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Abstract—In multicore processor systems, being able to accu-
rately predict the future provides new optimization opportunities,
which otherwise could not be exploited. For example, an oracle
able to predict a certain application’s behavior running on
a smart phone could direct the power manager to switch to
appropriate dynamic voltage and frequency scaling modes that
would guarantee minimum levels of desired performance while
saving energy consumption and thereby prolonging battery life.
Using predictions enables systems to become proactive rather
than continue to operate in a reactive manner. This prediction-
based proactive approach has become increasingly popular in the
design and optimization of integrated circuits and of multicore
processor systems. Prediction transforms from simple forecasting
to sophisticated machine learning based prediction and classi-
fication that learns from existing data, employs data mining,
and predicts future behavior. This can be exploited by novel
optimization techniques that can span across all layers of the
computing stack. In this survey paper, we present a discussion
of the most popular techniques on prediction and classification
in the general context of computing systems with emphasis on
multicore processors. The paper is far from comprehensive, but,
it will help the reader interested in employing prediction in
optimization of multicore processor systems.

Index Terms—Multicore processor system; prediction; classi-
fication; exponential averaging; history predictor; autoregressive
moving average (ARMA); Kalman filter; linear regression (LR);
linear discriminant analysis (LDA); multinomial logistic regres-
sion; K-nearest neighbor (KNN); Bayes classifier; support vector
machines (SVM); reinforcement learning (RL); online machine
learning; neural network (NN); deep neural network (DNN);
model predictive control;

I. INTRODUCTION

Generally speaking, in modeling and in solving engineering
problems we always do prediction in various ways. Models
themselves (e.g., often embodied into simulation tools such
as Wattch [1], McPAT [2], and HotSpot [3]) abstract away
details of the physical system that is modeled and provide
means to capture present and future behavior. Often times,
solving problems implies making estimations about different
figures of merit or attributes of the modeled system, such as
performance or power consumption in the current state as well
as in future states. Typically, optimization decisions then are
made based on such estimations or predictions. When these
decisions are made based on the current state estimations, the
optimization approach is called reactive, because the system is
designed to react to certain changes in system’s behavior. On
the other hand, when optimization decisions are made based
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on predicted future values of the attributes of interest, the
approach becomes proactive, because measures are taken early
on based on forecast values, thereby potentially achieving
better optimizations. It is the proactive type of optimiza-
tion approaches that we are particularly interested in the
discussion presented in this paper, because such approaches
usually employ explicit forms of prediction techniques − as
the primary focus of this paper, in the general context of
computing systems with emphasis on multicore processors −
and because the reactive type encompasses the vast majority
of all other works, which is too large to be discussed in a
paper such this. We use the general term computing system
to refer to processors themselves, systems that are built using
processors (e.g., servers and smart phones or other mobile
devices) but also systems of such systems (e.g., datacenters).
Thus, we include in our discussion bus based and network-on-
chip (NoC) based multicore processors (or chip multiproces-
sors, CMPs), laptops, servers, smart phones, and datacenters
(DCs) or warehouse scale computers (WSCs). In addition, our
objective is to emphasize an important trend: that of using
predictions based on increasingly large data sets and where
we believe the research community is headed to with such
prediction based methods.

We build our discussion by considering the following: 1) the
complexity of the technique as basic or advanced (i.e., machine
learning based), 2) the particular component of the system to
which the prediction technique is applied, such as bus, NoC,
cores, and datacenters, 3) the particular figure of merit or
design attribute that is the subject of prediction, and 4) the
abstraction layer or layers, if cross-layer, where the technique
of interest is implemented. The well known computing stack
model generalized to also include the datacenter as the top
most abstraction layer is shown in Fig. 1. The presented
techniques are described with just enough details and diagrams
to make the reading coherent and easy to follow without the
need to interrupt and read from additional references. To aid
in following the presentation, Fig. 2 presents a tree diagram
that includes all the techniques discussed in this paper. Finally,
this survey paper is far from being comprehensive. However,
we hope it helps to create a good enough picture of what has
been and especially what appears to be the most promising
prediction techniques. It should serve as a good starting point
for the reader interested in employing some form of prediction
to be used in optimization solutions across layers in multicore
processor systems.
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Fig. 1. Layered computing stack model generalized to include the warehouse
scale computer as the top most abstraction layer. Note that the stack corre-
sponding to a server node also applies to a mobile device such as a smart
phone.
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Fig. 2. Techniques discussed in this paper.

II. BASIC PREDICTION TECHNIQUES

In the discussion in this section, we present several pre-
diction techniques from simple to more complex ones, while
emphasizing one common underlying theme: each of these
techniques exploits in one way or another the past history of
the variable of interest. Most of these techniques have been
employed at the lower layers from Fig. 1.

A. Exponential Averaging

One of the simplest methods for prediction is the expo-
nential averaging. The exponential average predictor uses the
following formula to estimate the current value of a variable
of interest y at time t, ŷt:

ŷt = αyt−1 + (1− α)ŷt−1 (1)

where yt−1 is the measured value of the variable at time t−1.
α is a user defined weighting factor 0 ≤ α ≤ 1. Because the
prediction at the current time t involves just the value from

the previous step, t − 1, the history window is of width two
only. While this makes this technique easy to implement, its
error margin increases considerably when predicting several
steps ahead.

Due to its error margin issue, we did not find this prediction
technique being used in any approach. Rather, it was used only
as a basis for comparison when evaluating more sophisticated
prediction techniques. It is included here for the sake of
completeness.

B. History Predictor

This prediction technique uses a simple formula. The for-
mula employs the previously predicted value ŷpast and the
average value ycurr that is computed based on W samples over
a pre-specified history window of length W . It is expressed
as follows:

ŷnext =
W × ycurr + ŷpast

W + 1
(2)

where ŷnext is the predicted average value of y for the next
window.

The primary advantage of the history predictor model is
simplicity. Therefore, it is easy to implement in hardware,
which is generally more efficient than software implementa-
tions. In the context of NoCs, for example, this technique can
be used to predict congestion occurrence via proxies like buffer
and link utilization. These predictions are then used to decide
when to do proactive frequency throttling of selected NoC
routers in order to lower the packet transmission rate between
different routers, thereby reducing power consumption [4],
[5]. In this way, one can develop dynamic voltage and fre-
quency scaling (DVFS) schemes whose objective is to reduce
energy consumption with minimal performance degradation.
At higher levels of abstraction in the computing stack, history
based prediction was employed in [6] to predict workload in
a nine node cluster in order to design DVFS based power
management schemes. An enhanced form of this prediction
technique was proposed in [7], where the authors used a linear
formula involving the previous N values of the temperature
(as a band limited signal) of a multicore processor to predict
the temperature in the near future at time t+ δt.

A global branch predictor is similar to the history predictor.
It is constructed mainly with a shift register, whose depth is the
length of the recorded history, to store the last observed values
[8]. The content of the register indexes a history table that
holds previously observed patterns (e.g., thermal patterns if
temperature is the predicted variable), with their corresponding
next value predictions. Such a predictor was used by [9] to
predict power phases in a laptop with a Pentium-M processor.

Similar to the exponential averaging, the history predictor
also suffers from increasing errors with horizon. It has been
used in several approaches though due to its simplicity and
reasonably good results. It also has the advantage of being
easily implemented in Hardware (Fig. 1).

C. Autoregressive Moving Average (ARMA) Model

These models capture autocorrelation in a time series that
is assumed to be a stationary process [10], [11]. ARMA(p, q)
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denotes a model with p autoregressive terms and q moving-
average terms. It is described by the following equation:

yt +

p∑
i=1

aiyt−i = et +

q∑
i=1

ciet−i (3)

where, yt is the value at time t. et is the noise or residual,
which is assumed to be random and normally distributed. The
autoregressive (AR) and moving average (MA) coefficients are
ai and ci. An ARMA model is constructed in two phases:
1) identification and estimation and 2) model checking. The
model parameters p and q are selected as small as possible
to still fit training data reasonably well. The identification and
estimation step requires a training data set used to compute
the coefficients of the model. Coefficients can be computed
by fitting the model using least squares regression in order
to identify the parameters which result in minimum errors.
In the second step, the model is checked to verify that
the model residuals are random. This check can be done
using the autocorrelation function. Once an ARMA model is
constructed, equation (3) can be used for forecasting the value
of y into the future, ŷt+l, l = 1, 2, ... being the lead time, as
a combination of past values.

The ARMA model described above was used by [11]
for thermal management in multiprocessor systems-on-chip
(SoCs). The authors showed that ARMA based models can
be used to construct temperature predictors that were better
than those constructed with exponential averaging, history
predictors, or recursive least squares based prediction methods.
The proposed technique predicted temperature five steps ahead
(the equivalent of 500 ms in realtime) with satisfactory results.
The temperature predictions then were used by the thread
scheduler to assign threads to different cores in a way that
balanced the thermal profile of the chip. Because this solution
was implemented mostly in software, it resides in the Software
abstraction layer from Fig. 1. A similar ARMA model based
predictor for temperature was used by [12] to develop a user
activity aware thermal management technique in smartphones.
The work in [13] used a modified ARMA model to also
predict temperature in heterogeneous mobile platforms and
reported accuracy of 3%. Another example where this model
was applied at the datacenter layer is the study in [14] for
the purpose of predicting resource demand. The predictions
were used to develop a stochastic load balancing scheme
with probabilistic guarantees against resource overloading with
virtual machine migration.

This model has better prediction accuracy (compared to
the previously two discussed techniques) for longer horizons
ahead. It can be implemented all in software, which makes
it easy to be deployed in existing products. It suffers though
from the need for (re)training.

D. Kalman Filters

The brief description here is adapted mainly from [15],
[16]. The Kalman filter is an adaptive filter applied to predict
the state x of a discrete-time controlled process. It uses a
set of recursive equations and employs a feedback control
mechanism in a way that minimizes the variance of the

estimation error [15]. A Kalman filter is constructed in two
phases. The first phase is called the predict phase and also
called the time update phase. Here, the state x is predicted a
priori as x̂−n . The second phase is called the update phase and
also called the measurement update phase. This is where the
predicted x̂−n is updated a posteriori as x̂n.

In the predict phase, the filter uses the previous state x̂n−1
and the input un−1 to project the state. It also uses the error
covariance of the a posteriori error Pn−1 and the process noise
covariance Q to project the error covariance P−n for the a priori
error. The two equations used in this phase are:

x̂−n = Ax̂n−1 +Bun−1 (4)

P−n = APn−1A
T +Q (5)

where A is the state transition model of the system. B relates
the state x to the optional control input u.

The update phase begins after the predict phase with the
measurement of the actual state value at time n. It first
computes the Kalman gain Kn. Kn is chosen to maximize
Pn. Then, the current state matrix x̂n and Pn are updated.
The three equations utilized in this phase are:

Kn = P−n H
T (HP−n H

T +R)−1 (6)

x̂n = x̂−n +Kn(zn −Hx̂−n ) (7)

Pn = (1−KnH)P−n (8)

where R is the measurement noise covariance. H relates the
observation or measurement z to the state x.

In the context of dynamic voltage scaling (DVS) for MPEG
applications, the study in [16] proposed an extended Kalman
filter to estimate the processing time of workloads. In our
recent study in [17], we used a similar Kalman filtering
approach to estimate the average cycles per instruction and
the instruction count for the next control period inside a
method for dynamic energy management for NoC based chip
multiprocessors with 16 and 64 core architectures. We found
that the Kalman filtering based predictions are very accurate
and allow the proposed energy reduction heuristic to provide
consistent energy savings under a given performance constraint
for all benchmarks that we investigated. Also in the context
of high performance processors, the authors of [18] proposed
a sparse Kalman filter to estimate the states of a dynamical
network system. They then applied their solution to the thermal
model network of many-core processors to solve the problem
of finding the minimum number of in-situ sensors that can
be used for both thermal profile estimation and tracking of
hotspots in dynamic thermal management solutions.

Kalman filtering is a time-tested technique that was used
in numerous application domains due to its high accuracy.
Many studies reported achieving the best results with Kalman
filtering based approaches. Implementation is straightforward
and versions such as the Sparse Kalman filter [18] eliminate
the need even to compute the estimation error covariance or the
Kalman gains in real-time, which makes it even more efficient.
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III. ADVANCED PREDICTION VIA CLASSIFICATION
TECHNIQUES

The description of various machine learning techniques
presented here is based on information from several textbooks
[19]–[24] and other online resources [25]. In some cases, brief
descriptions are adapted from other previous papers; when that
is the case, the respective papers are cited appropriately.

Recently, there has been a resurgence of machine learning
(ML). ML encompasses algorithms that can make predictions
or classifications on new data after having constructed mod-
els based on training data [19]. It includes primarily three
categories. The first type is called the predictive/supervised
learning approach because it learns a mapping from in-
puts to outputs, when it is given a set of labeled input-
output pairs called the training set. When the output is a
categorical variable (from a set of classes), the problem is
called classification/pattern recognition. When the output is
a real valued variable, the problem is called regression. The
descriptive/unsupervised learning is the second category. In
this case, only the inputs data are given and the goal is to
discover patterns, reason for which this approach is also called
knowledge discovery. This is more challenging because it is
unknown what patterns to search for [20]. As a third category,
reinforcement learning constructs algorithms to learn how to
act in setups with rewards/penalties.

It should be noted that technically most of the machine
learning techniques discussed in this section are classification
techniques. However, they are used for making predictions
indirectly about various figures of merit in the immediate fu-
ture. For example, classification of the workload of a multicore
processor as low predicts that the power dissipation will be
low. Similarly, classification of the lifetime reliability of a
multicore processor as short predicts higher temperatures. In
mobile devices, classification of the operation mode into one
of several states translates into prediction of the need for data
and location interface configurations, which in turn can be
used for proactive measures to save energy. Finally, this is not
a comprehensive treatment of these topics and for details on
the vast number of machine learning algorithms, the reader
should take a look at reference texts such as [19], [20], [23].

An interesting observation is that these techniques have
been employed at the higher levels from Fig. 1. That is in
part due to the need for training of the models. This requires
storage and computational runtime spent during training. Thus,
optimization solutions using these techniques are easier to
implement for example at the Software layer in Fig. 1. Their
cost is easier to justify for larger systems composed of multiple
compute nodes, such as datacenters, which takes us to the
Cloud layer in Fig. 1. Nevertheless, optimization solutions
using techniques discussed in this section can be used at
lower levels of abstraction as well, but at the design time (i.e.,
statically). For example, the study in [47] uses mining and
support vector machine based techniques to predict routability
of integrated circuits from placement data.

A. Linear Regression (LR)

The description presented here is mainly based on infor-
mation from [19], [24], [26]. LR is a simple supervised
learning approach. It models the relation between one or
more independent variables x and the dependent variable y.
Relationships are modeled using linear predictor functions. For
example, a linear combination of fixed nonlinear functions of
the following form can be utilized for multiple LR.

y = w1f1(x) + w2f2(x) + · · ·+ wnfn(x) (9)

where, x is the input vector, fi, i = 1, .., n are known basis
functions (e.g., square polynomials), and wi, i = 1, .., n are
unknown parameters that must be estimated from the data. For
prediction purposes, LR is employed to fit a predictive model
to the set of training observations (x, y). Then, the fitted model
is used to make predictions of y for new instances of x [26].

In situations when data are not available all at once but
arrive sequentially, it is useful not to restart from scratch
the model estimation but simply to update the model on the
basis of the newly collected data. This problem is solved by
the so called recursive least squares (RLS) estimation. This
technique works with a fixed history window and uses data
from the window for retraining purposes. Its idea is still to
use a polynomial whose coefficients are calculated using least
squares estimation. In this way, to maintain good prediction
accuracy, the RLS method updates the coefficients repeatedly
as new data arrive.

The technique described above was used by [27] for tem-
perature prediction of multicore processors. These predic-
tions served as the basis for a predictive dynamic thermal
management algorithm. The algorithm uses core temperatures
and their application-specific variation to estimate the ther-
mal profile/behavior. Then, it intervenes through appropriate
measures that help to avert thermal emergencies. The study
in [98] used recursive least squares to estimate and update
a system model parameter matrix. These estimates are used
then for DVFS in chip multiprocessors. A multivariate linear
regression approach is used in [28] to obtain the coefficients
of a linear model that is used to predict execution time of
parallel applications MPI tasks executed on clusters of up
to 320 nodes. The study [29] uses a constrained-posynomial
function (learned through curve fitting) to approximate the
power consumption of a many core processor, which generally,
is a monotonically increasing function of the frequency. [30]
proposed a regression model for the maximum temperature
in 3D integrated chip multiprocessors. The temperature was
predicted as a linear function of leakage power values. The
predictions were used then in a design optimization technique
whose objective was to increase the thermal yield.

Regression was applied in the study from [31] to train the
popular McPAT power calculator for single-core processors.
The paper presented a methodology to calibrate McPAT for
a precise power model targeting post-silicon processors. The
authors conducted experiments on McPAT against a Cortex-
A15 within a Samsung Exynos 5422 SoC and reported mean
percentage errors of 2%. At the Cloud layer, the study in
[32] studied regression models to predict energy consumption
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in cloud datacenters. The authors reported that regression
methods performed better than other techniques including so-
called linear and cubic models; they reported 95% prediction
accuracy.

LR is a rather simple technique at the Software layers.
Like all other techniques discussed in this section, it requires
(re)training to update its coefficients. The linear espression
from equation (9) is efficient, which makes this technique easy
to be used in realtime.

B. Linear Discriminant Analysis (LDA)

The description presented here is mainly based on infor-
mation from [24]. LDA is a classification method. It does
classification by assigning a new observation X = x to one
of K classes. It is a Bayesian approach in the sense that
the assignment is done to the class for which the following
posterior probability is the largest.

pk(x) = P (Y = k|X = x) =

P (X = x|Y = k)P (Y = k)

P (X = x)
=

fk(x)πk
P (X = x)

(10)

where, instead of computing directly πk and fk(x), they
are estimated, thereby effectively developing an approximator
of a Bayes classifier. This estimation is done under certain
assumptions however about the form of fk(x). Usually, the
assumption is that fk(x) is Gaussian; that is, the data in each
class are normally distributed. In addition, it is assumed that
the variance σ2 is the same for all classes. In that case, it can
be shown that to approximate pk(x) one can use the so called
discriminant function [24]:

δk(x) = x
µk
σ2
− µ2

k

2σ2
+ log(πk) (11)

where µk is the mean for the kth class. Finally, once, µk,
σ2, and πk are estimated as µ̂k, σ̂2, and π̂k based on the
training data, then, the LDA classifier operates according to
the following expression:

argmax
K

δ̂k(x) (12)

The above LDA classification approach was employed in
[33]. The authors provided a comparison of several ma-
chine learning algorithms, including LDA, to predict mo-
bile device location interface and data configurations that
reduce energy consumption. Based on three target variables
(Fine Location Required, Coarse Location Required,
Data Required), they partitioned the location interface and
data configurations into eight classes. The idea then was to
efficiently predict one of these eight classes using device
context, spatial, and temporal input variables and, thus, to
know when to shut down location and wireless radios to be
able to save energy.

LDA is fast and relatively easy to implement in practice.
It has been popular especially in situations with more than
two classes. Sometimes it can provide results as good as more
complex models.

C. Multinomial Logistic Regression Model

Multinomial or multi-class logistic regression generalizes
logistic regression to cases with more than two outcomes
[26]. For example, we can think of predicting the type of
workload of a processor, say (low, medium, high), based on
the given outcomes of several observations. In this case, the
dependent variable that we want to predict is the workload.
The independent variables or features can be observations such
as instruction and activity counters, cache misses, etc.

In other words, multinomial logistic regression is a discrim-
inative classifier applied to a multinomial variable. It predicts
the probability distribution over a set of classes from a sample
input to learn a direct mapping from the input sample to the
output class. The logistic regression based classification is
composed of two steps: 1) modeling to estimate the probability
distribution of the different classes for a given input, and 2)
parameter fitting to estimate the parameters of the logistic
regression model.

Following the brief description and notation in [34], in the
first step, the multinomial logistic regression model works with
the assumption that the value of the variable of interest, y ∈
[1, 2, ...,K], is predicted based on the N values of the input
feature set, which are identified as X = [x1, x2, ..., xN ] ∈
R1×N . The model is represented by the hypothesis hβ , with
parameter β ∈ R(K−1)×N . Then, it can be shown that for a
given input feature set X , the logistic regression model outputs
hβ(X) is given by:

hβ(X) =


p1
p2
...

pK−1

 = [
eβ

T
1 ·X∑K

j=1 e
βT
j ·X

...
eβ

T
K−1·X∑K

j=1 e
βT
j ·X

]T

(13)
Equation (13) is used to select the output of the overall

model as the class y given by the expression:

argmax
k
{pk | ∀k ∈ [1, 2, ...,K]} (14)

where pk is the probability pk = Pr(y = k), k ∈ [1, 2, ...,K].
The second step of the multinomial logistic regression

model is the estimation of the parameters β. That is done
using a training set of M samples generated independently and
identically. For each of these samples, the input feature X and
the output class y are known a priori and the input-output pairs
are identified as (Xi, yi),∀i ∈ [1, 2, ...,M ]. The parameters β
are calculated using maximum a posteriori estimation. Usually,
the solution to the problem described by equation (14) is found
by gradient-based optimization algorithms.

The study in [34] proposed such a multinomial logistic
regression-based classification technique that classifies the
workload (i.e., CPU cycles) at runtime into a fixed set of
K classes. The variable of interest y is the workload while
X specifies the workloads of the previous N video frames,
where xi is the workload of the ith previous frame. In other
words, the class of the next video frame is predicted based
on the workloads of the N previous frames. Each workload
class corresponds to a frequency that is predetermined using
training data. At runtime, the classified frequencies are applied
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to the processing cores within an DVFS algorithm. Results
obtained on an embedded multicore system running standard
multimedia applications demonstrated an average of 20%
reduction in energy consumption.

A multinominal logistic regression classifier was developed
by [35], [36] based on data collected from performance coun-
ters during offline workload characterization. The classifier is
used then during applictaion runtime to predict the workload
and to select the frequency and thread packing such that
performance is maximized under a given power cap. The study
in [33] also presented a multinominal logistic regression or
linear logistic regression based solution to make predictions
about the states of mobile devices. It was found that this
solution was outperformed by neural networks and K-nearest
neighbor based solutions.

These models tend to have better performance than a series
of binary logistic regressions as they can model synergistic
relationships. However, they are somewhat complex and sen-
sitive to outliers.

D. K-Nearest Neighbor (KNN)

The short description here is adapted mainly from [24],
[37]. As a non-parametric supervised approach, the k-nearest
neighbor (KNN) algorithm is commonly used for classification
or regression problems. In the training phase, feature vectors
and class labels are simply paired using k labels, where k is a
user defined constant. The output of the algorithm depends on
if KNN is used for classification or regression. In the former
case, the output is a class membership. The classification of
a new sample or object is done by placing it in the class
that is shared by the largest number of k closest neighbors.
To quantify closeness, the KNN algorithm employs a distance
measure, such as the popular Euclidean distance or Hamming
distance.

One of the techniques studied in [33] used a KNN model,
where the number of attributes defining the input feature
space was 19 (including attributes such as day of week,
device moving, and battery level) and the number of classes
was 8. These eight classes corresponded to eight different
combinations of three variables (Fine Location Required,
Coarse Location Required, Data Required). However, the
KNN model was outperformed by other models including
support vector machines.

Despite its simplicity, the KNN algorithm can build classi-
fiers that are very close in performance to the Bayes classifier.
One of its limitations though is that it is sensitive to the local
structure of the data, which makes the selection of k difficult.
There have been however, various heuristics proposed to select
a good k. Also, it can be computationally slow.

E. Bayes Classifiers

The brief description here is adapted mainly from [38],
[39]. The Bayesian classifier is a supervised learning model.
It uses a learning agent that builds a probabilistic model of the
features that is then employed to predict the classification of
new features or examples. The naive Bayes classifier assumes

that the input features are conditionally independent. It is con-
structed by combining a naive Bayes probability model with a
decision rule. For a new instance to be classified, denoted as
x = (x1, ..., xn) representing the n features, the naive Bayes
probability model assigns probabilities p(Ck|x1, ..., xn) to this
problem instance. This assignment is done for each of the K
classes Ck. It can be shown that the conditional distribution
over the class variable can be expressed as:

p(Ck|x1, ..., xn) =
1

Z
p(Ck)

n∏
i=1

p(xi|Ck) (15)

where Z = p(x) is a constant scaling factor that depends
on (x1, ..., xn). The classifier can then be constructed as the
function that assigns a class label ŷ = Ck according to the
following equation:

ŷ = argmax
k∈{1,...,K}

n∏
i=1

p(xi|Ck) (16)

The study in [40] proposed a Bayesian classifier for energy
management. Only information about the occupancy state of
the global service queue is used for learning to predict the
system performance. The predicted performance is then used
to select the frequency from a pre-computed policy table. The
authors reported that this classifier was more efficient than
other methods.

While it was proven to provide good results, this model has
not been very popular so far. We include it here again for the
sake of completeness.

F. Support Vector Machines (SVMs)

An SVM is a model employed by supervised learning meth-
ods used in classification and regression [23], [24]. Typical
models comprise linear combinations of fixed basis functions,
which need to be adapted to the data in order to be able to
apply these models to large scale problems [19]. To do that, the
SVM model defines basis functions centered on the training
data and later during training selects just a subset of them. In
the case of the two-class classification problem, the following
linear model is used:

y(x) = wTφ(x) + b (17)

where φ(x) represents a transformation in the feature space.
w is a parameter vector and b is a bias. The classification of a
new input x is done by the sign of y(x). The training data is
a set of pairs of input vectors x1,x2, ...,xM and their targets
t1, t2, ..., tM , tn ∈ {−1, 1}. Under the assumption that training
data are linearly separable in the feature space, then, there are
multiple values of w and b for which equation (17) gives
y(x) > 0 for pairs with tn = +1 and y(x) < 0 for pairs with
tn = −1. The SVM model chooses those parameter values
that maximize the so called margin, which is the smallest
distance between the decision boundary, equation (17), and
any training sample. In this way, the SVM training algorithm
constructs a line for binary classification or a hyperplane for
higher dimensionality. If the earlier assumption on separability
is not valid, the SVM model can use nonlinear kernel functions
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to map the original space to a higher-dimensional space, where
separation can be made linear.

In the context of increasingly popular heterogeneous plat-
forms with multiple CPUs and GPUs, the study in [41]
presented an efficient OpenCL task scheduling algorithm to
schedule multiple kernels from multiple programs. The sched-
uler is based on a model constructed with an SVM classifier
that predicts speedup of a kernel based on its static code
structure. Results were reported on two different systems, Intel
Core i7 4-core CPU + NVIDIA GeForce GTX 590 GPU and
AMD HD 7970 GPU. This SVM based prediction approach
was improved upon by the work in [42], who also tested their
scheduler on a real system, the Intel Haswell Core i7-4790K
CPU-GPU processor. At the datacenter layer, the authors in
[43] developed an SVM model for temperature prediction in
datacenters. The study in [33] investigated SVMs for energy
optimization in smart phones. SVMs were found to provide
the best prediction accuracy together with neural network
models. The study in [44] applied several machine learning
techniques, including SVMs and decision trees, to energy-
efficient context sensing for mobile devices. The proposed
models learn relations among different classes of sensors (e.g.,
light-duty sensors that are energy-efficient, implemented in
software, and heavy-duty sensors that consume high energy
and are implemented in hardware) and then, exploit those
relationships to infer the status of high-energy-consuming
sensors. If this inference says that the sensor is stable, then, the
sensor is not triggered and the latest sensor value is utilized
instead as the estimation, thereby saving the energy that the
sensor would have consumed.

The study in [45] used an SVM based approach to pre-
dict aging induced delay in integrated circuits, including the
Leon3 and OpenRISC processors. Their solution consisted
of a runtime monitoring infrastructure that exploited space
and time sampling of a reduced number of latches. Training
was performed offline using support-vector regression and
the prediction model was implemented in software. Other
previous studies used SVM to predict embedded memory
timing failures during the floorplanning stage [46], routability
of integrated circuit placements [47], latency in networks-on-
chip [48], network-on-chip configuration links [49].

The SVM model is very effective practically, and therefore,
it has become very popular in modern machine learning. On
the downside, the number of basis functions can increase with
the size of the training data set [19] and the parameter selection
is data dependent.

G. Reinforcement Learning (RL)

The description here was adapted primarily from [50]–[52].
In the RL approach, an agent operates in the environment with
the goal to maximize the total accumulated reward. The RL
model can be described with the help of Fig. 3. The agent gets
an observation Y (t) and a reward R(t) at each discrete time
step t. Next, the agent selects an action A(t+1), from the set of
actions A. The selected action is sent back to the environment.
The environment, in turn, transitions to the new state X(t+1).
At the same time, the reward R(t + 1) corresponding to the

transition (S(t), A(t), X(t + 1)) is calculated; where S(t) is
the agent state at time t from the set of possible states S.

Both the environment and the agent are modeled as stochas-
tic finite state machines. The agent receives observations
and rewards as inputs. The outputs from the agent represent
actions sent back to the environment. The policy function is
A(t) = π(S(t)) and the state transition function is S(t) =
f(S(t − 1), Y (t), R(t), A(t)). The goal of the agent is to
accumulate as much reward as possible. That can be done
with a policy and agent state-update function that maximizes
the expected value of the summation of rewards:

E[R(0) + γR(1) + γ2R(2) + ...] = E[
∞∑
t=0

γtR(t)] (18)

where 0 ≤ γ ≤ 1 represents the discount factor. This factor
signifies that immediate reward is worth more than future
reward [20].
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Fig. 3. Model of reinforcement learning problem adapted from [50].

Reinforcement learning has been very popular especially
in developing energy and thermal management solutions for
processors. Because these solutions were developed mostly in
software, they are located on the Software layer in Fig. 1. For
example, the study in [53] presents a reinforcement learning
solution to the problem of adaptive thermal management in
multicore systems with the goal to improve lifetime reliability.
Q-Learning was used as the algorithm to learn the relation
between the clock frequencies and temperatures of the cores
and the mapping of threads to cores. In Q-Learning, a learning
agent maintains a Q-Table with entries called Q-values that
correspond state-action pairs. These entries are referred to
also as Q-values. Based on readings from thermal sensors
and performance counters, the operating system calculates the
thermal stress and aging. The values of stress and aging rep-
resent the Q-Table states. In RL terminology, they model the
environment basically. Actions are taken as dynamic changes
of cores frequency that override OS thread mapping decisions.
In this way, peak and average temperatures are controlled such
that lifetime is improved.

Reinforcement learning based on Q-learning was used by
the authors of [54] to develop an online power manage-
ment technique for multicores. Their technique achieved au-
tonomous management by dynamically adapting to the en-
vironment without prior information about the workload. An-
other Q-learning based dynamic voltage and frequency scaling
algorithm is presented in [55]. Other studies, used various
reinforcement learning based approaches to learn the optimal
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control policy of the VF pairs in many core processors for
power optimization [56], user behavior with respect to the use
of embedded network-on-chip platforms [57]. A Q-learning
based I/O management was proposed in [58] to adaptively
adjust the I/O output-voltage swing in 2.5D integrated many
core microprocessors and memories, under communication
power and bit error rate constraints. The authors of [59]
presented a reinforcement learning based runtime manager for
energy-efficient thermal management of embedded systems.
The approach addressed thermal cycling and average and
peak temperatures simultaneously. An online DVFS control
strategy based on core-level modular reinforcement learning
to adaptively select appropriate operating frequencies for each
individual core was proposed in [60]. An Q-learning based
algorithm was proposed in [61] to identify V/F pairs for
predicted workloads and given application performance re-
quirements. The study in [62] investigated imitation learning
and reported higher quality policies in the context of dynamic
VFI control in many core systems with different applications
running concurrently.

Note that RL based solutions do not make direct predictions
of metrics like temperature, power, etc. Instead, predictions
are made for the state in which the system is or will be and
then actions are taken such that the system is geared towards
desired states, which are characterized by desired values of the
metrics of interest such as performance and lifetime reliability.
Nevertheless, we are still dealing with prediction here.

Q-learning has been very popular because it is simple and
robust to noise. On the limitations side, it may not be able to
identify the optimal policy if the environment is not a Markov
decision process.

H. Online Machine Learning

Online or sequential learning is used when data are provided
sequentially (i.e., streaming data) [19]. It involves a sequence
of consecutive steps to develop a mapping between data and
corresponding labels. In each step, the learning agent is asked a
question that is answered by employing a prediction technique.
This prediction technique, also called a hypothesis, represents
a mapping between questions and acceptable answers. The
learning agent receives the correct answer after each predicted
answer. A loss function is utilized to quantify the discrepancy
between prediction and the correct answer. In this way, the
total accumulated loss after a set of question answer rounds
measures the performance of the online learning algorithm.
In achieving the goal of minimizing this total loss, the agent
can dynamically update the hypothesis in order to improve its
chances of giving the correct answer in future steps.

Online learning was employed by the techniques proposed
in [63]–[65] to select the most appropriate frequency for the
processing cores based on the workload characteristic of a
given application. For example, the study in [63] introduces a
DVFS technique for a multi-tasking framework. The authors
proposed a control algorithm to characterize the behavior of a
given task and to select the best voltage-frequency (VF) pair
setting. The characterization employs runtime statistics such
as IPC and cache hit/miss ratio. The chosen or predicted VF
pair is expected to minimize both the energy consumption and

performance delay. Implemented as a software technique, this
policy is lightweight and has negligible overhead.

The study in [66] proposed an online learning temperature
management technique for multicore systems. The objective of
the technique is to reduce the adverse effects of temperature
variations and hotspots. It achieves that by employing online
learning, based on switching experts [67], to choose the best
policy from among a given set of expert policies for the current
workload characteristics. This online learning solution facili-
tates realtime adaptation to react to the changing workload.
This adaptation consists of the selection of the policy with the
desired trade-off between thermal profile and performance.

Due to its inherent architecture, this approach can offer good
accuracies. Thanks to its realtime adaptation ability, it can
naturally estimate workloads that were not encountered before.

I. Neural Network (NN) Models

A popular machine learning approach is the neural network
or multi-layered perceptron model. Because NNs are very
good at identifying trends and discovering patterns in complex
data, they have been utilized in numerous applications (e.g.,
pattern recognition and data classification). An NN model is
essentially formed by connecting a number of neurons (also
called processing elements), typically organized on several
layers. For example, the block diagram of a two-layer neural
network is shown in Fig. 4. In this model, each layer imple-
ments the transfer function:

y = f(Wx+ b) (19)

where x and y are the input and output vectors of a given
layer. W is the matrix of weights of size m×n with n being
the number of inputs and m being the number of neurons in
the layer. b is the bias vector of size m×1. Examples of layer
transfer functions include tansig and purelin. For example, the
former one is given by: f(u) = 2/(1 + e−2u)− 1.

4/29/2017

1

w1x1

w2x2

wnxn

…

b1

…

…

b2

…

…

y1

y2

yp

w1

w2

wm

f1

f2

fm

hidden layer output layerinput layer

Fig. 4. Architecture of a two-layer neural network model.

An NN model must always be trained first. Training requires
a set of known input and output data pairs, which sometimes
is difficult to obtain. It is done by an algorithm that uses
the training data to estimate numerical values for weights
and biases. Once trained, the NN model can be utilized to
provide estimations on new data of interest. Such estimations
are usually more accurate when the training is done with
sufficiently large training data sets.
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NN models have been used to predict temperature [68], [69]
in chip multiprocessors (CMPs) to construct thermal manage-
ment strategies. The study in [70] uses a similar NN model
to predict the lifetime reliability of CMPs. The reliability
predictions are applied to dynamic reliability management.
The neural network oracle can utilize as inputs the current
temperatures, supply voltages, and clock frequencies of each
tile as well as their variation trends. These studies used NN
models with two layers similar to the example from Fig. 4. The
authors of [71] develop an Artificial Neural Network (ANN)
based mechanism for network-on-chip (called uncore) power
management. The offline training of the ANN is augmented
with a simple proportional integral (PI) controller as a second
classifier. The ANN is used to predict the NoC utility (defined
as the performance sensitivity to the NoC), which is then
used to make DVFS decisions that lead to improvements
in the energy-delay product. ANNs have been used also
in branch prediction techniques [72] as well as to predict
congestion hotspots in networks-on-chip [73]. In [75], NN
models were used to estimate power and thermal profile in
NoCs based on the utilization of NoC nodes and links. These
predictions were then used to configure the global optimal
NoC, which was considered a reconfigurable communication
resource. An NN model was used to predict core temperatures
in supercomputers in the study from [76]. The predictions
were used to develop a preemptive fan control mechanism
and a thermal-aware load balancing algorithm. Experiments
were reported on an IBM cluster with POWER8 processors,
each node in the cluster with 2 sockets, and each socket with
10 physical cores. Results reported that peak fan power can
be reduced by 61%. Another application of NN models was
reported in [77]. The authors used measured performance and
power data from real GPU hardware to train an NN model and
to capture how applications scale as the GPU’s configuration is
changed. The model was then used to estimate the performance
and power of new applications at different GPU configurations
and was reported to offer within 15% accuracy.

An NN based model with eight outputs for different inter-
face configurations of a mobile device was presented in [33]
to do classification. Such classification is used as the basis for
setting the mobile device into that configuration state with the
goal of reducing energy consumption. It was reported that the
NN model provides together with the SVM model the best
prediction accuracy. Other studies have used NN models for
matching (i.e., predicting the best microarchitecture) processor
microarchitecture in energy harvesting systems to dynamically
adjust the microarchitecture to achieve the maximum forward
progress [74].

Main advantages of the NN model include: it can model in-
tricate nonlinear relationships and can capture useful meaning
even from imprecise data. However, NN models usually suffer
from long computational runtimes required for training. Also,
model overfitting can become an issue.

J. Deep Neural Networks (DNNs)

The description here was adapted primarily from [20], [22],
[78]. Structurally, a DNN model is a multi-layer perceptron
(MLP), which is just a feedforward Artificial Neural Network

with many hidden layers. The main difference compared to
traditional NNs is that DNNs have more hidden layers. That
helps DNNs to capture more complex nonlinear relationships
[79]. A turning point in the world of deep learning took place
in 2006, when Hinton and colleagues [80], [81] showed that
deep belief networks (DBNs) can serve as the basis for DNNs
pretraining. They showed that one can effectively pretrain a
DNN one layer at a time. That can be done by handling
individual layers as unsupervised restricted Boltzmann ma-
chines (RBM) separately. Then, the entire stack of layers can
be fine-tuned using supervised backpropagation. Moreover,
the pretraining can also be followed by other discriminative
learning techniques to further fine-tune the weights. During
this process, a final layer is added to the DNN [82] as shown in
Fig. 5. The variables on this final layer are the desired outputs
from the training data. These outputs of the final layer will be
used directly for classification purposes.
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Fig. 5. Block diagram of the DNN model formed by a stack of restricted
Boltzmann machines. The number of units in layers are for illustration
purposes.

These developments were crucial to the advent of deep
learning, which received a lot of attention recently. For ex-
ample, the successful application of DNN models in speech
recognition at an industry scale provided recognition rates that
improved with 30% compared to the Gaussian mixture model
(GMM) based traditional methods. Such improvement was
considered as “the most dramatic change in accuracy since
1979” [83]. As another example, DNNs were used for traffic
sign classification and achieved a better-than-human recogni-
tion rate of 99.46% [84]. These developments represented a
remarkable moment that triggered the resurrection of DNNs,
which have been shown to lead to some of the best results in
several different application domains [85].

While very popular in other application domains, DNN
models have been used less so far in multicore processors
systems. Nevertheless, at the highest level in Fig. 1, in the
context of datacenters (DCs) − where huge amounts of data
points are generated continuously by large numbers of sensors
− recently, the study in [86] proposed a DNN model to model
plant performance and to predict power usage effectiveness
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(PUE) with very good accuracy. Their DNN model was
constructed with five hidden layers and fifty nodes per hidden
layer. The training data set contained 19 input variables (which
included the number of running cooling towers, the total server
IT load, the outdoor wind speed, and others) and one output
variable as the PUE. All these variables represented about two
years of operational data collected as 184,435 time samples at
5 minute steps. Testing and validation at Google’s datacenters,
the DNN model was shown to be an effective approach to
exploit existing sensor data to model datacenter performance
and to identify operational parameters that improve energy
efficiency and reduce the PUE [86].

DNNs have a high modeling power because they use hidden
layers with many neurons. However, that comes with the price
of increased computational complexity during training. This
may be one of the reasons why it has not been very popular
especially at lower levels in the computing stack from Fig. 1.
In addition, sometimes, the performance achieved with DNNs
is not as good as that of some probabilistic models.

K. Additional Machine Learning Approaches

In this section, we briefly discuss other predictions and
classification approaches that could not be fit in any of the
categories discussed earlier. Machine learning techniques for
performance and power modeling of single-core processors
were discussed in [87]. More specifically, to predict the
performance of a workload on a target platform, the study
in [88] introduced a statistical learning approach. The model
was verified for the ARM CPU model (five-stage in-order) and
the authors reported an average accuracy of 90%. Decision
tree learning - a predictive model that represents observations
as branches leading to conclusions, i.e., leaves, about the at-
tribute’s value - was used to construct a temperature prediction
model for black-box IPs in [89]. Another type of machine
learning technique, belief rule based expert systems (BRBES),
was used in [90] to predict energy efficiency in datacenters.
Consisting of two components, knowledge-base and inference
engine, the BRBES model was reported to perform better than
ANNs. The study in [91] used ridge regression to predict
the number of packets to be injected into routers of NoCs
built with photonic interconnects in heterogeneous multicore
CPU+GPU processors. The predictions were used to develop
a proactive method to determine the amount of laser power
needed in a specified reservation window at each router.

The extreme learning machine algorithm proposed in [92]
exploited history of signal quality and strength to predict
location of mobile devices. The authors found that their
approach outperformed KNN based solutions. Also in the
context of mobile device, a supervised learning based predic-
tion model was proposed in [93] to predict spatial context.
A nonparametric predictive modeling scheme implemented
using boosted regression trees was proposed in [94]. The
objective was to capture the correlation between processor
configurations, workloads, and execution phases and exploit
that toward improving various performance metrics including
the architectural vulnerability factor. A recent research trend
is in compositional structures in social dynamics. The focus is
on data generated by social media applications. For example,

the study in [95] proposed a new probabilistic model called
recursive convolutional Bayesian model to model signatures of
social dynamics. They explored the potential of their model
for supervised learning in social applications. As such, they
reported predictions made for the users count of a hashtag on
a Twitter dataset and for the average number of checkins on
a daily basis for a business on Yelp for a year. This class of
prediction approaches are located on the top most abstraction
layer, Cloud in Fig. 1, because they operate in the cloud by
working with data generated by datacenter level applications.
Similarly, most of the recommender systems (e.g., Netflix,
Amazon, etc.), where the users’ preferences are predicted,
operate at the Cloud layer in Fig. 1. We do not review these
approaches in this paper due to lack of space.

IV. OTHER PREDICTION APPROACHES

A. Model Predictive Control (MPC) Techniques

MPC is a special approach to prediction, which is not
explicit as in most other cases. It is an optimal control
technique for linear dynamic systems [96]. Its objective is to
maximize a certain performance metric. It is called predictive
because the problem is formulated over a period of a certain
number of steps with the start point being the current time.
The solution to the problem provides the sequence of future
feedback control actions (e.g., frequency settings for the cores
of a multicore processor). These actions can be derived by
numerical solvers embedded directly in the control algorithm.
Alternatively, the actions can be precomputed statically, at
design time, stored in a look-up table, which is then referenced
during realtime operation.

The model predictive control was used for thermal man-
agement to achieve smooth control with minimal performance
loss in [97]. An optimal control theory based algorithm was
proposed in [98] for the chip-level power control of a multicore
processor with the objective that the temperature of each core
be maintained below a specified threshold. Another example
is the study in [99], where the authors developed thermal man-
agement policies for chip multiprocessors. Using DVFS as a
control mechanism, these policies manipulate the time-varying
workloads and thermal profile in a way that improves the
thermal balancing of the CMP die. A workload aware approach
is proposed in [100] based on control theoretic principles. At
the datacenter layer, the study in [101] presented ThermoRing,
a model-predictive control based scheduling strategy to reduce
cooling costs in data centers.

While not a straightforward prediction/classification tech-
nique, MPC was successfully used to develop closed-loop
control approaches for thermal management in multicore pro-
cessors. This technique is a good example of a cross-layer
technique at both Hardware and Software layers.

B. Others

Here, we discuss several prediction techniques that we could
not fit in any of the categories discussed in this paper. Exploit-
ing a cause-effect rationale, the study in [102] developed an
NoC traffic prediction method by looking at the application
cache coherence behavior. Implemented in Hardware, the
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technique achieved 87% accuracy. Similarly, but in the context
of cloud datacenters, the study in [103] introduced a so-called
heat imbalance model that is used to predict future temperature
trends. These predictions are then used to develop a proactive
thermal-aware virtual machine (VM) allocation algorithm that
minimizes energy consumption for computation. Using infor-
mation about the current temperature and power, the study in
[104] proposed a low overhead future temperature predictor in
heterogeneous multiprocessor systems-on-chip (MPSoC). The
proposed technique is based on a compact thermal model of
the chip, which captures the temperature dynamics and the re-
lation between the temperature, cores power consumption, and
thermal characteristics of the system via a non-homogeneous
system of differential equations. The predictor was used to
develop temperature aware scheduling techniques that can
avoid proactively power states that could leading to future
thermal emergencies.

V. DISCUSSION

A summary of the predicted variables or attributes of interest
in the reviewed literature is presented in Table I. In addition,
we are making the following observations.
• We observe that as we move to higher levels of ab-

straction in the computing stack model from Fig. 1, we
find that increasingly complex or sophisticated prediction
methods are employed. While for example at the NoC
router level simple history predictors would be good
enough, at the datacenter level already deep neural net-
work (DNN) models are able to capture the relationship
between and the impact of 19 different normalized input
variables on the power usage effectiveness. Noteworthy
is that such increasingly sophisticated models require
usually large training datasets and long training times
too. Large training datasets in turn means storage too,
which is not something that we could afford for (realtime)
prediction methods at lower levels in the computing stack.

• Therefore, a question that is interesting to ask is how
far down in the computing stack can we go with DNN
models such that we could benefit from their power of
modeling intricate relationships across long histories of
operation while keeping the model size (complexity and
required storage) small enough to justify the benefits
from using such models? While there have been previous
studies that used neural network (not deep) models, it is
still unclear what the answer to the above question is.

• At lower levels in the computing stack, Kalman filtering
technique, as a time tested solution, does a very good job
at predicting the near future based on a relatively short
recent history. It can easily be implemented in software
and hardware. This technique is a very good compromise
between effectiveness and computational and storage
complexity.

• Support vector machine (SVM) models have been em-
ployed by many previous studies. This is a very popular
technique that has been used for predicting many different
figures of merit (see Table I). While this technique does
require training data and static (i.e., design time) model
construction and optimization, we attribute its popularity

to its practical effectiveness. It does a good job for the
practical applications for which it has been used.

• While simpler prediction techniques (such as those dis-
cussed in the first part of this paper) will continue to be
utilized in rather simple design optimizations at the lower
levels in the computing stack, we project that more com-
plex techniques (like those discussed in the second part of
this paper) will be increasingly employed, especially as
we move more and more towards datacenter/warehouse
scale computer or even exascale computing. At such
”cloud computing” levels of abstraction, a lot of data is
usually collected and stored anyway. So, it is natural that
DNN models and data mining are looked at because of
their ability to capture relationships and predict behavior
that was not possible before. Such improved models
and prediction techniques can be utilized to provide
optimization opportunities not seen before. Along this
line, we see already substantial work done on the topic of
recommender systems, where the users’ preferences are
predicted. Similarly, opinion and sentiment analysis has
received a lot of attention [105].

• A different class of optimizations is that where the
human user takes a central role. These user centric tech-
niques have been advocated especially for mobile embed-
ded computing platforms [106]–[111]. These techniques
model and then predict the user behavior to identify
optimization opportunities for reducing energy consump-
tion without degrading user-perceived performance. Here,
we note that the distinction between user behavior and
workload behavior is rather vague. That is because the
way a certain computing system, such as a smart phone,
is exercised with workload reflects the user behavior too.
So, one can argue that workload behavior captures the
user implicitly. There is however another user-related
variable − that of psychology of users − which can be
exploited towards further energy savings. For example,
the study in [111] exploits psychological changes during
the low battery phase of mobile devices of different users
to design a quality of experience (QoE) aware frequency
governor. The role of the governor is to dynamically
change the processor frequency in order to operate at
the best QoE at for different users in different environ-
ments during low battery phases. We expect more work
along this line will emerge to benefit from optimization
opportunities from angles not fully exploited yet.

Furthermore, we present Table II to indicate the usage of
the various prediction/classification techniques across different
layers of the computing stack. Thus, in this table, the columns
represent the layers from Fig. 1 and the rows represent the
techniques discussed throughout this paper. Layers from Fig.
1 are grouped within the columns in order to keep the table
compact and because the implementation of the prediction
techniques tends to span across these layers. An entry in
this table indicates what attribute(s) of interest the prediction
technique (i.e., row) was employed for prediction/classification
at the layer(s) indicated by column. Note that, techniques
appearing in the column OS/Compiler, Apps that involve
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TABLE II
PREDICTION TECHNIQUES WERE APPLIED AT DIFFERENT ABSTRACTION LAYERS. AN ENTRY INDICATES PREDICTED ATTRIBUTES.

Technique Physics, Layout Dig. Logic, Microarch. OS/Compiler, Apps Datacenter
Exponential averaging Temp. CMPs
History predictor NoC buffer/link util. Workload, Temp., Power phase
ARMA Perf. utiliz. IPC Temp. CMPs Resource demand
Kalman CPI, Instr. count CPI, Instr. count
filtering System states, Temp. CMPs Processing time

Perf. utiliz. IPC
Linear Temp., Model param. Temp., Exe. time Exe. time
regression Power consump. Power consump. Energy
LDA Device config. Device config.
Multinomial Workload
logistic regr. Device config.
KNN Device config.
Bayes classifier System perf.
SVM Routability of IC Aging induced delay Device config., Sensor status, NoC latency Temp.

NoC latency Aging induced delay, Mem. timing err.
NoC config. links

Reinforcement Stress/Aging-Clock freq., Power-Clock freq.
learning Error rate-I/O voltage swing

Energy/Power-DVFS, Thermal profile-DVFS
Online Workload-Clock freq.
learning Temp./Hotspots-Workload policy
Neural Temp., Lifetime reliability Temp., Lifetime reliability, Branch pred. Temp.
Networks NoC utility, NoC congestion NoC utility, Device config.
DNN PUE
Model Pred. Control Power, Temp. Workload, Thermal profile Power, Temp.

DVFS or some form of system (re)configuration generally
require support at the Hardware level too. In other words,
these techniques are usually spanning multiple layers in the
computing stack. However, we included entries in the Dig.
Logic, Microarch. column where the cross-layer aspect was
clearly stated in the surveyed prior works. In addition, note
that for a given layer, we do not specify what technique is the
best in terms of accuracy or impact on design optimization
because most often than not these techniques are used to
predict/classify different attributes - and this makes such
comparison difficult.

Instead, we present Table III as a quick look-up table that
summarizes the pluses and minuses of each major technique
that we discussed in this paper. In addition, in Fig. 6, we
summarize what we observed as being the most popular
prediction techniques. The popularity of the techniques in
this figure was qualitatively measured in terms of 1) the
number of attributes predicted/classified by these techniques
(seen as number of columns with example references in the
corresponding rows in Table I), 2) the number of different
layers in the computing stack where these techniques were
employed, and 3) the overall number of previous studies that
seemed to prefer these techniques.

VI. CONCLUSION

We presented a survey of some of the most popular pre-
diction and classification for prediction techniques employed
across multiple levels of the computing stack. These predic-
tion techniques have been employed from predicting simple
attributes of interest such as buffer utilization in networks-on-
chip to predicting complex relationship affecting the power
usage effectiveness in datacenters. Aside from discussing some
of the most popular prediction techniques and emphasizing
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Fig. 6. Summary of the most popular prediction techniques that we identified
in this paper. The more complex techniques are applicable at higher levels in
the computing stack.

some of their advantages and disadvantages, our objective
was to also identify trends in the way prediction techniques
are used most recently. We see increasingly complex and
sophisticated models such as deep neural networks being
employed at higher levels, such as datacenters. User behavior
and psychology is another direction that has been looked at
recently in search for additional optimization opportunities
that have not been explored before. If support vector machine
models have been probably the best so far, it is likely in our
opinion that deep neural networks to become the new norm
at least at higher levels of abstraction, i.e., cloud computing
type of applications and the supporting hardware infrastruc-
ture. It is hoped that this survey will provide useful initial
guidance to the reader that may be interested in employing
prediction/classification techniques in optimization solutions
across layers in multicore processor systems.
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TABLE III
SUMMARY OF PROS AND CONS OF THE SURVEYED PREDICTION TECHNIQUES.

Technique Pros Cons
Exponential averaging Simple, easy to implement Error margin increases with horizon
History predictor Easy to implement Error margin increases with horizon
ARMA Can be implemented all in SW Identification and estimation require training

Good accuracy for a few steps ahead
Kalman Very good accuracy Somewhat complex to implement
filtering One of the best accuracy-cost points
Linear Good prediction accuracy Requires training
regression May need to update coefficients repeatedly as new data arrive
LDA Fast, relatively easy to implement Requires training

Can provide results as good as more complex models
Multinomial Good performance performance Requires training
logistic regr. Can model synergistic relationships Somewhat complex, sensitive to outliers
KNN Simple, great accuracy Sensitive to the local structure of the data

Can be computationally slow
Bayes classifier Good accuracy, efficient Requires training
SVM Effective practically, very popular Number of basis functions can increase with size of training data

Parameter selection is data dependent
Reinforcement Simple and robust to noise, popular May not be able to identify optimal policy if environment
learning is not a Markov decision process
Online Relatively simple, good prediction accuracy Medium complexity of implementation
learning Good realtime adaptation
Neural Can model intricate nonlinear relationships, popular Long computational runtimes required for training
Networks Can capture useful meaning even from imprecise data Model overfitting can become an issue
DNN High modeling power Increased computational complexity during training

Network topology design can be tricky
Model Pred. Control Good accuracy over several steps ahead Not an explicit prediction technique

Richard J. Povinelli for feedback on an earlier draft of this
paper as well to the anonymous reviewers whose feedback
helped to significantly improve the quality of this presentation.
Finally, this survey paper is far from being comprehensive.
However, we hope it helps to create a good enough picture of
what has been, and especially what appears to be, the most
promising prediction techniques. It should serve as a good
starting point for the reader interested in employing some form
of prediction to be used in optimization solutions across layers
in multicore processor systems.
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