Corrado, A. Davis, J. Dean, M. Devin and S. Ghemawat,
“Tensorflow: large-scale machine learning on heterogeneous dis-
tributed systems,” arXiv preprint arXiv:1603.04467, March 2016.

[31] PARSEC and Splash2 benchmarks, 2017. [Online]. Available: http:
//parsec.cs.princeton.edu

[32] R.G. Kim, J.R. Doppa, P.P. Pande, D. Marculescu and R. Mar-
culescu. “Machine learning and manycore systems design: a
serendipitous symbiosis,” Submitted to Learning, Dec. 2017. [On-
line]. Available: https://scirate.com/arxiv/1712.00076

Milad Ghorbani Moghaddam (S’16) received
the B.S. degree from Ferdowsi University of
Mashhad, Iran in 2008 and the M.Sc. degree
from Isfahan University of Technology, Iran in
2011, both in computer engineering. Currently,
he is a Ph.D. student in the Department of Elec-
trical and Computer Engineering, Marquette Uni-
versity, Milwaukee, WI, USA. His main research
interests include energy consumption, lifetime
reliability of chip multiprocessors and full system
simulators.

Wenkai Guan received the B.S. degree from
Wuhan University of Technology with Excellent
Undergraduate Student Honor in June 2015. He
then spent half a year working as a research
assistant at the Services Computing Technol-
ogy and System Lab, Cluster and Grid Com-
puting Lab in Huazhong University of Science
and Technology. Currently, Wenkai is pursuing
the Ph.D. degree at Marquette University. His
research interests are in multicore embedded
systems.

Cristinel Ababei (SM’14) received the Ph.D. de-
gree in electrical and computer engineering from
the Univ. of Minnesota, Minneapolis, in 2004. He
is an assistant professor in the Dept. of ECE,
Marquette Univ. Prior to that, from 2012 to 2013,
he was an assistant professor in the Dept. of
EE, SUNY at Buffalo. Between 2008 to 2012,
he was an assistant professor in the Dept. of
ECE, North Dakota State University. From 2004
to 2008, he worked for Magma Design Automa-
tion, Silicon Valley. His current research interests

include electronic design automation of systems-on-chip with emphasis
on reliability and energy consumption, datacenters, parallel computing,
and FPGAs.

