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Abstract—We introduce an algorithm for dynamic lifetime reliability optimization of chip multiprocessors (CMPs). The proposed
dynamic reliability management (DRM) algorithm combines thread migration and dynamic voltage and frequency scaling (DVFS) as the
two primary techniques to change the CMP operation. The goal is to increase the lifetime reliability of the overall system to the desired
target with minimal performance degradation. We test the proposed algorithm with a variety of benchmarks on 16 and 64 core
network-on-chip (NoC) based CMP architectures. Full-system based simulations using a customized GEM5 simulator demonstrate that
lifetime reliability can be improved by 100% for an average performance penalty of 7.7% and 8.7% for the two CMP architectures.
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1 INTRODUCTION

TWO of the most adverse wearout or aging mechanisms
in deep submicron technologies include time dependent

dielectric breakdown (TDDB) and negative bias temperature
instability (NBTI) [1]. Their cumulative effect can cause
performance degradation and eventual device and inte-
grated circuit failure. Because one of the factors that impact
TDDB and NBTI aging mechanisms is temperature [2], it is
the chip multiprocessors’ (CMPs) lifetime reliability that is
especially affected − because their operation temperatures
have been increasing due to the increased power densities.
Consequently, researchers recognize that lifetime reliability
is becoming a primary design concern and started to investi-
gate methods to mitigate the negative impact of these aging
effects.

Previous lifetime reliability oriented design methods fall
into one of two general categories, static and dynamic
approaches. Methods in the static category address the
problem of reliability at design time. Static design methods
include guardbanding and fault tolerance techniques [3], [4],
[5]. Guardbanding has been used successfully to mitigate
or eliminate transient, intermittent, and permanent errors.
For example, supply voltages are selected high enough in
order to guarantee correct functionality despite variation
in threshold voltage or in temperature and supply noise.
But, in this way energy gained from downscaling is sacri-
ficed to combat potential reliability problems. However, if
this sacrifice becomes too large, downscaling may become
detrimental [6] and therefore such techniques may not be as
effective as before.

The second category of reliability oriented design meth-
ods is that of dynamic approaches. The main idea of these
approaches is to dynamically monitor the system during
runtime and by using either reactive or proactive techniques
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to change the operation of the system such that lifetime
reliability is improved. The proposed dynamic reliability
management (DRM) algorithm falls in this category. We
discuss previous works in this category in the next section.
Our work combines thread migration and dynamic voltage
and frequency scaling (DVFS) techniques. The proposed
algorithm uses a simple yet effective heuristic approach in
order to seamlessly use the two techniques to adaptively
change the CMP operation such that the lifetime reliability
of the overall system is increased to the desired target with
minimal performance degradation. We develop and validate
the proposed method by considering chip multiprocessors
as systems that are formed by two crucial components: the
cores as processing elements and the NoC as the communi-
cation component. The primary target application scenario
of the investigated CMP architectures is datacenters, under
the assumption that benchmarks like those studied in our
simulations are run continuously.

2 RELATED WORK

In this section, we discuss previous literature on reliability
management in processors. Dynamic reliability banking is
proposed in [7] to address aging due to electromigration
(EM), another aging mechanism. A two phase DRM algo-
rithm that chooses among predefined hardware configura-
tions is introduced in [8]. Reliability slack is introduced in
[9] and used for dynamic reliability management during
periods of high processing demand. The authors of [10]
exploit the variation in workloads to assign jobs to cores
in a manner that minimizes the impact of NBTI and TDDB.
The authors of [11] introduce Facelift, a technique to hide
aging through aging-driven application scheduling and to
slow it down by applying voltage changes at key times. A
DVFS control and look-up table reliability estimation based
DRM scheme is introduced in [12] for singlecore processors
to address process variation aware oxide breakdown. The
impact of job scheduling based power management on
reliability is investigated in [13]. A system level HW/SW
reliability management scheme where a chip dynamically
adjusts its own operating frequency and supply voltage
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over time as the devices age due to NBTI is introduced in
[14]. The authors of [15] study a control theoretic approach
that uses data from aging sensors to compute the wearout
degradation and to maximize the lifetime of homogeneous
multicore systems. A reinforcement learning algorithm is
proposed in [16] to optimize the lifetime of a multicore
system by controlling the average temperature and thermal
cycling. The study in [17] introduces a wearout-decelerating
scheme to mitigate the impact of NBTI and hot-carrier injec-
tion (HCI) in NoCs. The study in [18] presents a reliability
management solution for dark silicon chips. The solution
considers soft errors, process variations, and the thermal
design power constraint. Simulation results were reported
for 80x80 grid cells chips of LEON3 processors. This work is
further extended in [19]. The same research group proposed
in [20] a run-time approach that harnesses dark silicon to
decelerate and balance temperature-dependent aging. Their
solution also considered variability to improve the system
performance for a given lifetime. They focus on NBTI and
did not report if the communication among cores is via the
NoC. Furthermore, the study in [21] proposed a process
variation- and aging-aware dynamic hierarchical mapping
solution to maximize lifetime reliability of manycore sys-
tems while satisfying performance, power, and thermal
constraints. The authors reported improved system lifetime
reliability by up to 2 years for 64-core and 256-core systems.
To save space, for discussion of additional reliability studies
we kindly refer the reader to recent survey [27].

One limitation of previous studies is that they focus
separately on either the computational component of a pro-
cessor (i.e., single core or multicore processing unit) or the
communication component, typically the NoC. Not consider-
ing either of these components introduces significant errors,
because both computational and communication units of
multicore processors may become a reliability bottleneck. In
our previous work [22], we found that when one does not
consider for example the NoC component in the reliability
optimization, the errors in MTTF values, as the most popu-
lar way to measure lifetime reliability, may be off by as much
as 60%. Such errors can mislead any lifetime reliability opti-
mization method and result into suboptimal solutions. More
recently, other researchers also considered reliability of the
whole chip as the combination of communication and com-
putation components [24], [25]. The study in [25] focused
on 3D NoC based CMPs, considered electromigration in
power delivery network wires and BTI aging mechanisms,
and proposed the ARTEMIS framework for aging-aware
application mapping and DVS scheduling. The framework
enables the execution of 25 percent more applications over
the chip lifetime. The work in [24] addressed transient faults
as well as HCI and NBTI aging mechanisms via adaptive
application mapping and DVS. Their CHARM framework
was reported to achieve 2.5x improvement in lifetime and
up to 6x improvement in number of applications executed
during the lifetime of the assumed 60 core chip.

3 PROPOSED HYBRID DYNAMIC RELIABILITY
MANAGEMENT
3.1 Block Diagram
The block diagram of the proposed DRM approach is shown
in Fig. 1. The idea is to implement a control algorithm, which
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Fig. 1. Proposed dynamic reliability management algorithm has two
components, the MTTF online estimator and the DRM controller. The
CMP is composed of a number of tiles. A tile is (core + NoC router)

continuously monitors the temperatures of all components
of both computational and communication units of the CMP
hardware platform. This algorithm operates periodically
according to a pre-defined control period and uses the in-
put temperatures as well as the user set desired lifetime
reliability target to generate output control commands that
dictate how thread migration among tiles and DVFS of
individual tiles is done during the next control period.
These commands are generated such that lifetime reliabil-
ity converges toward the desired target. The algorithm is
implemented in software and has two main components.
The first component estimates the current lifetime reliability
and is implemented with a neural network (NN) model. Its
role is to produce an estimate of the mean time to failure
(MTTF) of the entire CMP as a way to quantify or measure
the lifetime reliability. We use an NN model based predictor
for efficiency reasons and because of NN models have been
shown to provide high quality prediction and classification
results. Please refer to our previous work in [22] for details
on the construction of the NN model.

The second component shown in Fig. 1 is the DRM
controller. Its role is to compare the currently estimated or
projected MTTF to the desired target and then decide for
each tile (core + NoC router) whether the clock frequency
must be throttled, increased, or left unchanged or whether
threads should be migrated from hot to colder tiles. The
control loop from Fig. 1 shares in philosophy with any other
closed-loop control theory algorithm. However, the context
in which we use elements of control theory is specific in this
case to the optimization of lifetime reliability for chip mul-
tiprocessors, which we handle in a unified manner, as the
combination of both cores and network-on-chip. The neural-
network based estimation is another specific element. The
most challenging aspect of the proposed DRM algorithm
is to figure out a way to make these decisions such that
performance is not affected too much. The next section
elaborates on how that is done.

3.2 DRM Controller
Here, we describe how we arrived to the implementation of
the logic behind the DRM controller from Fig. 1. First, based
on our experience from our previous studies [22], [23], we
present several design insights.

We found that lifetime reliability can be more effec-
tively improved using DVFS based techniques, but at the



2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2018.2870187, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 2, FEBRUARY 2018 3

expense of larger performance penalties when compared
to thread migration based techniques. This suggests that,
for applications where performance degradation can be
tolerated, DVFS based DRM schemes can be used to trade
performance for larger MTTF improvements. In contrast,
for applications where performance degradation is not ac-
ceptable, thread migration based DRM schemes may be
a better choice. However, thread migration is limited in
its ability to significantly improve MTTF even if it would
be acceptable to degrade performance. That is because no
matter how much one would shuffle jobs among tiles, if
the application benchmark is computationally intensive and
all cores are heavily utilized, temperature profile will be
always high anyways. The problem is that we do not know
at design time what kind of application benchmarks will be
run on a given instance of a chip multiprocessor. A subtle
design insight here is that the above statements about thread
migration techniques are true only when the application
benchmark has a number of active threads that is compara-
ble to the total number of tiles of the CMP. That was the case
in our study from [22], where the used Parsec benchmarks
were specifically compiled for the duration of the so called
region of interest (ROI) to run a number of threads equal to
the number of cores. In such situations, a thread migration
technique has little ability to improve the thermal profile via
shuffling threads between tiles because all cores are already
busy. However, if the application benchmark is compiled
such that the number of active threads is smaller than the
number of available cores, at any given time, then, thread
migration can effectively be used to achieve significant
reliability improvements. While this may not seem realistic
or desirable because we would like all cores to do useful
work at all times, applications that are programmed to be
running parallel on multicore platforms may have situations
when some of the tasks running on some cores finish early
compared to other tasks running on other cores. Situations
like that offer the opportunity to be exploited for example
for thread migration. Moreover, with the increasing power
dissipation on multicore platforms, researchers are already
talking about the new era of dark-silicon [18], [20], [21].
That is, in dark-silicon, many cores would be shut-down
or not be utilized in order to keep the total number of cores
executing at the same time small enough and thus keep the
temperatures low. These situations are examples when the
number of threads can be less than the number of cores.

To further understand the relation between the number
of available free cores (i.e., currently not having any running
threads on them), which usually have colder temperatures,
and the amount of MTTF improvement when thread mi-
gration is used as the main technique for lifetime reliability
management, we conducted the following experiment using
our modified GEM5 based simulation framework. This sim-
ulation framework will be described in more details later
on. We use an NoC based CMP with 16 cores to run several
benchmarks that are compiled to run during the ROI using
a number of threads varied between 1 and 16. Thus we
conduct 16 different full system simulations for the given
benchmark. We use our own thread migration based DRM
scheme [22] and the objective is to see with how much MTTF
of the whole CMP system can be improved. The results of
this experiment for the blacksholes benchmark are shown in
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Fig. 2. Plot showing the amount of MTTF improvement using a thread
migration based DRM scheme over the reference case when no DRM
scheme is used at all. A tile is denoted as cold if its temperature T <
40◦C, as mild if 40◦C ≤ T ≤ 60◦C, and hot if T > 60◦C.

Fig. 2.
The plot from Fig. 2 confirms the intuition that more

cold tiles available provide more opportunities to the thread
migration DRM scheme to migrate threads in the attempt to
keep tile temperatures within a power profile that improves
the MTTF. In our simulations, we found that when the
number of hot cores is less than half of the total number
of cores, the MTTF can be improved via thread migration
to larger extents than when most of the cores are hot. This
observation motivates us to implement the DRM controller
as described in Fig. 3. The main idea of the controller is to
1) use as much as possible the thread migration technique
because it is the cheapest to implement and provides good
enough MTTF improvements with minimal performance
penalty when there are enough cold tiles available and 2)
use the DVFS technique when the thread migration cannot
be used.

The input into the DRM algorithm includes tempera-
tures of all the major modules of the tiles formed by cores
(i.e., integer execution unit, caches, etc.) and NoC routers
of the assumed regular mesh NoC as well as individual tile
supply voltages. Temperatures and tile supply voltages are
used by the neural network estimator to estimate lifetime
reliabilities (as MTTF) of each tile containing a core and a
router as well as of the overall CMP. Then, depending on the
current number of cold tiles and on the comparison between
the currently estimated MTTF with the desired target MTTF,
the algorithm uses either the thread migration technique or
the DVFS technique.

The logic behind the thread migration technique (see Fig.
4) is that if the currently estimated MTTF is less than the
target MTTF, it moves threads from hot to cold cores to more
uniformly balance the overall temperature profile, thereby
increasing the current MTTF. In case that the estimated
MTTF is higher than the target, no thread is migrated. The
logic behind the DVFS technique (see Fig. 5) is that if the
estimated current MTTF is less than the target MTTF, then,
throttle the frequency of the core to the next lower frequency
from the set of frequencies we work with (and lower its
supply voltage too); otherwise, raise the frequency to the
next higher frequency (and raise its supply voltage too); if
the estimated current MTTF is within the vicinity (dictated
though a user set parameter δ) of the target MTTF, then keep
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Algorithm: DRM Controller
1: In: Desired MTTFtarget; δ hysteresis bandwidth; γ max-

imum percentage of updated tiles in a control period; K
repetition number

2: Out: Frequencies and supply voltages for all tiles and
thread id running on each tile during next control period

3: Read in temperatures of all tiles of the CMP
4: Use neural network based MTTF estimator to calculate

MTTF of each tile and of whole CMP
5: if NumberColdT iles ≥ NumberHotT iles then
6: for next K control periods do
7: Use thread migration technique
8: end for
9: else

10: if 0.8 ·MTTFtarget < MTTFCMP < 1.2 ·MTTFtarget

then
11: for next K control periods do
12: Use thread migration technique
13: end for
14: else
15: for next K control periods do
16: Use DVFS technique
17: end for
18: end if
19: end if

Fig. 3. Pseudocode of the proposed DRM algorithm. In our experiments,
this algorithm is implemented as a callable routine inside the GEM5
simulation framework. Parameters δ, γ, and K can be set by the user
to allow for calibration of how aggressive the DRM strategy is. The thread
migration and DVFS techniques are described in Fig. 4 and Fig. 5. The
values 0.8 and 1.2 were found empirically to provide good results.

Routine: Thread migration technique
1: if MTTFCMP < MTTFtarget − δ then
2: Sort all tiles in increasing order of their MTTF
3: for i← 1 to γn/2 do // n: number of tiles
4: if MTTFi < MTTFtarget − δ then
5: Migrate the thread in ith tile to the (n − i)th tile

and vice versa
6: end if
7: end for
8: end if

Fig. 4. Pseudocode of routine describing the thread migration technique
called by the proposed DRM algorithm from Fig. 3

the same frequency for the core.
The time complexity of the algorithm from Fig. 3 is linear

with the number of tiles, n, for which either thread migra-
tion or DVFS heuristic algorithms must be executed. Each
of these requires a sort, that has nlog(n) time complexity.

4 SIMULATION RESULTS
4.1 Simulation Setup

Because we do not have access to NoC based CMP platforms
with tens of cores that we investigate in this study (CMP
architectures, which often times are exploratory), we resort
like the rest of the research community to the next best way
to test and validate our ideas, simulation tools. To test our
DRM algorithm, we have developed our own simulation
framework, which is implemented on top of the popular
GEM5 full system simulation tool [28]. In addition, we
integrate in our simulation framework several other point
tools as shown in the block diagram from Fig. 6.

GEM5 tool is one of the most popular full system
simulators capable of simulating entire computing systems
constructed around singlecore or multicore processors. In

Routine: DVFS technique
1: if MTTFCMP < MTTFtarget − δ then
2: Sort all tiles in increasing order of their MTTF
3: for i← 1 to γn do // n: number of tiles
4: if MTTFi < MTTFtarget − δ then
5: Switch down frequency and voltage of this tile
6: end if
7: end for
8: else if MTTFCMP > MTTFtarget + δ then
9: Sort all tiles in decreasing order of their MTTF

10: for i← 1 to γn do
11: if MTTFi > MTTFtarget + δ then
12: Switch up frequency and voltage of this tile
13: end if
14: end for
15: end if

Fig. 5. Pseudocode of routine describing the DVFS technique called by
the proposed DRM algorithm from Fig. 3

GEM5

Activity counters

CMP Full 

System 

Simulation 

Ruby

Garnet NoC

McPAT

Cores Power 

Estimation

NoC

routers 

power

HotSpot Temperature Estimation

Cores power

Floorplan

REST, Reliability Estimation Tool

Temperatures

MTTF

Replaced with 

neural network

estimator

Application

Benchmark

CMP arch.

Cores + NoC

Real CMP 

with integrated 

temperature 

sensors

Fig. 6. Block diagram of the complete simulation framework to simu-
late a given application benchmark and to estimate lifetime reliability,
measured as MTTF, of the entire system as combination of cores plus
network-on-chip. Note that when the Rest tool is replaced by the neural
network MTTF estimator, supply voltages are also provided together
with temperatures as inputs to the estimator.

the case of chip multiprocessors, the tool can model and
simulate NoC communication between cores. It provides
detailed timing and performance data and also integrates
capabilities to estimate NoC router and link power con-
sumptions. Hence, simulation of a given application bench-
mark is accurate and it also accounts for the operating
system. Unfortunately, GEM5 tool does not output temper-
atures of cores, which in real processors would be available
through temperature sensors integrated on chip. Therefore,
we must use two additional tools in a sequence as shown
in Fig. 6. Specifically, we first use McPAT power calculator
[29] to compute power consumption values for cores based
on the performance data (activity counters) from GEM5.
Then, the power values of all cores and NoC routers are
fed into the HotSpot temperature calculator [30] to estimate
temperatures.

Finally, the temperature values are used as input into the
Rest tool to estimate MTTF of each tile as well as of the entire
CMP. The Rest tool is described in detail in our previous
work [22]. We do not describe it here due to lack of space
and because it is not a contribution of this paper, except
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TABLE 1
Architectural configuration parameters.

Parameter Value
Technology node 65nm
Frequencies 2GHz downto 1.5GHz, with 100MHz step
VDDs 1.1V downto 0.95V, with 25mV step
Core Alpha EV6 21264
Core CPU model Out of order (Detailed CPU)
Branch predictor 2 bit counter
Reorder buffer 80-entries
L1 ICache 32KB
L1 DCache 64KB
L2 2MB
Network 2D regular mesh, 1 router per core
Tile floorplan Router to the top of core ALU

occupies 20% of tile
Link bandwidth 32 bits
Routing algorithm XY
Number of virtual channels (VCs) 2

to mention that it is based on a Monte Carlo simulation
that works with failure times for TDDB and NBTI aging
mechanisms modeled as Weibull distributions.

4.2 Simulation Parameters
In our simulations, we conduct experiments on several
application benchmarks to investigate the proposed DRM
algorithm for two different CMP architectures composed of
16 cores and 64 cores, respectively. Each of these architec-
tures use 4 × 4 or 8 × 8 regular mesh networks-on-chip.
The default architectural configuration parameters utilized
in our custom GEM5 based simulations, unless otherwise
specified, are shown in Table 1. The values of the parameters
from Fig. 3 are δ = 10%, γ = 50%, and K = 4. These
values were found empirically to provide good results. Note
that, aside temperature, the usage/duty cycle is another
factor that can affect MTTF of a processor. For example,
at an extreme, a CMP that is rarely used could last for
many years and thus have a very large MTTF. Our work is
under the assumption that the CMP architecture is exercised
continuously, by the given benchmark being simulated. All
the MTTF results reported in this paper are obtained under
that assumption.

We would like to emphasize that within a simulation
framework like this, we can perform any exploratory inves-
tigations for any chip multiprocessor architecture of interest.
In addition, the simulation framework has the advantage
of being able to stretch the ROI execution time for a given
application benchmark in order to allow the complete se-
quence of processing steps illustrated in Fig. 6 to be per-
formed. In real life deployment of the proposed DRM algo-
rithm though, this sequence of steps would not be necessary
because the on chip temperature sensors would provide
temperature information directly. This is indicated on the
left hand side of Fig. 6, where these processing steps would
be shortcut by temperature sensor readings. The same figure
shows that the Rest tool from this simulation setup would
be replaced in real life deployment with a neural network
based estimator described in detail, including training data
generation and the training process, in our previous work
[22].

Most of the previous DRM schemes did not consider
the impact of the NoC component on the MTTF of the
whole CMP system. This can result in errors in reliability
estimation as high as 60%, as discussed in Section 2. There-
fore, a direct comparison to such previous DRM schemes

would not be an apple to apple comparison because they
do not account for the effect of the NoC component. Other
works such as [25] that also considered the whole system
holistically focused on different CMP architectures (3D NoC
based) and addressed different aging mechanisms such as
electromigration. Hence, we present our results in compari-
son with the results we have achieved when no reliability
optimization is done at all. In addition, we discuss the
results in comparison with those that we obtained in our
previous work with approaches that used only either thread
migration or DVFS. In all our simulations, we consider
both the computational (i.e., cores) and communication (i.e.,
network-on-chip) components in a unified manner for the
purpose of the MTTF calculation.

4.3 Results
In this section, we report simulation results for several
Parsec and Splash2x application benchmarks. In our simu-
lations, we set as target or desired average MTTF a value
that is with 100% longer than what it is when no DRM
algorithm is used, which is our reference case. This target is
in the range of 8-10 years for the studied testcases. In other
words, we are interested in doubling the average lifetime of
the investigated CMP architectures. As already mentioned,
we investigate two different CMP architectures composed
of 16 cores and 64 cores, respectively.

Fig. 7 shows the simulation results for blackscholes bench-
mark using 16 threads on a CMP architecture with 4 × 4
tiles. The plot shows only the period of time that covers
the region of interest (ROI) of the GEM5 simulation. During
each simulation, the GEM5 simulator is halted a number
of times during the ROI (this number depends on the actual
length of the ROI and the selected control period, which is the
order of tens of ms or less in our case, due to the rather short
duration of the ROI of all the investigated benchmarks) to
perform DRM and to update the frequencies and voltages of
each tile or to perform thread migration. Each of these stop-
times corresponds to a data point out of the sampling points
shown on the horizontal axis in Fig. 7. Note that in these
figures the horizontal axis represents sampling points and
not actual ROI execution time. That is because the actual
length of the ROI portion when DVFS technique is used
becomes longer in absolute time due to frequency throttling.
This figure shows that the proposed DRM algorithm can
bring and maintain the MTTF above or just beneath the
desired objective (within δ parameter from Fig. 3). It can be
noted that MTTF fluctuates around the target MTTF. That is
because 1) of the variation in the workload that each core
must do during different control periods inside the ROI and
2) of the inherent inertia when dealing with latent variables
like temperature.

Fig. 8 shows the thermal profiles of the 4× 4 CMP archi-
tecture in the reference case (i.e., no DRM algorithm being
used) and in the case when the proposed DRM algorithm is
used. These thermal maps correspond to the fifth sampling
point from Fig. 7 and show that the DRM algorithm suc-
cessfully manages to pull down the temperature of all tiles
in the CMP architecture, thereby improving the MTTF of the
entire system.

For an 8 × 8 CMP architecture, Fig. 9 shows the sim-
ulation results for cholesky benchmark compiled to use 64
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Fig. 7. Simulation results for blackscholes benchmark on an architecture
with 4×4 tiles (i.e., 16 cores). Similar results were obtained for the other
benchmarks.

threads. The dip formed by point 4-6s of the reference plot
is because this particular benchmarks has a behavior that
creates a workload pattern or traffic which is much heavier
in the middle of the ROI period. During this dip, the activity
counters registered inside the GEM5 simulations are much
higher. This directly translates into increased temperature
values that in turn trigger a degradation of the lifetime
reliability. Likewise, Fig. 10 shows the thermal profiles,
which again indicate that the DRM algorithm successfully
manages to pull down the temperature of all tiles in the
CMP architecture, thereby improving the MTTF of the entire
system.

This is a good time when it is important to mention a
subtle insight. The thermal maps from Fig. 8 or Fig. 10 are
not the same as when we would do directly dynamic thermal
management (DTM). That is because thermal management
cannot be utilized directly as a proxy for lifetime reliability
management. While temperature-wise a given core may be
still within the acceptable limits, reliability-wise the core
may be already in an emergency that requires immediate
attention and vice versa. For example, the work in [8]
showed that, when DVFS is utilized as the controlling
technique, different frequencies are suggested by DRM and
DTM schemes. The study found that at higher values of
Tqual (qualifying temperature for DRM) and Tmax (thermal
design point), the frequency suggested by DTM would
violate the system reliability requirement; while at lower
values of Tqual and Tmax, the frequency suggested by DRM
would violate the system thermal requirement.

4.4 Discussion

Due to space limitations we cannot include here plots like
Fig. 7 and Fig. 9 for all the benchmarks that we simulated.
Instead, we present summary plots (see Fig. 11 and Fig.
12) that show the performance penalty and the change in
energy delay area product (EDAP) for a user set target
MTTF improvement of 100%, for each of the investigated
benchmarks for both CMP architectures. For all simulated
benchmarks, the target MTTF was reached. However, the
achieved MTTF has fluctuations/oscillations around the
target as observable in Fig. 7 and Fig. 9. In these plots, the
reference for comparison is the case when no DRM algo-
rithm is used. The proposed DRM algorithm successfully
improves MTTF across the board while the performance

(a)

(b)

Fig. 8. (a) Thermal profile of the 4 × 4 CMP architecture running
blackscholes benchmark with no DRM algorithm, (b) Thermal profile of
the same architecture when the proposed DRM algorithm is used. The
color-coded temperature range is 20◦C (blue) to 120◦C (red).

penalty is on average 7.7% and 8.7% for the two multi-
processor architectures. While we do not have an exact
breakdown of how much of the overhead is due to DVFS
and how much is due to thread migration, we observed that
DVFS has larger impact on the overall execution time. The
EDAP values degrade a negligible amount, which is very
desirable because from an EDAP stand point we lose very
little while achieving significant improvements in lifetime
reliability. The performance penalty is calculated based on
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Fig. 9. Simulation results for cholesky benchmark on an architecture with
8 × 8 tiles (i.e., 64 cores). The MTTF of the reference case improves
in the second part of the ROI because the actual workload decreases
(some threads finish much earlier) for this particular benchmark.

the difference in execution time inside the GEM5 simulator
of a given benchmark. The GEM5 full system simulation
tool reports the execution time, which usually becomes
longer when we have enabled the proposed DRM technique.
Despite the performance degradation on some benchmarks,
our approach presents a method that combines both DVFS
and thread migration and quantifies the tradeoff between
performance and lifetime reliability; notably, it provides a
means to tune this tradeoff to specific needs.

We notice that some applications are highly correlated
in terms of their performance penalty and EDAP. This
correlation is higher for example for benchmarks lu-cp and
fft when executed on 8× 8 CMP architectures. On the other
hand, this correlation is higher for benchmarks blackscholes
and bodytrack when executed on 4×4 CMP architectures. We
suspect that this correlation could be in part due to the spe-
cific characteristics of traffic patterns that each benchmark
creates on each core and through the network-on-chip. We
noticed in our simulations that when the CMP system runs
fully with all cores being busy all the time, it is very difficult
to find room for improvement; no matter what one would
do as DVFS or thread migration, the penalty in performance
is more prevalent.

The proposed DRM algorithm performs better than each
of the approaches when only either thread migration or
DVFS would be employed. In our previous work from [22]
we used only thread migration and the MTTF was improved
by only up to 50%. The approach in [23] used only DVFS
and MTTF was improved by up to 100% but with bigger
performance penalties (up to 16%). The combination of both
thread migration and DVFS techniques presented in this
paper offers a better tradeoff between MTTF improvement
and performance degradation.

5 CONCLUSION

The proposed dynamic reliability management algorithm
for chip multiprocessors combines thread migration and
DVFS techniques to change the CMP operation such that the
MTTF of the overall system is increased to the desired target
with minimal performance degradation. Its straightforward
software level implementation makes it cost effective and
efficient. Full-system based simulations using a customized
GEM5 simulator demonstrated that lifetime reliability can

(a)

(b)

Fig. 10. (a) Thermal profile of the 8 × 8 CMP architecture running
cholesky benchmark with no DRM algorithm, (b) Thermal profile when the
proposed DRM algorithm is used. The color-coded temperature range
is 20◦C (blue) to 120◦C (red).

improved by 100% for an average performance penalty
of 7.7% and 8.7% for 16 and 64 core NoC based chip
multiprocessors compared to the case when no reliability
optimization is done at all.

As future work, it would be interesting to study the use
of more sophisticated reliability models in order to capture
the fact that lifetime should also be a function of the current
state of degradation [31].
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Fig. 11. Summary of simulations results for 4 × 4 CMP architecture for
a target MTTF improvement of 100% (i.e., double lifetime). Each data
point is the average of all values obtained during the hold times or
sampling points illustrated in Fig. 7 for a given benchmark.
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Fig. 12. Summary of simulations results for 8× 8 CMP architecture for a
target MTTF improvement of 100%.
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