
Performance Evaluation of the Weighted Least
Connection Scheduling for Datacenters with

BigHouse Simulator
Timothy Radtke

Electrical and Computer Engineering Dept.
Marquette University

Milwaukee, WI, USA
timothy.radtke@marquette.edu

Cristinel Ababei
Electrical and Computer Engineering Dept.

Marquette Universty
Milwaukee, WI, USA

cristinel.ababei@marquette.edu

Abstract—In this paper, we investigate the performance of
a weighted least connection algorithm for scheduling jobs in
datacenters. The novelty of the proposed algorithm is that
the weights for the compute units in the datacenter are de-
termined based on their current dynamic power consumption.
The algorithm is implemented inside the BigHouse simulation
framework and compared against the default least utilized
scheduling approach of the framework. Simulation experiments
show that the proposed algorithm provides significantly better
performance for large number of large queries per second (QPS)
values as well as lower power consumption. In addition, the
computational runtime is linear with respect to the increase in
queries per second. However, while linear, the computational
runtime is longer than that of the default scheduler due to
the increased computational complexity required to determine
where a job should be placed. These results indicate a tradeoff
between performance (i.e., latency of all scheduled jobs) and
computational runtime of the scheduling algorithm.

Index Terms—datacenter scheduling, weighted least-
connection algorithm, datacenter simulator

I. INTRODUCTION

Within the last two decades, we have witnessed dramatic
development in datacenters and cloud computing. Developing
efficient scheduling algorithms for datacenters is important
because the primary goal of cloud computing is to use the
resources of the datacenter in an efficient way so users can
experience maximum throughput and speed while maintaining
the datacenter’s cost position [1]. The objective of this paper
is to use the BigHouse datacenter simulator to investigate the
weighted least connection algorithm for scheduling jobs in dat-
acenters. The algorithm is implemented inside the BigHouse
tool and compared against the default least utilized scheduling
approach of the framework. The performance is evaluated as
a function of the inter-arrival time between service requests.

The remainder of this paper is organized as follows. Section
II provides a discussion of previous work. Section III discusses
the BigHouse simulation tool used in this study. Section
IV describes the proposed scheduling algorithm, which is
implemented inside the BigHouse tool. Section V presents
and discusses the results obtained. The paper is concluded
in section VI.

II. LITERATURE REVIEW

At the datacenter level, job scheduling - in addition to
workload placement, load balancing, power budgeting, and
server farm management policies - represents one of the most
popular methods to improve performance and reduce energy
usage. As such, one can find many previous studies that
focused on performance and power optimization; with some
relevant examples including [2]–[6].

One common recent optimization approach in datacenters is
the exploitation of hardware heterogeneity [7] introduced by
continuous server upgrades and by multicore processors that
integrate high-performance "big" and energy efficient "little"
cores [8], [9]. Another trend is the combined management
of several geographically distributed datacenters to save elec-
tricity costs while providing customers a uniform experience
[10]. Hence, one can find previous studies that focus on
scheduling jobs across these geo-distributed datacenters. One
way to accomplish this is through the application of principles
of locality to traditional scheduling algorithms [11]. In this
approach, the jobs are scheduled to the datacenter with the
most capacity that also has the data needed for the job.
Researchers have found that when the data is geographically
far away from the server assigned to the job, the speed of
getting the data to the server outweighs any savings from a
less busy faster server [11].

Many scheduling algorithms in previous studies have as an
underlying approach one of the following strategies: round-
robin, weighted round-robin, least-connection, and weighted
least-connection [12]–[14]. For example, the highest density
first (HDF) algorithm is similar to weighted round-robin
scheduling, but performs the selection in a greedy manner
[12]. The standard round-robin and least connection schedulers
make the assumption that all servers are equal in computing
capacity and throughput; however, this is almost never the
case in practice. Therefore, the weighted variants are the
most commonly used scheduling algorithms in practice due to
their ability to adjust to various parameters across datacenter
servers.



III. BIGHOUSE SIMULATOR

BigHouse is a methodology for system characterization
and discrete-event simulation developed by the Advanced
Computer Architecture Lab at the University of Michigan. It
is a datacenter simulation framework that models datacenter
workloads at scale. As such, it can be used to perform quantita-
tive exploration of performance optimization, distributed data
placement, power provisioning and management, and fault-
tolerant design [15], [16].

The simulator is based on the stochastic queuing simulation
methodology. This is different from traditional simulation
tools, because workloads are not simulated at the granularity of
an instruction, memory, or disk access; instead, the simulator
exploits the theoretical framework of queuing theory, and uses
as fundamental unit of work the job (i.e., task). It has proven
itself to have a small error rate of 9.2% when compared to real
web search data. Also, the power capping model is useful for
real-world implementation of datacenter equipment. Overall,
BigHouse provides an excellent platform for the exploration
and comparison of various scheduling algorithms as applied
to datacenter computing.

The BigHouse simulator comes with a default scheduling
algorithm that is designed to find the least utilized socket on a
server and assign the job to it [16]. The simulator can measure
performance by generating curves of latency vs. utilization
as a percentage of maximum queries per second (QPS) for
several different types of workloads including DNS, Mail,
Shell, Google, and Web. This curve is generated by running
the statistical model built within the BigHouse simulator for
different values of the QPS parameter.

When considering job placement within the datacenter,
BigHouse abstracts the various pieces of the datacenter in-
frastructure. At the top level is the datacenter structure which
holds various server classes within it. The server class contains
cores, and each of the cores contain sockets. The socket is the
base unit on which a job runs. For this study, a datacenter will
be composed of 100 servers each with 4 cores and a variable
number of sockets.

The source of BigHouse is build in an abstracted way
such that it is easy to modify various parts of the datacenter
without affecting the simulator as a whole [16]. Additionally,
the flexibility in experimentation provides the capability to
statically control the QPS value, thus reliably reproducing
latency information that is comparable across schedulers.
Hence, the server, socket, and accuracy sensitivity experiment
source files are the only ones that require modification for
integrating a new scheduling algorithm.

IV. PROPOSED SCHEDULING ALGORITHM

The least connection algorithm underlines many previous
greedy or heuristic algorithms. Fig. 1 is a graphical description
of this algorithm, where various servers, each with its own
weight, gets assigned different jobs based on its weight and the
number of jobs already being served. The variant implemented
in this study is a weighted least connection (WLC) algorithm
where the weight is based on the dynamic power of the socket

1/1/2022

1

Scheduler

Queue

Server 

1

Server 

2

Server 

3

Active sockets = 2

Weight = 2

Active sockets = 4

Weight = 3

Active sockets = 0

Weight = 4

Jobs

Jobs - 1,2,4

Jobs - 3

1

Fig. 1. Graphical representation of the least connection algorithm determining
the proper socket to deliver a job based on the number of current jobs and
weight of each server.

being considered for the job. By ranking each of the sockets on
a core within a server by their dynamic power consumption
and then considering the one with the least connections we
maximize both power efficiency and the performance of the
overall datacenter.

Algorithm 1 describes the scheduling algorithm, which
selects for a given job the appropriate socket based on the
highest weight and least number of connections. This happens
during the start of a job’s service routine within the server
class. Prior to assigning a job to a socket, all the socket’s
weights are updated using an efficient routine described later
in Algorithm 2. Once the weights are recalculated, each socket
is examined to determine which socket is the least utilized
(i.e., the one with the least connections). During the search
for the socket with the fewest connections, we also consider
the weight of that socket. Thus, we end up choosing a socket
that is the highest weight of the least utilized sockets. In the
event of a tie, the socket chosen is the first one to be examined.

Since each socket will need to be assigned a weight, an
efficient method for (re)calculating socket weights during each
pass of the scheduler needs to be implemented. Dynamic
power is chosen as the metric for the weight calculation
because by considering how much power each socket is con-
suming and favoring those consuming less, we can increase the
energy efficiency of the overall datacenter without degrading
performance. When the datacenter is first initialized, each
socket receives a random integer weight between 0 and 1000.
Since each socket will have the same dynamic power on
initialization, this randomization helps smooth out the initial
job loading. After initialization, Algorithm 2 describes how
the weights for each socket are calculated during the insertion
of jobs to the datacenter. The weight is increased or decreased
based on specific power value thresholds. These thresholds
were determined empirically by surveying the dynamic power
values during the use of the default scheduler for a variety
of workloads. During this empirical experimentation, it was
found that Threshold_1 = 17 - Threshold_2 = 20 was
the average dynamic power for most of the sockets at an
average load. Hence, those sockets consuming more than
Threshold_2 would have their weight decreased, while those
sockets consuming less than Threshold_1 would have their
weight increased during the recalculation process. Addition-



Algorithm 1 Creation of Job Service for Insertion into Data-
center

procedure STARTJOBSERVICE(time, job)
targetSocket← null
leastUitilizedSocket← null
lowestUitilization←MAX V ALUE
highestWeight←MIN V ALUE
WLCSocket← null
for j ← 0, j < num sockets, j+ = 1 do

RECALCULATEWEIGHT(socket)
end for
for i← 0, i < num sockets, i+ = 1 do

currentSocket← sockets[i]
currentUtilization← UTILIZATION(sockets[i])
currentWeight← GETWEIGHT(sockets[i])
if currentUtilization < lowestUitilization then

lowestUitilization← currentUtilization
leastUitilizedSocket← currentSocket
if currentWeight > highestWeight then

highestWeight← currentWeight
WLCSocket← currentSocket

end if
end if

end for
targetSocket←WLCSocket
INSERTJOB(time, job, targetSocket)

end procedure

ally, to prevent the weights from crashing, if a weight ever
reduced to below 0 a new random weight would be assigned
to that socket. This helps to provide a more balanced utilization
of all sockets as those with large negative weights would end
up not being used, which effectively decreases the number of
available resources.

Algorithm 2 Recalculation of Weights During Datacenter
Operation
Ensure: num sockets ≥ 2

procedure RECALCULATEWEIGHT(socket)
socketPower ← dynamicPower
if socketPower ≥ Threshold_2 then

weight← weight− 1
else if socketPower ≤ Threshold_1 then

weight← weight+ 1
else

Weight stays the same
end if
if weight < 0 then

weight = RANDOMWEIGHT(void)
end if

end procedure

0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30

15 20 30 40 50 60 65 70 80 85 87

95
th

Pr
ec

en
til

e 
La

te
nc

y 
(s

) 

QPS (%)

Default Scheduler - 300 Servers
Default Scheduler - 200 Servers
Default Scheduler - 100 Servers
Proposed Scheduler - 300 Servers
Proposed Scheduler - 200 Servers
Proposed Scheduler - 100 Servers

Fig. 2. Comparison of performance achieved with the proposed scheduler
against the default scheduler for different number of servers.

V. SIMULATION RESULTS

In this section, we present simulation results obtained with
the proposed scheduling algorithm and compare them against
those obtained with original default scheduler of the BigHouse
datacenter simulator. These simulations are conducted for
different numbers of servers in order to study the scalabil-
ity of both schedulers for an increasing number of servers.
Specifically, we simulated datacenters with 100, 200, and 300
servers.

A. Simulations

The comparison in terms of performance (as the 95th

percentile latency) versus queries per second (QPS) for each
of three different datacenter sizes is shown in Fig. 2. We
observe that the proposed weighted least connection algorithm
outperforms the default scheduler in that the latency remains
low for larger values of QPS when the proposed scheduling
algorithm is used. This can be observed in Fig. 2, where
the saturation point (i.e., the point where the latency curve
goes up abruptly) is located at larger values of QPS (about
QPS = 80 − 85%) when the proposed scheduling algorithm
is used compared to where it is located when the default
scheduler is used (about QPS = 60− 65%). We also observe
that both schedulers show good scalability with the number of
servers; although, when the number of servers increases from
100 to 200 performance degrades slightly, whereas when the
number of servers changes from 200 to 300, performance is
less affected.

The comparison in terms of socket power consumption
versus QPS for each of three different datacenter sizes is
shown in Fig. 3. We observe that the power consumption is
consistently smaller when the proposed scheduling algorithm
is used. That is, for a given value of QPS, the power consump-
tion when the proposed scheduler is used is less than the power
consumed when the default scheduler is used. For example,
at QPS = 60%, the power consumed when the proposed
scheduling algorithm is used is about 10 Watts while the power
consumed when the default scheduler is used is 13 Watts. On
average, across all QPS values for which both schedulers were



0.00

10.00

20.00

30.00

40.00

50.00

15 20 30 40 50 60 65 70 80 85 87

Se
rv

er
 P

ow
er

 C
ap

 (W
) 

QPS (%)

Default Scheduler - 300 Servers
Default Scheduler - 200 Servers
Default Scheduler - 100 Servers
Proposed Scheduler - 300 Servers
Proposed Scheduler - 200 Servers
Proposed Scheduler - 100 Servers

Fig. 3. Comparison of power consumption achieved with the proposed
scheduler against the default scheduler for different number of servers.

simulated, the power consumed is less with about 50% for all
three cases of server count when the proposed scheduler is
used, as shown in Table I.

TABLE I
SOCKET POWER CONSUMPTION REDUCTION WHEN PROPOSED

SCHEDULER IS USED VS. DEFAULT SCHEDULER.

100 servers 200 servers 300 servers
Power Power Power

QPS (%) Reduction (%) Reduction (%) Reduction (%)
0.1 89.16 96.16 98.60
0.2 87.24 90.25 34.92
0.3 64.49 63.67 65.45
0.4 46.08 44.28 44.19
0.5 33.34 33.57 31.60
0.6 30.52 27.09 29.07
0.7 28.14 30.71 29.89
AVG.: 54.14 55.11 47.67

B. Discussion

These results demonstrate the importance of choosing an
efficient scheduling algorithm to maximize datacenter perfor-
mance. Additionally, they provide insights into the tradeoff be-
tween a computationally fast scheduling algorithm and overall
datacenter efficiency. While the least utilized core scheduler
used as a baseline (i.e., the default scheduler) is easy to
compute and simulate, datacenter performance degrades as the
QPS value increases. On the other hand, using a weighted least
connection scheduling algorithm (i.e., the proposed scheduler)
increases the initial computation since all weights need to be
updated before a job is assigned, it provides an improved
and more consistent performance across a larger range of
QPS values. The proposed scheduling algorithm has a higher
computational complexity, which in our simulations translated
into longer execution times of the scheduling algorithm by
40% on average. However, the datacenter latency improves
significantly at large QPS values (Fig. 2) and power consump-
tion is reduced as well (Fig. 3).

VI. CONCLUSION

With the increasing reliance on cloud computing, it is imper-
ative to ensure the performance of datacenters through the use

of job scheduling algorithms. This study aimed to use the Big-
House simulator to verify the performance of a weighted least
connection based scheduling algorithm and compare it against
the default algorithm included with BigHouse. Simulation ex-
periments showed that the proposed weighted least connection
scheduling algorithm provided significantly better performance
for many large queries per second values as well as lower
power consumption. However, that comes at the expense of
an increase in the execution time of the proposed scheduling
algorithm due to its higher computational complexity. The
results indicated a tradeoff between performance, power and
computational runtime of scheduling algorithms.

ACKNOWLEDGMENT

The authors wishes to thank Marquette University for sup-
porting courses such as Computer Architecture. Additionally,
the authors wish to thank D. Meisner and the University of
Michigan for creating and providing as an open source project
the BigHouse simulation tool.

REFERENCES

[1] T.J. Nirubah and R.R. John, “Energy-efficient task scheduling algo-
rithms for Cloud Data Centers," Int. Journal of Research in Engineering
and Technology, vol. 3, no. 3, pp. 322-326, 2014.

[2] J.Moore, J. Chase, P. Ranganathan, and R. Sharma, “Making scheduling
“cool": temperature-aware workload placement in data centers," Annual
Technical Conference on USENIX (ATEC), 2005.

[3] N. Liu, Z. Dong, and R. Rojas-Cessa, “Task and server assignment for
reduction of energy consumption in datacenters," IEEE Int. Symposium
on Network Computing and Applications (NCA), 2012.

[4] M. Lin, Z. Liu, A. Wierman, and L.L. Andrew, “Online algorithms
for geographical load balancing," Int. Green Computing Conference
(IGCC), 2012.

[5] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware scheduling for
heterogeneous datacenters," Int. Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2013.

[6] V. Petrucci, M.A. Laurenzano, J. Doherty, Y. Zhang, D. Mosse, J.
Mars, and L. Tang, “Octopus-man: QoS-driven task management for
heterogeneous multicore in warehouse scale computers," IEEE Int.
Symposium on High Performance Computer Architecture (HPCA),
2015.

[7] J. Mars and L. Tang, “Whare-map: heterogeneity in “homogeneous"
warehouse-scale computers, "Int. Symposium on Computer Architecture
(ISCA), 2013.

[8] ARM big.LITTLE technology. [Online]. Available: http://www.arm.
com/products/processors/technologies/biglittleprocessing.php

[9] X. Liang, M. Nguyen, and H. Che, “Wimpy or brawny cores: a
throughput perspective," Journal of Parallel and Distributed Computing
archive, vol. 73, no. 10, pp. 1351-1361, Oct. 2013.

[10] N. Hogade, S. Pasricha, H.J.Siegel, A.A. Maciejewski, M.A. Oxley, and
E. Jonardi, “Minimizing Energy Costs for Geographically Distributed
Heterogeneous Data Centers," T-SUSC, vol. 3, no. 4, pp. 318-331, 2018.

[11] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across
geo-distributed datacenters," ACM Symposium on Cloud Computing
(SoCC), 2015.

[12] C. Bussema and E. Torng, "Greedy Multiprocessor Server Scheduling,"
Operations Research Letters, vol. 34, no 4, pp. 451-458, 2006.

[13] R. Kumari and V.K. Jha, “Performance Analysis of Load Balancing
Algorithms in Amazon Cloud," Int. Conference on Microelectronics,
Computing and Communication Systems, 2021.

[14] Least connection method, 2021. [Online]. Available:
https://docs.citrix.com/en-us/citrix-adc/current-release/load-balancing/
load-balancing-customizing-algorithms/leastconnection-method.html

[15] D. Meisner, J. Wu and T.F. Wenisch, "BigHouse: A simulation infras-
tructure for data center systems," IEEE Int. Symposium on Performance
Analysis of Systems & Software, 2012.

[16] D. Meisner, BigHouse - Stochastic Queuing Simulation, 2021. [On-
line]. Available: https://github.com/meisner/BigHouse


