
Speeding-Up the Particle Filter Algorithm for
Tracking Multiple Targets Using CUDA

Programming
Jinhua Zhang*, Wenkai Guan, Cristinel Ababei, Henry Medeiros, Richard J. Povinelli

Dept. of Electrical and Computer Engineering
Marquette University

Milwaukee, WI, USA
jinhua.zhang94@gmail.com (Contact Author)

{wenkai.guan,cristinel.ababei,henry.medeiros,richard.povinelli}@mu.edu

Abstract—Object detection and tracking are essential tasks in
many computer vision applications. One of the most popular
tracking algorithms is the particle filter, which is widely used
for real-time object tracking in live video streams. While very
popular, the particle filter algorithm suffers from increased
computational runtimes for high-resolution frames and large
numbers of particles. In this paper, we investigate the use of
CUDA programming as a method to parallelize portions of the
particle filter algorithm in order to speed-up its execution time
on compute systems that are equipped with NVIDIA GPUs.
Experiments that compare a CPU sequential version, as the
base case, with the CUDA parallelized version demonstrate
an achievable speed-up of up to 7.5x for a 3840x2160 video
resolution, and 9216 particles on a computer equipped with an
NVIDIA Tesla K40c GPU.

Index Terms—object tracking; particle filter algorithm; GPU;
CUDA programming;

Type of submission: Full/Regular Research Paper
The acronym that this paper is being submitted to: Symposium
on Signal & Image Processing, Computer Vision & Pattern
Recognition (CSCI-ISPC);

I. INTRODUCTION AND RELATED WORK

There have been previous attempts to speed-up the particle
filter algorithm. A first category of such attempts include
Field Programmable Gate Array (FPGA) based or applica-
tion specific circuit approaches [1]–[3]. Although many of
the FPGA-based implementations provide improvements, they
suffer from not being easily portable. In this paper, we
focus on parallelization of the particle filter algorithm using
Compute Unified Device Architecture (CUDA) [4], which has
the advantages of being more platform independent as well as
more accessible to a larger number of programmers, compared
to FPGA approaches that require very specialized VHDL or
Verilog programming. Thus, our approach falls in the second
category of attempts to speed-up the particle filter algorithm,
that of using Graphics Processing Units (GPUs).

There have been several previous studies that also used
CUDA programming to speed up the particle filter algorithm.
The study in [5] proposed a CUDA implementation of the
particle filter algorithm for tracking the hands of a car driver.

The performance of the algorithm achieved 30 fps, for 8192
particles. The study in [6] focused on pedestrian detection and
tracking at night-time. Most of the previous studies used low-
resolution videos to test the performance of the CUDA based
implementation. For example, the study in [7] used 96x64
videos as input. As a result, the execution time for each frame
in [7] is only 7.51ms. However, in real tracking applications,
most of the cameras use at least 640x480 resolution. In
addition, although some previous studies had dramatic speed-
up, they used a large number of particles in their experiment.
This is because as the number of the particles increases, the
execution time of the particle filter algorithm on CPU increases
dramatically. The dramatic speed-up is obtained by using a
large number of particles to the algorithm. For example, in [8]
10,000 particles were used to track the object. The study in
[6] is the closest to the proposed work in this paper. It is based
on the HSV histogram to update the weights of the particles.
A similar model to update the weights of the particles is used
in our paper as well. We achieve a speed-up of up to 7.5x,
which is better than their reported speed-up of 6.4x. The study
in [9] used a testing platform that is the closet to the one in
this paper. They reported a speed-up of 5x.

In contrast to the above studies, there is literature that
directly addressed the computational runtime by optimizing
specific algorithmic components of the particle filter algorithm.
The study in [10] proposed a parallel redistribute method using
OpenMP to provide 3x speed-up compared to its equivalent
on CPU. The study in [11] focused on the resample step
and proposed metropolis and rejection resamplers to shorten
the computational runtime. The study in [12] implemented
the implicit equal-weights particle filter algorithm for ocean
drift trajectory forecasting. Their experimental results show
that short-term drift forecasting is improved with up to twelve
hours. The study in [13] presented a method to reduce the
communication cost of the particle information. Their method
has the potential to be the method of choice in certain specific
settings. These previous studies have focused primarily on
speeding up the particle filter algorithm by optimizing the
algorithm itself. In this paper, we have not done any work



Fig. 1. Variation of the execution time of the particle filter algorithm with
respect to the number of particles when executed sequentially on a CPU.

related to that. The main contribution of our paper is to use
CUDA programming as a method for parallelization. In theory,
this method could be applied to any algorithmically optimized
particle filter to further improve the execution time.

II. SEQUENTIAL VERSION OF THE PARTICLE FILTER
ALGORITHM

Due to lack of space, for background information on the par-
ticle filter algorithm, we refer the reader to previous literature
[14]–[16]. In this paper, we use as a base or reference case an
implementation of the particle filter algorithm in C/C++. This
implementation integrates methods provided by OpenCV [17]
and initially executes sequentially (i.e., single threaded) on a
general purpose sequential CPU. It is already quite efficient
when the algorithm is run with a relatively small number of
particles. However, when the number of particles is increased,
the execution time increases significantly, as shown in Fig.
1. The datapoints in this figure were obtained by executing
the reference implementation on the same machine as the
experiments discussed later in the simulations results section.

To identify which portions of the main steps of the particle
filter algorithm account for most of the computational runtime,
we profiled the sequential implementation of the algorithm on
a Linux machine with gprof [19]. This tool helps to track
the runtime of individual functions and provides information
on the number of times functions are called. By analyzing
the profiling logs, we found that approximately 80% of the
execution time is taken by the calculation of the likelihood
function, which computes the histograms and weights of the
particles. Note that this is consistent with the findings in
previous studies [20]. The algorithm computes the histogram
for a rectangular region of pixels associated with a particle,
and this must be done separately for all particles. Thus, when

Fig. 2. Illustration of the CUDA-based implementation of the particle filter
algorithm.

the video resolution and the number of particles increase, the
computational runtime is thus dominated by this portion of
the overall particle filter algorithm. Our implementation will
specifically focus on that portion of the algorithm.

III. PARALLELIZATION USING CUDA PROGRAMMING

Based on the analysis from the previous section, the CUDA-
based parallelization is implemented by re-coding portions
of the Transition and Normalization steps as illustrated in
Fig. 2. The CUDA programming model is a heterogeneous
model in which both CPU and GPU are utilized. Within the
CUDA programming context, the host refers to the CPU and
its memory, and the device refers to the GPU and its memory.
Code executed on the host is capable of managing memory on
both the host and the device and also launch kernels, which
are special functions executed on the device. These kernels are
executed by many GPU threads in parallel.

After the initialization step is done, the algorithm moves
to the transition step. In this step, the predicted particles are
generated from a Gaussian distribution on the host first. It
is after the initialization step that the likelihood function is
called. This function is parallelized using CUDA. The same
memory size of particles is allocated on the device, and
then the particles are copied from the host to the device.
Once we have the same particles on the device, the kernel
function of the likelihood calculation is launched. On the
device, the calculation of the likelihood function for each
particle is executed by separate threads. Specifically, in each
thread, the ROI is converted from RGB color channels to
HSV channels. In order to compare the Bhattacharyya distance
between predicted particles and initial particles to decide the
weight for each predicted particle, the histogram of the Hue



channel is computed. The Hue histogram is normalized to the
interval [0,1]. This is because after normalization, the Hue
histogram is easily used to compare the Bhattacharyya distance
between the particles. Once all the CUDA threads finish the
processing of the kernel function, the particles are copied back
to the host. The CPU then continues with the Resampling step,
as shown in Fig. 2.

IV. EXPERIMENTS

In order to evaluate our CUDA-based parallelized version
of the particle filter algorithm we conduct several experiments.
All tests were performed on a system with the following
specifications: Linux Ubuntu 18.04 LTS, 3.5 GHz Intel Xeon
CPU with 8 Cores, 745 MHz Nvidia Tesla K40C, PCIe version
3.0, Nvidia driver version 390.116. CUDA Toolkit version 9.1,
and OpenCV library 3.4.2. The complete source code of our
implementation is made publicly available at github [22].

A. Impact of Number of Particles and of Video Frame Size

To test the performance of the CUDA-based implementation
for different image resolutions, a pre-recorded video with
varying resolutions from 640 x 360 pixels to 3840 x 2160
pixels was recorded and tested. This video shows a tennis
ball rolling on the floor from left to right. The video was
recorded at a 3840 x 2160 resolution and then down-sampled
to other lower resolutions to test the performance for different
resolutions. For each resolution, experiments were conducted
for several different numbers of particles. Both the reference
sequential and paralel implementations were able to track the
ball.

The results of these experiments are summarized in Fig.
3, which shows the speed-up obtained by the CUDA imple-
mentation compared to the CPU implementation. It can be
observed that, as expected, the runtime of the CUDA-based
implementation is shorter than that of the sequential CPU
version for all tested video resolutions. This is because the
likelihood function for all particles is executed as a parallelized
function (i.e., kernel) by multiple threads. Fig. 3 indicates that
the speed-up of the CUDA implementation is affected by the
number of particles. Looking at the tests with the same number
of particles, the speed-up does not change when the video
resolution increases. The minimum speed-up is around 1.6x
when the number of particles is 1024. The maximum speed-up
is 7x when the number of the particles is 9216. This indicates
that the video resolution does not have a significant impact on
the variation of the speed-up for a given number of particles.
That is because calculation for all the particles is parallelized
and executed by different threads, but, calculation of the Hue
histogram for each particle is processed sequentially in each
thread. The execution time of the calculation of the Hue his-
togram for a particle increases because of the higher number of
pixels in a frame, hence, the runtimes for both implementations
increase proportionally. Nevertheless, it needs to be noticed
that the video resolution influences the total execution of
the CUDA implementation. Higher resolutions require longer
computational runtimes. The reason for that is the computation

Fig. 3. The relative speed-up obtained by the CUDA implementation
compared to the CPU implementation for a varying number particles and
different video resolutions.

for each particle is parallelized in the threads executed on GPU
using CUDA programming.

B. Realtime Dynamic Surveillance Scenario

To test the performance of the CUDA implementation
in a dynamic surveillance scenario, we tested it on a re-
altime video stream obtained from a web camera. In the
initialization step of the particle filter algorithm, targets are
selected automatically via face detection using a Haar cascade
classifier. We use the standard Haar cascade classifier haar-
cascade_frontalface_alt.xml available inside OpenCV.

Several selected frames from this experiment are shown in
Fig. 4. These frames are recorded at 3 seconds from each
other. This figure shows qualitatively that both faces were
detected and tracked automatically in the realtime video stream
from a web camera, without human intervention. The video
resolution of the realtime video stream is 640x480 pixels,
which is a common resolution for a web camera, at a 30 fps. In
this experiment, the CUDA-based implementation augmented
with the automatic face detection and capability achieved an
average speed-up of 6.5x compared to the sequential CPU
implementation.

C. Results for the Bolt Dataset

In this section, we test the performance of the CUDA-based
implementation on video sequences from the Bolt dataset,
benchmark OTB100 [21]. In the test, we used a varying
number of particles in the range of 1024 to 9216. The video
resolution is 640x360 pixels. As expected, the CUDA imple-
mentation is faster in all cases. When the number of particles
increases, the execution time of the CPU implementation
increases significantly. However, the execution time of the



TABLE I
EXECUTION TIMES OF THE MAIN STEPS OF THE PARTICLE FILTER ALGORITHM.

1024 3072 6144 9216
CPU GPU CPU GPU CPU GPU CPU GPU

Initialzation 0.446 ms 94.6 ms 0.734ms 95.8 ms 2.59 ms 99.2 ms 3.71 ms 93.9 ms
Transition 30.35 ms 10.1 ms 71.15 ms 12.3 ms 129.1 ms 15.2 ms 191.43 ms 18.3 ms

Sort 52.42 µs 83.48 µs 117.29 µs 237.4 µs 427.6 µs 413.82 µs 697.23 µs 564.23 µs
Normalization 7.58 µs 11.75 µs 19.83 µs 25.7 µs 54.79 µs 57.6 µs 90.97 µs 79.18 µs

Resample 74.24 µs 117.95 µs 223.31 µs 345.4 µs 525.1 µs 589.3 µs 880.79 µs 783.06 µs

(a) (b)

(c) (d)
Fig. 4. Qualitative illustration of face tracking in realtime. These are four
different frames during the execution of the CUDA implementation.

Fig. 5. Relative speed-up obtained by the CUDA implementation compared
to the CPU implementation for different numbers of particles, on the OTB100
benchmark.

CUDA implementation increases at a much slower pace, which

demonstrates the advantage of the CUDA-based implemen-
tation. Fig. 5 shows the speed-up obtained by the CUDA
implementation when processing with a different number of
particles. As expected, the achieved speed-up in most of tests
is the same as the speed-ups reported in Fig. 3. When the
particle number is 9216, the maximum speed-up is 8x.

Table I shows the execution time for each of the major
processing steps of the particle filter algorithm for both CPU
and CUDA implementations. As expected, the execution time
of the Transition step of the CUDA version is much shorter in
all the cases. This is because the likelihood calculation for all
particles in the Transition step is parallelized. Note that the
execution time of the CPU version of this step increases at
a faster rate as the number of particles increase. In addition,
the Sort and Resample steps take 126µs and are executed 350
times, which is approximately 10% of the total execution time.
This portion could be parallelized in future work.

V. CONCLUSION

We presented a parallelization approach using CUDA pro-
gramming of the particle tracking algorithm. After identifying
the portions that account for the majority of the computational
runtime, custom CUDA kernels were developed to change the
reference sequential implementation of the algorithm. Exper-
iments demonstrated that the parallelized version benefited
from the execution of these kernels on GPUs, which in
turn translated into algorithm speed-up of up to 7.5x for a
3840x2160 video resolution, and 9216 particles on a computer
equipped with an NVIDIA Tesla K40c GPU. The algorithms
were tested on both pre-recorded as well as on realtime video
streams that mimicked real surveillance scenarios.

REFERENCES

[1] A. Jarrah, M. M. Jamali, and S.S.S. Hosseini, “Optimized FPGA based
implementation of particle filter for tracking applications,” IEEE National
Aerospace and Electronics Conference, 2014.

[2] H. Sugano and R. Miyamoto, “Hardware implementation of a cascade
particle filter,” IEEE Int. Conference on Image Processing (ICIP), 2009.

[3] H.A.A. El-Halym, I.I. Mahmoud, and S.E.-D. Habib, “Efficient hardware
architecture for Particle Filter based object tracking,” IEEE Int. Conference
on Image Processing (ICIP), 2010.

[4] J. Sander and E. Kandrot, CUDA by Example: An Introduction to
General-Purpose GPU Programming, Addison Wesley, 2010.

[5] N. Ikoma and T. Ito, “GPGPU implementation of visual tracking by
particle filter with pixel ratio likelihood,” IEEE/SICE Int. Symposium on
System Integration (SII), 2012.



[6] B.-J. Choi, B.-W. Yoon, J.-K. Song, and J. Park, “Implementation of
pedestrian detection and tracking with GPU at night-time,” Journal of
Broadcast Engineering, vol. 20, pp. 421-429, May 2015.

[7] B. Rymut and B. Kwolek, “GPU-accelerated object tracking using particle
filtering and appearance-adaptive models,” Image Processing and Commu-
nications Challenges 2, R. S. Choras, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 337-344, 2010.

[8] M.A. Goodrum, M.J. Trotter, A. Aksel, S.T. Acton, and K. Skadron,
“Parallelization of particle filter algorithms,” Computer Architecture, A.L.
Varbanescu, A. Molnos, and R. van Nieuwpoort, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 139-149, 2012.

[9] P. Jecmen, F. Lerasle, and A.A. Mekonnen, “Trade-off between GPGPU
based implementations of multi object tracking particle filter,” Int. Joint
Conf. on Computer Vision, Imaging and Computer Graphics Theory and
Applications (VISIGRAPP), 2017.

[10] A. Varsi, J. Taylor, L. Kekempanos, E. Pyzer-Knapp, and S. Maskell,
“A fast parallel particle filter for shared memory systems,” IEEE Signal
Processing Letters, vol. 27, pp. 1570-1574, 2020.

[11] L.M. Murray, A. Lee, and P.E. Jacob,“Parallel resampling in the particle
filter,” Journal of Computational and Graphical Statistics, vol. 25, no. 3,
pp. 789-805, 2016.

[12] H.H. Holm, M.L. Sætra, and P.J. van Leeuwen, “Massively parallel
implicit equal-weights particle filter for ocean drift trajectory forecasting,”
Journal of Computational Physics, vol 6. 100053, 2020.

[13] K. Heine, N. Whiteley, and A.T. Cemgil, “Parallelizing particle filters
with butterfly interactions,” Scandinavian Journal of Statistics, Aug. 2019.

[14] A. Doucet, N. Freitas, K. Murphy, and S. Russell, Sequential Monte
Carlo Methods in Practice, Springer, 2013.

[15] M. Chao, C. Chu, C. Chao, and A. Wu, “Efficient parallelized particle
filter design on CUDA,” IEEE Workshop On Signal Processing Systems,
pp. 299–304, Oct. 2010.

[16] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on
particle filters for online nonlinear/non-gaussian bayesian tracking,” IEEE
Trans. on Signal Processing, vol. 50, no. 2, pp. 174-188, Feb. 2002.

[17] OpenCV, 2020, [Online]. Available: https://opencv.org

[18] G. Szwoch,“Performance evaluation of the parallel object tracking
algorithm employing the particle filter,” Signal Processing: Algorithms,
Architectures, Arrangements, and Applications (SPA), pp. 119–124, Sep.
2016.

[19] H. Arora, Gprof tutorial – how to use Linux gnu gcc profiling tool, 2020,
[Online]. Available: https://www.thegeekstuff.com/2012/08/gprof-tutorial

[20] H. Medeiros, G. Holguin, P.J. Shin, and J. Park, “A parallel histogram-
based particle filter for object tracking on SIMD-based smart cameras,”
Computer Vision and Image Understanding, vol. 114, no. 11, pp. 1264-
1272, Nov. 2010.

[21] Visual Tracker Benchmark. [Online]. Available: http://cvlab.hanyang.ac.
kr/tracker_benchmark/datasets.html

[22] Speeding up particle filter for tracking targets using CUDA,
Github repository, [Online]. Available: https://github.com/KevinZhanggg/
Speeding-up-particle-filter-for-tracking -targets-using-CUDA


