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Abstract—Increased uncertainties in design parameters under-
mine the accuracy of the mapping of embedded applications to
Network-on-Chip (NoC) based manycore architectures. In this
paper, we attempt for the first time to apply the info-gap theory
to uncertainty modeling in the context of embedded systems
design. We first propose a novel info-gap based uncertainty-aware
reliability model for NoC based manycore platforms. We then
develop an uncertainty-aware solution to the problem of mapping
in embedded systems. The solution is implemented as a computer
program that can generate robust Pareto frontiers. Simulation
results indicate that the proposed info-gap based uncertainty-
aware mapping generates Pareto frontiers that have significant
differences from the ones obtained with a traditional determinis-
tic approach. Identifying and quantifying these differences is an
important first step towards the development of better mapping
optimization processes in order to arrive to optimal rather than
suboptimal solutions.

I. INTRODUCTION

The increasingly large process, voltage, and temperature
variations negatively affect the design and optimization pro-
cess of the embedded systems. In order to address these
uncertainties in design parameters, previous studies [1], [2]
attempted to capture uncertainty in the process of optimization
of embedded systems. However, system reliability was consid-
ered as the only uncertain design parameter. The work in [3]
is the first attempt to address the problem of multi-objective
(reliability, performance, and energy) mapping for embedded
systems under uncertainties. The study in [4] extends the work
in [3] by modeling multiple correlated sources of uncertainty.
However, these studies focused on hardware architectures
formed by multiple processing elements (PEs) interconnected
via a bus-based communication only, and Network-on-Chip
(NoC) based architectures were not considered.

Our recent work [5] is the first attempt to quantify the
impact of uncertainty in embedded systems mapping for
NoC based architectures. The proposed design flow in [5]
constructed of Monte Carlo simulation and evolutionary algo-
rithms, which is an iterative process of exploration, learning,
and evaluation. This decision process can handle uncertainty
through probabilistic models that capture uncertainty in the
form of mixtures of probability distribution functions, uniform
value intervals, and fixed deterministic parameters. However,
what if one did not have access to such probabilistic mix-
ture models? This situation occurs when one does not have

access to concrete RTL implementations of different cores,
or their characterization is too difficult and time-consuming,
or because one wants to explore versions of such cores
implemented in future technology nodes whose parameters are
largely unknown, notwithstanding efforts such as Predictive
Technology Model (PTM) [6] to make predictions about
many such parameters. These situations are cases of severe
uncertainty rather than of known variability.

Therefore, in this paper, we investigate the use of non-
probabilistic models of uncertainty and adopt the usage of
different robustness metrics by casting the decision-making
process of the multi-objective optimization mapping algorithm
into a new formulation that is based on the info-gap theory
of uncertainty [7]. The info-gap decision theory - which is an
instance of the Wald’s Maximin paradigm [8] - has been used
in a variety of problem formulations, including water resources
management, multi-agent search, project management, job
scheduling, energy economics, and others [9], [10]. Here,
we attempt for the first time to apply the info-gap decision
theory in the context of embedded systems design. More
specifically, the main novelty of this paper is the application
of the info-gap decision theory to modeling uncertainty in
parameters in embedded systems and the use of the model
in developing a solution to the problem of mapping with
optimization of energy and of uncertainty-aware reliability.
The solution consists of a design flow approach based on
evolutionary algorithms, similar to that from [3], [4].

II. ROBUST MAPPING OF EMBEDDED SYSTEMS UNDER
SEVERE UNCERTAINTY

A. Uncertainty Modeling

In employing an approximate model, one acknowledges a
large information gap between what is known and what needs
to be known in order to make fully competent decisions. This
information gap is a severe form of uncertainty and often
occurs in practice. For example, let d̃(w) denote the delay
of the critical path of a hardware core as a function of differ-
ent quantities w that include process variations, temperature,
number of logic levels, etc., based on the best available model.
The actual delay of a given core realization d(w) deviates in
an unknown manner from the nominal model d̃(w). If one has
no information with which to express the likelihood of various



alternative delay functions - hence one is unable to specify a
probabilistic model for the uncertainty in the function d(w) -
an info-gap model of uncertainty can be formulated as the set
of all functions consistent with the nominal function, d̃(w),
up to a given level of deviation [7].

U(α, d̃) = {d(w) : |d(w)− d̃(w)| ≤ α}, α ≥ 0 (1)

where U(α, d̃) is the set of all functions whose deviation
from d̃(w) is nowhere greater than α, the uncertainty pa-
rameter. For a fixed α, this set represents uncertainty in the
delay function by specifying a range of variation of d(w)
around the nominal delay d̃(w). Because in practice, the
value of α itself is not known, eq. 1 is not a single set but
rather a family of nested sets. Examples of info-gap models
include energy-bound, envelope-bound, Minkowski-norm, and
Ellipsoid-bound.

Let q be a decision vector of design variables. Then, the
robustness α(q) of decision vector q is the greatest value of
uncertainty parameter α for which specified minimal require-
ments are always satisfied. The degree of success is often
assessed by a scalar reward function R(q, u), which depends
on the vector q of decisions and on an uncertain vector u
whose variations are described by an info-gap model U(α, ũ),
α ≥ 0. In this case, the minimal requirement is that the reward
R(q, u) is no less than a critical value of rc.

α̃(q, rc) = max{α : min
u∈U(α,ũ)

R(q, u) ≥ rc} (2)

where α̃(q, rc) expresses robustness, the degree of resistance
to uncertainty and immunity against failure, so a large value
of α̃(q, rc) is desirable.

B. Info-gap Based Uncertainty-aware Reliability Model

The system reliability is defined as the correct functioning
of each component of the system over a given time interval
without failure [11]. The first of the design objectives to be
optimized in this work is the reliability of the system that must
be maximized. We attempt for the first time to apply the info-
gap theory to build the uncertainty aware reliability model.
We use the tile as the fundamental component in our info-gap
based uncertainty-aware reliability model, and the symbol τ is
used to stand for a tile in the NoC based architecture platform.
The reliability of a tile at time t is defined assuming the model
from [11]:

Rτ (t) = e−λτ t (3)

Similarly, the reliability of a link is described as:

Rl(t) = e−λlt (4)

With the definition of the reliability of a tile and of a
link described above, the reliability of the NoC at time t is
expressed as:

RNoC(t) =

T∏
j=1

Rj
τ (t)

L∏
k=1

Rk
l (t) (5)

where L is the total number of links and T is the total number
of tiles in the NoC.

When calculating the reliability RNoC according to eq.
5, we assume the absorbing Discrete Time Markov Chain
(DTMC) models described in [12]. DTMC models are graph-
ical models consisting of finite state machine like state graphs
[13]. Thus, the system reliability can be calculated as R =
S(1,n)Rn, where S is the fundamental matrix of the DTMC,
Si,j is the expected number of visits to state j starting from
state i before it is absorbed, and n is the number of states in
the DTMC model. Rn is the reliability of the nth component,
which is estimated with eq. 3. Please refer to [12] for more
details about the DTMC models.

If, however, one wanted to capture the influence of uncer-
tainty in the design parameters on the reliability for the NoC
based architectures, then, one needs to modify the above de-
terministic reliability model. Previous work used probabilistic
approaches that captured the uncertainty in design parameters
in the form of probability distributions [3], [4]. But, what
if one did not have access to such probabilistic models?
What if the design parameters (such as the failure rate) are
under severe uncertainty rather than of known variability? In
such situations, one can employ the info-gap theory based
uncertainty modeling method presented in Section II-A to
capture the uncertainty in design parameters. In this case, for
instance, the failure rate design parameter that is assumed to
be affected by severe uncertainty can be modeled as a set of
failure rates:

U(α, λ̃) = {λ : |λ− λ̃| ≤ α}, α ≥ 0 (6)

where, the design parameter λ̃ is the nominal failure rate that
is used in the traditional deterministic reliability model, such
as the reliability model presented above, while the design
parameter λ forms a set of failure rates, specifying a range
of variation around the nominal failure rate λ̃.

Then, the robustness of the NoC architectures α̃(q, rDTMC)
can be modeled as follows:

α̃DTMC(q, rDTMC) =

max{α : min
λ∈U(α,λ̃)

RDTMC(q, λ) ≥ rDTMC} (7)

where RDTMC(q, λ) is called the reliability reward function,
which has been described in Section II-A, that can be calcu-
lated as follows:

RDTMC(q, λ) =

T∏
j=1

e−λjt
L∏

k=1

e−λkt = S(1,n)Rn (8)

Therefore, for the objective of reliability, which needs to be
maximized (or converted to a minimization of 1−Reliability),
we need to identify the solution that offers the highest ro-
bustness α̃DTMC(q, rDTMC) such that the minimal reliability
reward function RDTMC(q, λ) is no less than a critical value
rDTMC .

C. Modified Mapping Optimization Approach

To provide a solution to the problem of mapping under
severe uncertainty, we adopt the multi-objective mapping
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Fig. 1. Mapping optimization flow.

problem formulation from [3], [4] and modify the solution
flow based on genetic algorithms illustrated in Fig. 1. We
restrict ourselves to only two objectives: energy consumption
and reliability. The diagram from Fig. 1 is modified to cast
the problem of mapping into an info-gap decision theory based
problem formulation. In this case, the Monte Carlo Simulation
is replaced with the assessment or evaluation of the reliability
reward function from in eq. 8. The goal is to transform
the optimization process described by the outer-loop into a
robust strategy, which maximizes the robustness or immunity
to uncertainty. In other words, we want to seek the decision
variable q (discussed in Section II-B), which guarantees the
reliability reward function is of at least rDTMC and which
maximizes the immunity to the unknown variation of variables
affected by uncertainty.

III. SIMULATIONS

The info-gap based uncertainty aware reliability model was
implemented inside the proposed modified design flow. As an
implementation of the genetic algorithm from Fig. 1, we use
the implementation of the popular NSGA-II [15]. To improve
the execution time of our implementation, we use OpenMP as
a simple yet effective parallelization method, which helps to
achieve an execution time linear with the number of iterations
of the genetic algorithm. All simulations are conducted on a
64 bit Intel i7-7820 CPU, 2.90 GHz x8 running Ubuntu 16.04
LTS operation system with 40 GB memory.

We report simulations on the H.264 testcase available from
[16] together with the ABS (anti-lock brake system), ACC
(adaptive cruise control), and JPEG (picture compression)
adopted from the study in [3]. This H.264 testcase is provided
as a complete C/C++ description of each of the computational
components which consist of the testcase. These components
are integrated within an NoC simulator inside the same
simulation framework named VNOC+H.264. Therefore, the
testcase can be simulated for inputs that are real video streams,
which represent workloads that exercise the NoC with traffic
that is realistic and not synthetic. For example, we used the
benchmark video file named Plane (available from [18]) as
input to the H.264 testcase. The simulated platform is a 3x3
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Fig. 2. The Pareto frontiers generated by the three tools investigated in this
paper for the H.264 testcase. Axes values are normalized.

regular mesh NoC based architecture platform similar to the
one used in [16]. This NoC is large enough to provide a router
for each of the processing elements of the H.264 testcase,
implemented in this work as software components connected
to the NoC routers through network interfaces (NIs). The
failure rates of the processing elements are adopted from
[12]. The energy consumption of NoC routers and links are
estimated using the open-source NoC simulator [17].

A. Results

In this section, we compare the proposed modified mapping
design flow from Fig. 1, called New tool, with the Traditional
tool from [11] and with the current state-of-the-art Current tool
from [5]. All simulations generate 2D Pareto frontiers where
the objectives are energy (we adopted the traditional state-
of-the-art deterministic energy consumption model from [14])
and reliability (affected by severe uncertainty and modeled as
described in this paper).

In the simulations, the Current tool is set up to inject a
level of 5% uncertainty. The New tool is set up to use a
reliability reward value of 0.525, which was empirically found
to translate into a similar amount of injected uncertainty. It
can be seen that there are significant differences between
these frontiers. This is expected because the Traditional tool
does not model uncertainties in design parameters on one
hand, and because it is these differences in Pareto frontiers
that are important to identify when considering the impact
of uncertainty modeling because it helps to quantify how far
solutions found by classic or traditional approaches can be
from the truly optimal ones found by approaches that do model
or capture uncertainty in design parameters as well.

To quantify the difference between the Pareto frontiers gen-
erated by the three tools, we use the concept of hypervolume
indicators introduced in [4] with the reference point (1,1). The
calculation results are reported in Table I. It can be observed
that the difference between the New and the Traditional is
14.76% − 31.6% while the difference between the New and
the Current is 6.8%− 26.49%.



TABLE I
HYPERVOLUMES AND THEIR DIFFERENCE FOR THE PARETO FRONTIERS

GENERATED BY THE NEW, TRADITIONAL AND CURRENT TOOLS.
Testcase H(New) H(Traditional) H(Current) New New

Vs. Traditional [11] Vs. Current [5]
H.264 0.7854 0.9214 0.5773 14.76% 26.49%
ABS 0.6676 0.9760 0.6222 31.6% 6.8%
ACC 0.6857 0.9316 0.6167 26.39% 10.06%
JPEG 0.7458 0.9127 0.6147 18.29% 17.57%
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Fig. 3. The average robustness curve obtained by the New tool with different
required reliability reward values for the H.264 testcase. Axes values are
normalized.

Furthermore, we investigate the average robustness obtained
by the New tool for different reliability reward values. The
average robustness is calculated by all the mapping solutions
generated by the New tool with a given reliability reward
value. It can be used to measure the degree of resistance
to uncertainty and immunity against failure for the mapping
solutions generated by the New tool. The average robust-
ness exhibits a variation as shown in Fig. 3. The average
robustness vs. reliability reward curve highlights a trade-off
between demanded-reward and immunity-to-uncertainty: if a
large reliability reward is required, then only low immunity
to uncertainty is possible. One can use the average robustness
curve to decide the required reliability reward value in the New
tool, so that it can generate mapping solutions that achieve
good trade-off between demanded-reward and immunity-to-
uncertainty. It should be noted that when applying the info-gap
decision theory in the embedded systems design, the failure
rate of the processing element has its natural range of [0, 1],
thus the robustness has also resulted in lower and upper range
according to eq. 6 in Section II-B. This is the main reason
why when a lower reliability reward is required, most of the
solutions generated by the New tool have robustness close to
the upper bound. Similarly, when a higher reliability reward is
required, the average robustness is close to the lower bound.

IV. CONCLUSION

In this paper, we employ the info-gap theory of uncertainty
to present an approach of modeling uncertainty in design
parameters, when the amount of uncertainty is severe and
unknown even in terms of probability distribution form. We
use these modeling in the context of multi-objective mapping
in embedded systems. Specifically, we consider failure rates
of components in NoC based manycore architectures to be

affected by uncertainty, and formulate the problem of mapping
with two objectives: reliability, which is affected by the
uncertainty and energy, which is modeled using a traditional
deterministic approach. We develop a genetic algorithm based
solution to this multi-objective mapping problem and discuss
techniques to generate and quantify the difference between the
robust Pareto frontiers generated by the proposed approach and
those frontiers generated by previous approaches.
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