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Abstract—The impact of multiple levels of uncertainty in
design parameters and uncertainty correlations on the quality
of mapping solutions in embedded systems is investigated. The
investigation is done with a simulation tool developed to conduct
multi-objective design space exploration in order to generate
robust Pareto frontiers in the solution space formed by reliability,
execution time, and energy as design objectives. The simulation
tool integrates proposed models for uncertainty and a hyper-
volume based technique for quantifying the difference between
Pareto frontiers. Simulations results show that by not consid-
ering uncertainty and correlations between different sources of
uncertainty can lead to overestimation of the performance of the
optimal solutions.

I. INTRODUCTION

New challenges in embedded systems design include un-

certainty in design parameters due to process, voltage and

temperature (PVT) variations among others [1]. The uncer-

tainty in design parameters adversely affects the accuracy of

the model-based estimations of the design attributes of interest,

thereby affecting the quality of the final solutions. Thus,

increased uncertainties in design parameters undermine the

accuracy and effectiveness of the mapping of applications to

architecture platforms in embedded systems design. Therefore,

researchers started to address the issue of uncertainties in

design parameters during the process of designing embed-

ded systems. For example, several recent studies presented

solutions to model and handle uncertainty [2]–[4]. The work

in [2] proposed uncertainty models and a mapping algorithm

for robust embedded systems that used software components

only. Reliability was the only objective considered in the op-

timization process. The study in [3] proposed an uncertainty-

aware reliability model for the design space exploration of

embedded systems with consideration of correlations between

components. Similarly to [2], reliability was considered as

the only uncertain design attribute. The work in [4] used the

uncertainty and reliability models from [2] and proposed a

solution to the mapping problem similar to that from [5],

[6], but formulated as a multi-objective problem considering

reliability, execution time, and energy consumption together.

This paper extends the work in [4] by proposing models for

multiple correlated sources of different levels of uncertainty.

In addition to these models, the developed custom simulation

tool integrates a hypervolume based technique for quantifying

the difference between Pareto frontiers. Thus, the main contri-

bution of this work is the consideration of multiple correlated
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Fig. 1. Mapping approach from [4], which is extended in this paper.

sources of uncertainty into the formulation of the mapping

problem as a multi-objective optimization problem, which is

solved with a genetic algorithm that is described next.

II. MAPPING OF EMBEDDED SYSTEMS WITH

CONSIDERATION OF UNCERTAINTY

A. Design Space Exploration with NSGA-II Genetic Algorithm

The tool from [4], extended in this paper, addresses the

problem of mapping in embedded systems. Finding the best

mapping solution is done with an iterative optimization al-

gorithm that conducts an automated design space exploration.

The process follows a Y-chart design flow as illustrated in Fig.

1. In this iterative process, the application tasks and communi-

cations between them are assigned or mapped to components

of the hardware architecture platform. This mapping process

is formulated as a multi-objective problem, which considers

reliability, execution time, and energy as the three main

objectives. To solve this multi-objective mapping problem, the

Non-dominated Sorting Genetic Algorithm (NSGA-II) [7] is

used due to 1) its ability to handle multiple objectives at the

same time, 2) its efficiency because of the lower computational

complexity, and 3) the ease of implementation. The NSGA-

II step (Fig. 1) represents the main iterative loop where the

mapping solution space is explored.

B. Monte Carlo Simulation for Design Attributes Estimation

The Monte Carlo (MC) simulation step from Fig. 1 is used

to evaluate each solution explored during the search process.

During the MC simulation, a given mapping solution candidate

is evaluated for different values of the parameters affected

by uncertainties. The evaluation consists of the estimation

of reliability, execution time, and energy consumption using
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Fig. 3. The difference between hypervolume indicators is used to quantify
the difference between the two Pareto frontiers, PF1 and PF2.

H(PF ) =

∫
1[∃x ∈ X : f(x) ≺ y ≺ z]dy (3)

where f is the vector obtained by stacking the objectives, ≺

is the dominance operator defined as x ≺ y ⇔ (x1 < y1) ∧
... ∧ (xm < ym), and z ∈ RN is the reference point, which

is called the Nadir point - as the worst-known value in each

dimension. For example, Fig. 3 illustrates how the measure in

equation (2) quantifies the difference between two normalized

Pareto frontiers.

A. Comparison to Traditional Sesame Tool

The comparison with the traditional Sesame tool is done on

two testcases, MJPEG and MP3, which are provided with the

Sesame tool [9], [10]. We use the same target architecture as

the Sesame tool. The architecture includes five different pro-

cessors and a memory connected to a shared bus. The Sesame

tool was also used to collect average execution cycles per task

for both testcases; we use these values in the simulations with

the New tool for a fair comparison. In addition, we adopt the

power consumption values for different processors from [13],

which described the parameters of the Sesame architecture

platform; thus, the results reported here are as close as possible

to ’real system results’.

The normalized Pareto frontiers obtained using Sesame and

New tools are shown in Fig. 4 for the MJPEG testcase. A

similar plot was obtained for the MP3 testcase; not included

here due to lack of space. Fig. 4 shows that the New tool

generates Pareto frontiers that are shifted away from those

obtained by the Sesame tool. The solution points generated

by the Sesame tool have better overall performance (solution

points are closer to the center of coordinates of the solution

space) than the solutions on the Pareto frontier obtained by the

New tool. However, the solutions found by the Sesame tool

are unaware of uncertainty and provide an optimistic view of

what the performance is. Thus, the traditional deterministic

approach of the Sesame tool overestimates design attribute

values, and this can lead to inaccurate final solutions. The

term overestimate is used in this context with the meaning that

‘performance’ is found to be better than what it is, which is

reported as smaller energy consumption and shorter latencies.

As discussed earlier, to quantify the difference between the

two Pareto frontiers, we calculate the hypervolume indicators
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Fig. 4. Pareto frontiers generated by Sesame and New tools for the MJPEG
testcase. Axes values are normalized.

and their difference as in equation (2). The result of these

calculations is reported in Table I. The difference indicates

that the Sesame traditional deterministic approach may lead

to significantly inaccurate ‘optimal’ solutions.

TABLE I
HYPERVOLUMES AND THEIR DIFFERENCE FOR THE PARETO FRONTIERS

GENERATED BY THE NEW AND SESAME TOOLS.
Testcase H(New) H(Sesame) Difference as %

Comp. to Sesame [9]

MJPEG 0.5794 0.8421 31.2%

MP3 0.5273 0.9607 45.1%

B. Comparison to Current State-of-the-Art Tools

Here, we compare the New tool with the current state-of-

the-art tools, which include the tool in [4] (referred to as Prev1

tool) and the approach in [3] (referred to as Prev2 tool), which

has been implemented inside the New tool. As a reminder,

the Prev1 tool did not consider uncertainty correlations and

the Prev2 tool did not consider different levels of uncertainty

and multiple correlation groups. In all simulations, we used

the architecture platform from [4] that includes five software

components (e.g., CPUs), five hardware components (e.g.,

FPGAs), and two memory components connected to a shared

bus. We assume all the software components are affected

by the same uncertainty source with injected 10% level of

uncertainty, and all the hardware components are influenced

by another uncertainty source at 5% level of uncertainty.

Therefore, in this way two correlation groups are emulated

- according to the discussion earlier in the paper. Simulations

were done on four testcases, ABS, ACC, H.264, and JPEG.

The results obtained are similar for all testcases; the discussion

here focuses on the ABS testcase only in the interest of space.

The Pareto frontiers obtained by the New, Prev1, and Prev2

tools are shown in Fig. 5. We first compare the Pareto frontiers

generated by New and Prev1. Fig. 5 shows that the Pareto

frontier obtained with the New tool is also shifted away

from that generated by the Prev1 tool. The shift amount

is proportional to the level of injected uncertainties. This

difference between the Pareto frontiers is expected because

the Prev1 approach models the uncertainty affecting different

components independently, while the New approach considers

the uncertainty correlations among the components, which

restricts the process of sampling of parameters for all com-

ponents in the Monte Carlo simulations. Next, we compare
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Fig. 5. Pareto frontiers generated by the New, Prev1, and Prev2 tools for the
ABS testcase. Axes value are normalized.

the Pareto frontier generated by New with the one generated

by Prev2. We again notice a shift difference between the two

Pareto frontiers. This difference is also expected because Prev2

did not consider multiple correlation groups and different

levels of uncertainty - which ignores the fact that some of

the components in multiple correlation groups (e.g., affected

by multiple uncertainty sources) may have higher level of

uncertainty than other components. We conclude that design

objectives in multiple correlation groups may be overestimated

when using Prev2 for analysis. Note that we cannot directly

compare Prev1 with Prev2 because Prev1 did not consider

uncertainty correlations while Prev2 did not consider different

levels of uncertainty and multiple correlation groups.

Next, to quantify the difference between the Pareto frontiers,

we calculate the hypervolume indicators and their difference

as in equation (2). The result of these calculations is reported

in Table II. Similarly to the discussion in the previous section,

we observe that the difference between New and Prev1 is

2.0 − 5.3%, while the difference between New and Prev2

is 8.0 − 16.3%. These differences again indicate that Prev1

and Prev2 approaches overestimate the design objectives and

provide better solutions that are inaccurate. In contrast, by

considering both uncertainty correlations and different levels

of uncertainty, the New tool can provide robust and relatively

more accurate solutions than current state-of-the-art tools.

TABLE II
HYPERVOLUMES AND THEIR DIFFERENCE FOR THE PARETO FRONTIERS

GENERATED BY THE NEW, PREV1, AND PREV2 TOOLS.
Testcase H(New) H(Prev1) H(Prev2) Difference as % Difference as %

Comp. to Prev1 [4] Comp. to Prev2 [3]

ABS 0.8479 0.8649 0.9218 2.0% 8.0%

ACC 0.8243 0.8445 0.9843 2.4% 16.3%

H.264 0.8654 0.8884 0.9626 2.6% 10.1%

JPEG 0.7631 0.806 0.8687 5.3% 12.2%

C. Computational Complexity

The computational runtime of the New tool - includes

a parallelized implementation using OpenMP of the Monte

Carlo simulation step from Fig. 1 - is linearly proportional with

the number of iterations of the genetic algorithm as shown in

Fig. 6. The computational runtime of the New tool is faster

by 1.6x an average compared to the Prev1 tool.

IV. CONCLUSION

The main contribution of this paper is the investigation

of the impact of multiple levels of uncertainty in design
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Fig. 6. Computational runtime of the proposed New tool and the Prev1 tool
versus the number of iterations of the NSGA-II genetic algorithm.

parameters and of uncertainty correlations on the quality of

mapping solutions in embedded systems. Simulation results

obtained with a custom software tool that solves the problem

of mapping with a genetic algorithm approach showed that

by not considering uncertainty or by not capturing uncertainty

correlations, one can overestimate by up to 16% the perfor-

mance of the optimal mapping solutions.
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