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Abstract—In this paper, we present a two-level hierarchical
scheduler for datacenters called Qin. The goal of the proposed
scheduler is to exploit increased server heterogeneity. It com-
bines in a unified approach cluster and node level scheduling
algorithms, and it can consider specific optimization objectives
including job completion time, energy usage, and energy delay
product (EDP). Its novelty lies in the unified approach and in
modeling interference and heterogeneity. Experiments on a real
cluster demonstrate the proposed approach outperforms state-
of-the-art schedulers by 10.2% in completion time, 38.65% in
energy usage, and 41.98% in EDP.

Index Terms—datacenters, heterogeneity, scheduling, collabo-
rative filtering

I. INTRODUCTION

One of the primary objectives in datacenters (DCs) is
performance - as execution time of jobs from arrival time to
completion time - in addition to power consumption. Both
performance and power consumption are directly affected by
the job scheduling algorithm. Another recent optimization
avenue is the exploitation of hardware heterogeneity. Hetero-
geneity in datacenters comes from two different sources. First,
servers become more heterogeneous among themselves due
to continuous upgrades and maintenance. A second source of
heterogeneity stems from the asymmetry of recent multicore
proposals that integrate high-performance “big" and energy
efficient “little" cores [1].

Previous work focused primarily on optimizations at indi-
vidual cluster or node levels and typically addressed either
performance or energy. In this paper, we present Qin - a cross-
layer approach for scheduling in heterogeneous datacenters.
Our main contributions are as follows: 1) We propose a
unified hierarchical cluster-node scheduling considering in-
terference and heterogeneity for multi-objetive optimizations.
The proposed technique outperforms state-of-the-art schedul-
ing techniques from industry and academia. 2) We present
a multi-objective optimization formulation for the unified
cluster-node scheduling for heterogeneous datacenters. More
specifically, we focus on application-to-server (cluster-level)
and the thread-to-core (node-level) problems. 3) We propose
the D-choices greedy scheduling algorithms to solve these
problems, and 4) We evaluate the proposed Qin scheduler on a
real small cluster and on a simulated platform with real-world
and synthetic workloads.

II. RELATED WORK ON SCHEDULING

In the category of node level approaches, the study in [2]
proposed an imitation learning based scheduling framework
for heterogeneous chip-multiprocessors systems capable of
handling multiple applications exhibiting streaming behavior.
The study in [3] presented dynamic energy management
under performance constraints in chip multiprocessors using
dynamic voltage and frequency scaling (DVFS). This work
relied on the default scheduler inside the Sniper simulator [24].
This work was further improved on by the study in [4], which
proposed a node-level deep neural network (DNN) based
energy optimization method under performance constraints,
but, again based on using the Sniper’s scheduler. The work
in [5] enhanced the default Linux scheduler for node-level
scheduling in terms of the cores to which a new process should
be assigned, and when one or more operating processes should
be migrated to other cores. The study in [6] introduced an
adaptive scheduling framework that matches the heterogeneity
of the workload to the heterogeneity of the hardware. The work
in [7] demonstrated the potential of reconfigurable cores for
servers running latency-critical applications.

In the category of cluster level approaches, the work in [8]
proposed Paragon, an online and scalable datacenter scheduler
that is heterogeneity and interference aware. The work in [9]
exploited the unique characteristics of deep learning workloads
and proposed a new cluster scheduling framework to improve
the latency and efficiency of training deep learning workloads.
The study in [10] proposed Gavel, a heterogeneity-aware
scheduler that generalizes a wide range of existing scheduling
policies for heterogeneous datacenters. The work in [11] lever-
aged d choices technique to develop algorithms for better load
balancing in MapReduce deployed on heterogeneous servers.
However, none of the above scheduling approaches considered
energy usage in their optimization.

In the category of hierarchical approaches, the Paragon
scheduler was extended in [12] to consider heterogeneity at
cluster and server levels and developed the Mage scheduler
as a centralized scheduling approach that maps application-
to-core directly using stochastic gradient descent (SGD) tech-
niques. The work in [13] proposed a distributed scheduling
approach for hierarchical scheduling. The works in [14], [15]
also studied hierarchical scheduling.



III. PREDICTION METHODS AND PROBLEM STATEMENT

A. Collaborative Filtering for Energy Usage Estimation at
Cluster Level

To develop energy oriented scheduling algorithms, we use
collaborative filtering techniques to predict the energy usage
of workloads on different server configurations (SC). We use
collaborative filtering for predicting the energy usage of an
incoming application, which will run on different hardware
platforms with selected V/F levels. We assume that a given
server from a heterogeneous set can support several different
V/F levels. In this way, we bring into the optimization process
the DVFS (uses V/F levels) control knob that will help save
energy.

The input to collaborative filtering is a sparse matrix A with
one row per application and one column per server configura-
tion with a selected V/F level. The matrix entries represent
normalized application energy usage scores. Collaborative
filtering requires offline training and online testing. In offline
training, we select a small number of applications (around
10%) and profile them on all different server configurations
for all V/F levels. We normalize the performance scores and
fully populate the corresponding rows of matrix A. The energy
usage model that we use is similar to the one in [17]. If a new
server configuration is added to the heterogeneous cluster, we
need to add columns in matrix A to represent the newly added
server for its V/F level configurations. Also, we need to profile
the selected applications in the offline training mode on the
newly added server configuration with selected V/F levels.
In the online testing mode, when a new application arrives,
we first profile it for a period of 2 seconds (fast profiling
to avoid memory bursts) on any two server configurations
with selected V/F levels. Then, we insert this application
as a new row in matrix A. Lastly, we apply singular value
decomposition (SVD) and PQ-reconstruction [16] that are used
by the collaborative filtering technique to predict the missing
scores of this application for all other server configurations.

When new applications arrive, instead of learning each
new application, collaborative filtering leverages profiling data
from history and combines a minimal profiling of the new
application to identify similarities between new and known
applications. Two applications can be similar in one character-
istic (e.g., both benefit from a higher level of V/F) but different
in others (e.g., one application benefits more from larger
memory while the other does not). SVD uncovers the hidden
similarities between applications and filters out the ones less
likely to have an influence on the application’s scores. Fig. 1
illustrates how collaborative filtering is applied to predicting
energy usage for an application. In this example, the workload
includes 10 applications and 2 server configurations. SC1 has
two V/F levels and SC2 has 4 selected V/F levels. In the
offline training, we profile App1 to App3 on SC1 and SC2
with the selected V/F levels; the profiling data is then used as
training data for the collaborative filter. In the online testing
mode, we first profile the testing applications (App4 to App10)
on any two server configurations with selected V/F levels (to
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Fig. 1. Illustration of how collaborative filtering is employed to predict energy
usage of applications executed on server configurations with different V/F
settings.

satisfy SVD’s sparsity constraints). Then, we use SVD and
PQ-reconstruction to predict the missing entries of energy
consumption of applications App4-App10, shown in red color
in Fig. 1. In this figure, App8 has the minimum predicted
energy usage if scheduled to run on SC2 with V/F level 1.

B. Collaborative Filtering for Interference Estimation at Clus-
ter Level

The work in [8], [18] found that interference in shared
resources leads to higher performance loss. Therefore, in order
to minimize the performance loss, one needs to minimize the
interference in shared resources. Here, we propose to use the
collaborative filtering technique from the previous section but
to predict interference instead of energy usage scores. In this
case, the rows of matrix A represent applications and the
columns represent sources of interference (SoI), which include
memory (capacity and bandwidth), cache hierarchy (L1/L2/L3
and translation look-aside buffers), and network and storage
bandwidth. The elements of matrix A represent the normalized
interference scores of applications against corresponding SoI.
There are two types of interference we are interested in:
interference that an application can tolerate from the pre-
existing load on a server and interference the application will
cause on that load. We detect interference due to contention
on shared resources and assign a score to the sensitivity of an
application to each type of interference. To derive sensitivity
scores of applications run on contentious kernels, we use the
iBench tool [19].



C. Collaborative Filtering for Heterogeneity Estimation at
Cluster Level

To model heterogeneity, we again use collaborative filtering
to identify how well an application runs on different server
configurations. Similarly to [8], the input to the collaborative
filtering technique is a matrix A whose rows represent applica-
tions while columns represent different server configurations.
The matrix entries represent normalized application perfor-
mance scores measured in millions instructions per second
(MIPS). In the offline training, we first profile a few tens of
selected applications on all the different server configurations
to generate the sparse matrix A. In the online testing mode,
when a new application arrives, we quickly profile it on any
two server configurations, and add it as a new row in the matrix
A. Lastly, we apply SVD and PQ-reconstruction to predict the
missing performance scores for all other server configurations.
By using columns for all server configurations, we capture
server heterogeneity within the cluster-level scheduling con-
text.

D. Kalman Filtering for Workload Prediction at Node Level

In this work, we combine node-level scheduling with thread
migration with DVFS based energy reduction under perfor-
mance constraints. The goal of the node-level scheduling is to
map dynamically thread-to-core together with thread migration
and DVFS for energy reduction without performance loss
beyond a user set threshold. The actual scheduling algorithm
will be described in a later section; threads migration is
implemented through rescheduling. The DVFS based energy
reduction technique - that is integrated with the scheduling
approach - uses Kalman filtering to predict the workload.
Similarly to previous work in [3], the workload is measured as
average cycles per instruction and instruction count in the next
control period for which V/F pairs should be selected and set to
reduce energy consumption. This is under the assumption that
the execution of a given application is split into consecutive
control periods and that the DVFS algorithm is applied at the
end of each such period.

E. Scheduling Problem

The two-level hierarchical cluster-node scheduling problem
is formulated as follows:

Given the input applications M and the server configura-
tions SN ,

Find the cluster and node levels scheduling functions S()
that map application-to-server at the cluster-level and thread-
to-core at the node-level, that minimize total interference,
maximizes total heterogeneity, and minimizes total energy
usage.

We minimize interference first because it was observed
that interference can lead to higher performance loss than
suboptimal server configurations [8]. From among the selected
scheduling solutions that have minimum interference scores,
we then find those that maximize heterogeneity scores. Lastly,
from among those selected in the previous step, we identify
the schedules that minimize energy usage scores - because our
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Fig. 2. Illustration of the proposed scheduling approach.

ultimate goal is to reduce energy usage under performance
constraints.

IV. PROPOSED SCHEDULING APPROACH

To solve the scheduling problem we propose Qin: a uni-
fied cross-layer cluster-node scheduling approach described
in Fig. 2. At the cluster-level, the inputs to the Cluster
Manager are the incoming jobs/applications while the output
is the application-to-server scheduling. The Cluster Manager
has a global view of the scheduling in that it considers
different server configurations on the servers, which will
be used for node-level scheduling (thread-to-core schedul-
ing based on core V/F levels). Algorithm 1 describes the
cluster-level scheduling algorithm. We first fast profile the
incoming applications, both offline (around 10% of applica-
tions) and online (application-per-core profiling for 2 s to
minimize the intrusion and avoid memory bursts); this is
done by the function BenchmarkProfiling(m). Then, func-
tions EnergyPrediction(m), InterferencePrediction(m), and
HeterogeneityPrediction(m) use the collaborative filtering pre-
diction technique to estimate the energy usage (Section III-A),
interference (Section III-B), and heterogeneity (Section III-C)
of new incoming applications. Lastly, energy usage, interfer-
ence, and heterogeneity estimations are used by D-Choices
Greedy Scheduling Algorithm (described later) implemented
as D-ChoicesGreedyScheduling(E, I,H) function.

At the node-level, the inputs to the Server Manager
are the incoming tasks/threads while the output is thread-
to-core scheduling with task migration and DVFS con-
trol. The Server Manager combines node-level schedul-
ing and thread migration with DVFS to achieve dy-
namic energy reduction under performance constraints.
Algorithm 2 describes the node-level scheduling algo-
rithm. The function CollectCoreV/FStatus() collects core
V/F levels information. Similarly to the cluster-level case,
functions EnergyPrediction(t), InterferencePrediction(t), and



Algorithm 1: Cluster-level scheduling algorithm.

1 Inputs: Incoming jobs/applications M to cluster
2 Outputs: Application-to-server scheduling at

cluster-level
3 Function CLUSTER-LEVEL-SCHEDULING()
4 for m in M do
5 BenchmarkProfiling(m) // Fast online profiling
6 E = EnergyPrediction(m) // Collaborative

filtering based
7 I = InterferencePrediction(m) // Collaborative

filtering based
8 H = HeterogeneityPrediction(m) //

Collaborative filtering based
9 D-ChoicesGreedyScheduling(E, I,H)

10 end
11 end

HeterogeneityPrediction(t) leverage the collaborative filter-
ing based prediction to estimate energy usage, interference
(calculated as extra delay the thread causes to the mapped
core), and heterogeneity (calculated as instruction count) of
new incoming threads. Lastly, these estimations are fed into
D-ChoicesGreedyScheduling(E, I,H). The DVFS() function
is implemented by the DVFS Controller from Fig. 2. It
implements the DVFS scheme reported in [3], but, adapted to
support thread migration; it is responsible for finding optimal
V/F pairs for all cores inside the multicore processor on the
server node. It uses as input Instruction Count and CPI values
as predicted by the Kalman filter for the next control period
implemented by PerCoreWorkloadPrediction() function.

A. D-Choices Greedy Scheduling

The D-Choices concept applied to the problem of cross-
layer scheduling is one of the main novel contributions in
this paper. We define and frame the application-to-server
and thread-to-core problems through the so-called ball-to-bin
model: allocating m balls into n heterogeneous bins (assuming
m ≥ n lnn). In this model, when we use a single choice
approach (i.e., D = 1, always choose the best bin with the
least load), the upper bound of the maximum load of bins
is m/n + O(

√
(m lnn)/n) with high probability. However,

when we use a multiple choices paradigm (i.e., D ≥ 2, choose
top D bins with the least load first, then randomly choose
one from among these D bins), the maximum load of bins
is m/n+ O(ln lnn) + O(1) with high probability [20]–[22].
When applying this model of “balls into heterogeneous bins”
to the problem of scheduling on heterogeneous servers, we
must consider the following differences: 1) “Balls” represent
various applications at cluster-level and various threads at
node-level. 2) The objective is to minimize imbalance, which
translates into minimization of applications/threads queuing
time, thereby improving performance.

To address these differences, we first define the load at both
cluster and node levels. At the cluster-level, at time t, the

Algorithm 2: Node-level scheduling algorithm.

1 Inputs: Incoming remain unfinished tasks/threads T to
nodes

2 Outputs: Thread-to-core scheduling and DVFS at
node-level

3 Function NODE-LEVEL-SCHEDULING()
4 for Every time_interval do
5 // For every default power update time interval

1ms
6 for t in T do
7 // For every remain unfinished thread t, do

nothing if no thread remains
8 CollectCoreV/FStatus() // Fast core V/F

collection
9 E = EnergyPrediction(t) // Same as

cluster-level
10 I = InterferencePrediction(t) // Calculated

as extra delay
11 H = HeterogeneityPrediction(t) //

Calculated as instruction count
12 D-ChoicesGreedyScheduling(E, I,H)
13 end
14 PerCoreWorkloadPrediction() // Kalman

filtering based
15 DVFS() // Set V/F levels for each core
16 end
17 end

load of a server i is the total size (total instructions count)
of the unprocessed applications assigned to the server up to
t, denoted as Li(t). At the node-level, at time t, the load
of a core j is the total size (total instructions count) of the
unfinished threads assigned to the core up to t, denoted as
Lj(t). We then define the imbalance at both cluster-level and
node-level. At time t, the imbalance is the difference between
the maximum and the average load of the servers (calculated
with eq. 1) at the cluster-level (denoted as Imc(t)), and of
the cores (calculated with eq. 2) at the node-level (denoted as
Imn(t)).

Imc(t) = max{Li(t)|i ∈ {1, 2, ..., N}} −
N∑
i=1

Li(t)/N (1)

Imn(t) = max{Lj(t)|j ∈ {1, 2, ..., SN}} −
SN∑
j=1

Lj(t)/SN

(2)

Where i and j are the indices for servers and server configura-
tions (core V/F levels), while N and SN represent the numbers
of servers and server configurations.

To this end, the application-to-server scheduling problem
becomes: allocate M applications to N heterogeneous servers,
where each application m has the size of αm, to minimize
cluster-level imbalance Imc(t). Similarly, the thread-to-core
problem becomes: allocate SM threads to SN heterogeneous



server configurations (core V/F levels), where each thread
k has the size of βk, to minimize node-level imbalance
Imn(t). To solve these problems, the D-Choices Greedy
Scheduling method is proposed. Compared to traditional ap-
proaches where only one optimal candidate server or server
configuration is selected, here, we select the top D (D ≥ 2)
candidates and then randomly pick one from among these D
candidates. This is essentially the idea of the proposed D-
ChoicesGreedyScheduling(E, I,H).

Mathematical Analysis: At the cluster-level, assuming
M ≥ N lnN , we derive the upper bound of the imbalance
Imc(t) based on the studies in [20]–[22] and eq. 1 as follows:
D = 1 :
Imc(t) = max{Li(t)|i ∈ 1, 2, ..., N} −

∑N
i=1 Li(t)/N

=
∑M

m=1 αm

N +O(
√
(
∑M

m=1 αm lnN)/N)−
∑M

m=1 αm

N

= O(
√
(
∑M

m=1 αm lnN)/N)

D ≥ 2 :
Imc(t) = max{Li(t)|i ∈ 1, 2, ..., N} −

∑N
i=1 Li(t)/N

=
∑M

m=1 αm

N +O(ln lnN) +O(1)−
∑M

m=1 αm

N
= O(ln lnN) +O(1)

Thus, at the cluster-level, when allocating M applications to
N heterogeneous servers using D-Choices Greedy Scheduling
method, the upper bound of the imbalance Imc(t) satisfies,
with high probability:

Imc(t) =

{
O(

√
(
∑M

m=1 αm lnN)/N), if D = 1

O(ln lnN) +O(1), if D ≥ 2
(3)

At the node-level, assuming SM ≥ (SN lnSN ), we derive
the upper bound of the imbalance Imn(t) based on the studies
in [20]–[22] and eq. 2 as follows:
D = 1 :
Imn(t) = max{Lj(t)|j ∈ 1, 2, ..., SN} −

∑SN

j=1 Lj(t)/SN

=
∑SM

k=1 βk

SN
+O(

√
(
∑SM

k=1 βk lnSN )/SN )−
∑SM

k=1 βk

SN

= O(
√
(
∑SM

k=1 βk lnSN )/SN )

D ≥ 2 :
Imn(t) = max{Lj(t)|j ∈ 1, 2, ..., SN} −

∑SN

j=1 Lj(t)/SN

=
∑SM

k=1 βk

SN
+O(ln lnSN ) +O(1)−

∑SM
k=1 βk

SN
= O(ln lnSN ) +O(1)

Thus, at the node-level, when allocating SM threads to SN

heterogeneous server configurations using D-Choices Greedy
Scheduling method, the upper bound of the imbalance Imn(t)
satisfies, with high probability:

Imn(t) =

{
O(

√
(
∑SM

k=1 βk lnSN )/SN ), if D = 1

O(ln lnSN ) +O(1), if D ≥ 2
(4)

We plot the relationship between the upper bound of the
imbalance Imc(t) at the cluster-level and the number of
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Fig. 3. Relationship between the upper bound of imbalance Imc(t) at cluster-
level and number of heterogeneous servers N under the assumption αm = 1.

heterogeneous servers N given by eq. 3 in Fig 3, with constant
αm = 1 and different values for M (Note: the case of
constant M and varying αm leads to a similar plot). The
relationship between the upper bound of the imbalance Imn(t)
and the number of heterogeneous server configurations SN

at the node-level is similar. We observe that: at the cluster-
level, when the number of applications M is large (which
is realistic in todays datacenters such as those of Google
that process millions of applications per day) and the size
of each application αm is large (which is also realistic,
especially for deep learning jobs), the proposed D-Choices
Greedy Scheduling method leads to significant improvement in
imbalance reduction over traditional cluster-level best choice
scheduling methods - which is the case of previous schedulers
Paragon [8], Mage [12], and Kubernetes [23] schedulers - in
load balancing. At the node-level, when the number of threads
SM and the size of each thread βk are large, the proposed
D-Choices Greedy Scheduling method achieves significant
improvement in imbalance reduction over traditional node-
level best choice scheduling methods - which is the case of
Sniper [24] scheduler - in load balancing. As mentioned earlier
in Algorithms 1 and 2, we use the proposed D-Choices Greedy
Scheduling method into the cluster-node scheduling approach
described in Fig. 2.

V. EXPERIMENTS AND SIMULATIONS

Server Systems: We implemented the cluster-level schedul-
ing algorithm as a “plug-in” custom scheduler managed by
the Kubernetes platform on an in-house real cluster built with
six heterogeneous computers. The specific characteristics of
the six computers are listed in Table I. We implemented the
cluster with Kubernetes v1.14.0 and virtual networking layer
flannel. We used the Linux perf tool v5.4.148 for fast profiling
of instructions count and energy usage of CPU and memory.

Schedulers: At cluster-level, we compare the proposed
Qin scheduler against the Kubernetes scheduler [23] (widely
deployed on Amazon AWS, Google Cloud Platform, Microsoft
Azure and IBM Cloud, assumed to be the best scheduling



TABLE I
CHARACTERISTICS OF NODES IN THE KUBERNETES CLUSTER.

Server Type Role GHz Cores L1(KB) Mem(GB)
Xeon E5-1620 master 3.60 8 32 16
Intel i5-6600 worker 3.30 4 32 16
Intel i7-4790 worker 3.60 8 32 16
Intel i5-7600 worker 3.50 4 32 8
Intel i5-4690 worker 3.50 4 32 8
Intel i5-4670 worker 3.40 4 32 8

TABLE II
SUMMARY OF THE COMPARED SCHEDULERS.

Scheduler Method Metrics
Kubernetes Best Node Multiple (resource, constraints, ...)
Paragon Greedy and Statistical Server utilization and Interference
Mage Stochastic Gradient Descent Server utilization and Performance
Sniper Least Loaded Performance, Energy, EDP
Qin D-choices Greedy Performance, Energy, EDP

approach from industry), and against Paragon [8] and Mage
[12] schedulers (tested on major cloud computing services,
assumed to be previous best schedulers from academia). At
node-level, we compare the proposed Qin scheduler with
the Sniper scheduler inside Sniper simulator v7.2 [24]. At
the combined cluster-server levels, we compare the proposed
unified cross-layer Qin scheduler versus the combination of
Kubernetes scheduler at the cluster-level and Sniper scheduler
at the node-level. Table II summarizes the compared sched-
ulers in this paper.

Workloads: We conduct our evaluation using both real-
world and synthetic application workloads. Similarly to the
study in [8], we use Splash-2 benchmarks [25] as real-world
applications; randomly replicated with equal likelihood and
randomized interleaving to generate up to 100 real-world
application workloads. Similarly to the study in [12], we use
the mutilate load generator [26] to generate synthetic latency-
critical workloads, and again up to 100 synthetic application
workloads with uniform, normal, and exponential distributions.
In addition, to study modern datacenter workloads, which
contain throughput-bound applications and latency-critical ap-
plications, we use Parsec 3.0 benchmarks as well [27].

A. Experiments at Cluster Level

To avoid scheduling overheads, we implement each sched-
uler with a different objective as an independent custom
scheduler managed by the Kubernetes platform. Then, these
schedulers could be switched between as necessary. If work-
loads submitted to the cluster are mainly latency-critical, the
performance aware Qin scheduler can be used to focus on
jobs completion time. If workloads are energy-hungry, the
energy aware Qin scheduler can be used; otherwise, the EDP
aware Qin scheduler is used. For all cluster-level versions of
the Qin scheduler, we use d = 2 inside the D-choice greedy
scheduling algorithm because we observed that it resulted in
better load balancing. A summary of the comparison of the Qin
scheduler against the other schedulers is presented in Table
III for three types of applications: 100 real-world workloads,
100 latency-critical synthetic workloads, and 100 throughput-
bound workloads.

Performance: Fig. 4.a shows the comparison in terms of
normalized jobs completion time of the performance aware
Qin scheduler vs. Kubernetes, Paragon, Mage schedulers for
100 real-world application workloads on 6-server heteroge-
neous cluster. The x-axis represents the number of workloads
for which scheduling is done and the y-axis shows the perfor-
mance measured as normalized jobs completion time. Overall,
the proposed performance aware Qin scheduler outperforms all
other schedulers on average by 9.43% (Kubernetes), 32.39%
(Paragon), and 26.15% (Mage), respectively. The improvement
in jobs completion time gets even better as the number of
workloads increases, which demonstrates a good scalability
of the proposed scheduler.

Energy usage: Fig. 4.b shows the comparison of the nor-
malized energy usage (of both CPU + memory combined, as
shown in the y-axis) of the proposed energy aware Qin sched-
uler against Kubernetes, Paragon, Mage schedulers. Again, the
proposed scheduler outperforms the state-of-the-art schedulers,
because it directly considers the energy usage through the
collaborative filtering based energy usage estimation.

Performance-energy tradeoff: Fig. 4.c shows the comparison
in terms of normalized energy delay product (EDP, as shown
in the y-axis). Again, the proposed EDP aware Qin scheduler
outperforms the other schedulers on this dimension too.

Server Utilization: Fig. 5 shows the heat maps of the
server utilization - calculated as average CPU utilization and
collected by Metrics API) vs. time for Qin and Kubernetes
schedulers for 100 synthetic application workloads on 5-
worker + 1-master cluster. Fig. 5.a indicates that Qin scheduler
achieves high and balanced servers utilization during the jobs
completion time, while Fig. 5.b indicates that Kubernetes
scheduler achieves good servers utilization in the middle pe-
riod but shows long tail imbalanced servers utilization during
the end period (Paragon and Mage schedulers have similar
long tail phenomenon). The long tail phenomenon increases
the delay in jobs completion time and is caused by the best
choice scheduling methods (used by Kubernetes, Paragon, and
Mage) that leads to load imbalance among servers. In contrast,
the D-Choice Greedy scheduling method (used by Qin) results
in better load balancing among servers and thus avoids this
long tail phenomenon.

Scheduling Overheads: Fig. 6 shows the execution time
breakdown of the Qin scheduler for 100 synthetic applica-
tion workloads on the 6-server heterogeneous cluster. The
overheads of the fast profiling and classification step and
the D-Choices Greedy scheduling step are 2.23% and 1.27%,
respectively. Overall, the Qin scheduler performs fast profiling,
classification, and scheduling.

B. Simulations at Node Level

At the node level, we implement the proposed performance,
energy usage, and EDP aware Qin schedulers as independent
alternative schedulers inside Sniper simulator v7.2 [24]. We
perform simulations using Splash-2 benchmarks [25]. For the
energy aware Qin scheduler, we set the maximum acceptable
performance loss threshold from DVFS control in Fig. 1 to



TABLE III
IMPROVEMENT ACHIEVED BY QIN SCHEDULER OVER THREE STATE-OF-THE-ART SCHEDULERS AT CLUSTER-LEVEL.

Real-world apps Latency-critical apps Throughput-bound apps
Cluster-level Scheduler Performance Energy EDP Performance Energy EDP Performance Energy EDP
Kubernetes 9.43% 21.23% 43.53% 33.52% 4.01% 26.36% 18.31% 4.70% 22.16%
Paragon 32.39% 25.69% 60.23% 37.57% 11.8% 36.46% 30.95% 4.71% 34.20%
Mage 26.15% 16.85% 51.39% 22.29% 3.51% 21.24% 19.44% 3.98% 22.65%
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Fig. 4. Comparison of the proposed Qin scheduler against state-of-the-art schedulers at cluster level: a) jobs completion time, b) energy usage, and c) EDP.

(a)

(b)
Fig. 5. Server utilization vs. time: (a) Qin scheduler and (b) Kubernetes
schedulers for 100 synthetic application workloads at the cluster-level.

Profiling & Classifying (2.23%)

Scheduling (1.27%)

Executing (96.5%)

Fig. 6. Execution time breakdown for Qin scheduler for 100 synthetic
application workloads at the cluster-level.

be 50%, and for the EDP aware Qin scheduler we set the
maximum acceptable performance loss threshold to be 10%
(user can change the performance loss threshold). We select
d = 2 for the node level D-Choices Greedy scheduling
algorithm.

Fig. 7 shows the comparison of the results obtained with
the proposed Qin scheduler vs. the Sniper default scheduler.
Fig. 7.a shows the comparison in terms of performance. The
x-axis shows Splash-2 applications and the y-axis represents
normalized application runtime measured as cycles reported
by the Sniper simulator. We observe that the proposed per-
formance aware Qin scheduler outperforms Sniper scheduler
for most Splash-2 benchmark applications. Fig. 7.b and Fig.
7.c show similar improvement of the proposed Qin scheduler
over Sniper scheduler in energy usage and EDP. The results
from Fig. 7 indicate that the proposed node-level Qin scheduler
can generate thread-to-core scheduling better than the Sniper
scheduler in terms of application runtime (performance), en-
ergy usage, and EDP.
C. Cross-layer Cluster-Node Hierarchical Scheduling

In this section, we present the combined cluster-node levels
hierarchical scheduling results - as the combination of the
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Fig. 7. Comparison of results at node level.

results obtained with the scheduling algorithms from the pre-
vious two sections. In collecting these results, workloads are
first scheduled at the cluster level to generate the application-
to-server scheduling. On each of the real cluster servers, we
installed the Sniper simulator inside the docker container.
Applications that were scheduled to these servers will arrive as
inputs to the Sniper simulator instances, where the node level
scheduling inside Sniper processes them. We use the longest
jobs completion time (of all jobs scheduled on a given server)
of all servers to represent the jobs completion time of the entire
cluster. The summation of energy usage of all the servers gives
the total energy usage of the entire cluster. The improvements
of the proposed two-level hierarchical Qin scheduler over the
combination of Kubernetes scheduler at cluster level + Sniper
default scheduler at node level for 100 real-world application
workloads are: 10.2% in terms of performance, 38.65% in
energy use, and 41.98% in EDP. These results indicate that
conducting a cross-layer integrated scheduling may provide
benefits over the cluster and node level scheduling conducted
in isolation separately. In our future work, we plan to deploy
the node level Qin scheduler on the real servers (as opposed
to inside the Sniper simulator) and thus achieve a better cross-
layer integration of the proposed scheduling algorithms.

VI. CONCLUSION

We presented a unified cluster-node level hierarchical
scheduling approach for heterogeneous datacenters that con-

siders multiple design objectives. More specifically, we pre-
sented a cross-layer scheduling approach that models in-
terference and heterogeneity while being able to focus the
optimization on jobs completion time, energy usage, or EDP.
Experiments using both real-world and synthetic workloads on
a real six-node in-house cluster demonstrated the effectiveness
of the proposed scheduling approach, which outperformed
state-of-the-art schedulers from industry and academia.
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