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Abstract—In this paper, we present a new scheduling algo-
rithm, Qin2, for heterogeneous datacenters. Its goal is to improve
performance measured as jobs completion time by exploiting
increased server heterogeneity using deep neural network (DNN)
models. The proposed scheduling framework uses an efficient
automatic feature selection technique, which significantly reduces
the training data size required to train the DNN to levels that pro-
vide satisfactory prediction accuracy. Its efficiency is especially
helpful when the DNN model is re-trained to adapt it to new
types of application workloads arriving to the datacenter. The
novelty of the proposed scheduling approach lies in this feature
selection technique and the integration of simple and training-
efficient DNN models into a scheduler, which is deployed on a
real cluster of heterogeneous nodes. Experiments demonstrate
that the Qin2 scheduler outperforms state-of-the-art schedulers
in terms of jobs completion time.

Index Terms—datacenters, heterogeneity, scheduling, deep
neural networks

I. INTRODUCTION

In developing artificial intelligence (AI) based scheduling
approaches for heterogeneous datacenters, one face several
challenges including how to identify models that are sample-
efficient and easily adaptable. An AI model such as a deep
neural network (DNN) is sample-efficient if it needs less
data for its training in contrast to large-scale approaches that
require huge amounts of training data. Easily adaptable or
generalizable models are models that can be easily adapted by
re-training to quickly capture inputs that may be different than
those that were used during the initial training. In our context,
such new inputs represent new types of application workload
that arrive to the datacenter scheduler. Recent work [1], [2]
focused on the generalizable challenge using complex DNN
models trained with large-scale training data; but, training
such comple DNNs is costly and not necessarily eco-friendly.
The study in [3] tackled the sample-efficiency challenge by
employing only selected input features that were fed into
simple prediction techniques (linear regression); they reported
that such simple models outperform complex machine learning
models. However, finding features that show linear relationship
with target objectives is difficult or they do not even exist, and
often, one only has available features that show non-linear
relationships with target objectives.

In this paper, we propose to learn simplicity in developing
new datacenter scheduling algorithms by automatic sample-

efficient feature selection techniques applied to simple or min-
imal training-efficient DNN. Our main contributions include:
1) We propose an automatic sample-efficient feature selection
technique based on the SuperFeatures concept, to significantly
reduce the required training data size that results in satisfactory
performance levels. 2) We develop simple training-efficient
DNN models used to predict MIPS (millions instructions
per second) of application workloads. These DNNs can be
easily and efficiently re-trained to adapt to new application
workloads. 3) We incorporate these “less is more” techniques
into the Qin2 scheduler that is based on the D-choices greedy
scheduling for heterogeneous datacenters. 4) We evaluate the
proposed Qin2 scheduler on a real small cluster with real-
world application workloads. The rest of the paper is structured
as follows. Section II reviews related work on scheduling.
Section III presents the Qin2 scheduler. Section IV evaluates
the Qin2 scheduler. Section V concludes the paper.

II. RELATED WORK ON SCHEDULING

There has been significant prior work on scheduling al-
gorithms in datacenters. Here, we only briefly review the
most relevant previous works, including those against we will
compare our proposed scheduler. At datacenter or cluster-level,
the work in [4] proposed the Mage scheduler that explored
intra and inter server heterogeneity. The research in [5] pro-
posed the Qin scheduler as a unified cross-layer cluster-node
scheduling, which considered interference and heterogeneity
for multi-objective optimizations in heterogeneous datacenters.
The study in [6] presented a deep Q-Network for optimization
of job scheduling in both information technology and cooling
systems. At the server or node-level, the research in [7],
[8] employed long short-term memory (LSTM) and DNN
models to predict workloads in multicore processors and to
develop tread-to-core scheduling strategies. The work in [9]
leverages imitation learning based scheduler for optimizing
the performance of domain-specific applications.

III. PROPOSED CLUSTER-LEVEL SCHEDULING APPROACH

A. Overview

The system level diagram describing the proposed cluster-
level scheduling framework is presented in Fig. 1. The Cluster
Manager is in charge with the management of all the com-
ponents of the framework. It runs on a dedicated server and



1 

J1 

Scheduling 

Algorithm 

Cluster of heterogeneous servers with heterogeneous cores 

Cluster Manager 

Cluster queue 

J2 J3 J4 J5 JB … 

…
 

n1 

n2 

nT 

Distribution of jobs per type 

… 

Server 1 Server 2 Server 3 Server S 

… 

Collaborative  

Filtering  

Fast 

Profiling 

Exe times 

V/F levels DNN 

Controller 

Fig. 1. System level diagram of the cluster-level scheduling framework.

is comprised of several components. The role of the Collab-
orative Filtering Controller is to estimate the heterogeneity
and interference scores during Phase 1 as described later on
(Section III-B). Its function is replaced by the DNN Controller
in Phase 3. The DNN Controller is designed to capture the
job’s characteristics and their relationship to the scheduling
decisions. The manager is also responsible for recording and
storing training data pairs into a dataset, which will be used for
supervised training of the simple DNN model in Phase 2. The
role of the Scheduling Algorithm is to perform the scheduling
of jobs that arrive to the cluster queue.

Algorithm 1 describes the cluster-level scheduling algo-
rithm. First, a relatively small number of the incoming ap-
plication workloads (around 20% of applications) is quickly
profiled. Then, we use a sample-efficient feature selection
technique that automatically selects critical features from
the profiled data to train a simple DNN model. For the
rest of the incoming application workloads, the function
HeterogeneityPrediction(m) uses the pre-trained simple DNN
to estimate the heterogeneity score, which will be used by
D-Choices Greedy Scheduling Algorithm (described later) for
application-to-server scheduling.

In this paper, heterogeneity is captured by considering dif-
ferent types of servers and different server configurations (e.g.,
different voltage and frequency (V/F) levels). Heterogeneity
scores for applications are calculated simply as normalized
application performance scores measured in million of in-
structions per second (MIPS) for each type of server for
each possible V/F pair setting. We assume that workloads run
on systems with the same ISA. However, the heterogeneity
score would capture indirectly the impact of different ISAs
because different ISAs would result in different number of

instructions, the number which is used in the calculation of
the heterogeneity score.

B. Sample-Efficient Feature Selection

Here, we describe the proposed profiling based feature
selection technique:

Algorithm 1: Cluster-level scheduling algorithm.

1 Inputs: Incoming jobs/applications M to cluster
2 Outputs: Application-to-server scheduling at

cluster-level
3 Function CLUSTER-LEVEL-SCHEDULING()
4 BenchmarkProfiling() // 20% of applications
5 FeatureSelection() // sample-efficient feature

selection
6 TrainSimpleDNN() // training-efficient DNN
7 for m in M do
8 H = HeterogeneityPrediction(m) // Simple

DNN based
9 D-ChoicesGreedyScheduling(H)

10 end
11 end
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Fig. 2. Relationship of MIPS with V/F levels - identified during profiling in
Step 1.

Step 1: Initialization of SuperFeatures. We fast profile
a small number of the incoming application workloads to
identify the features that show strong correlation [3] (e.g.,
Pearson coefficient) to the target objective (MIPS in our
case). For instance, Fig. 2. shows an example where the core
frequency (always used in a pair with a voltage setting) has a
strong correlation to MIPS according to the profiled data for
the barnes application from the Splash-2 benchmark suite [14].
The output of Step 1 is the list of SuperFeatures that includes
all critical features identified during profiling. For example,
in the case of MIPS, the SuperFeatures list contains the
configuration-level feature (V/F levels), server-level features
(num. of cores, profiled instruction count, and memory), and
application-level features (num. of threads, application size,
and input size).

Step 2: Ranking the SuperFeatures list. We use the forward



stepwise feature selection algorithm from [10] to rank all
features in the list SuperFeatures. We first sort the features
according to the correlation (i.e., Pearson coefficient [3]) to
the target objective in descending order; then, we choose the
first feature as the pivot feature from the SuperFeatures list
to train the simple DNN and record n-fold cross-validation
ρ. We then add one-by-one the rest of the SuperFeatures to
the pivot feature to re-train the simple DNN and keep only
those features that improve the n-fold cross-validation ρ. We
finally rank the features in SuperFeatures list according to the
improvement they provide to the n-fold cross-validation ρ. The
output of Step 2 is the ranked list of SuperFeatures.

Step 3: Selecting sample-efficient features. We choose the
top 1 feature in each of the three categories (configuration-
level features, server-level features, and application-level fea-
tures) as the final sample-efficient features. These features
significantly reduce the training data size, but at the same
time they represent the most critical features for the target
objective, i.e., MIPS. The output of Step 3 is the list of
sample-efficient features. For example, in the case of MIPS,
the sample-efficient features turned out to be: V/F levels
(as configuration-level feature), profiled instructions count (as
server-level feature), and application size (as application-level
feature).

Further discussion: A challenge in the proposed approach
is related to how to identify all the candidate features in
the SuperFeatures? In addressing this challenge, datacenter
operators can leverage their expert knowledge of the appli-
cation to provide a list of candidate features. Also, one can
leverage tracing statements embedded into workloads by the
application developers. For example, applications from Splash-
2 and Parsec 3.0 suites can identify the number of threads and
input size as candidate features based on the data collected by
the application tracing statements or instruments.

C. Training-Efficient Simple DNN

We now introduce the training-efficient simple DNN model
that uses the sample-efficient features identified using the
strategy presented in Section III-B. The latest previous work
from [1], [2] used large-scale complex DNN models that are
generalizable to different jobs; however, training such DNN
is costly and not eco-friendly. Therefore, in this paper, we
adopt the philosophy of “less is more” and propose to use
only training-efficient simple DNN models (a few layers with
a dozen neurons only) that can be easily and efficiently re-
trained at runtime to capture the behavior of any new types
for application workloads. Please note that the key novelty is
the idea of using training-efficient simple DNN models, and
not using DNN models, which has been done before.

The DNN is implemented as a series of stacked restricted
Boltzmann machines and provides the main function to the
DNN Controller from Fig. 1. Its construction and training
are done following already well established techniques. The
novelty consists in the types and number of input sample-
efficient features as well as of outputs that are employed.
In addition, to address the lack of training data, we propose
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Fig. 3. Timeline of operation of proposed framework from Fig. 1 to illustrate
the generation of training data pairs for the DNN model.

in our framework to develop the ability to generate training
data automatically in three phases as illustrated in Fig. 3.
In Phase 1, training input-output data pairs are collected as
those data points which have resulted in satisfactory outcome
in terms of performance. We collect only those data points,
rather than all that are generated, because we want for the
DNN to be refined during the supervised training in Phase 2
only with the best training data. In this way, the DNN model
will capture only desired behavior and will thus be able to
provide later on, in Phase 3, the best recommendations to the
scheduling algorithm. The input features to the DNN model
include selected sample-efficient features that use information
collected during the fast profiling (e.g., Step 1 discussed
earlier) of any newly arrived job. This information includes
performance counters sampled, V/F levels, and other features
discussed before during the fast profiling step, which represent
a signature trace for the application. Please note that the fast
profiling time is a user defined parameter that is passed to the
perf tool, and the user can change it based on the different
types of workloads. The outputs of the DNN model represent
the heterogeneity scores (discussed in Section III-A).

Prediction Model: We propose to use the training-efficient
simple DNN model thus developed for prediction of MIPS. We
hand-tune a simple 4-layer DNN with 29 neurons (baseline
DNN) and compare it to linear regression (commonly used
in previous work) and to collaborative filtering (used by
Qin scheduler [5]). The comparison is done using workloads
generated as explained in Section IV. Note that one can use
Adatune tool [11] to generate advanced simple DNN with fine-
tuned neurons, but here, we show the case of a hand-tuned
baseline DNN. To assess predictions, we use R2 (coefficient
of determination, the higher, the better) [12], which generally
range from 0 to 1. We collect the training and predicting
overhead (measured in seconds) because they are indicative of
how generalizable or adaptable to new workloads at runtime
the models are. The results of the comparison are summarized
in Table I. We can conclude from Table I that using simple
DNN for predicting MIPS is reasonable and achieves a good
trade-off in accuracy and training/predicting overhead.

Further discussion: What happens when new application
workloads arrive? The proposed idea of using training-efficient
simple DNN is adaptable (generalizable) to new workloads
because it can be easily re-trained using profiled training data
collected from Phase 1 at runtime as illustrated in Fig. 3.



TABLE I
COMPARISON OF HAND-TUNED DNN MODEL TO LINEAR REGRESSION

AND COLLABORATIVE FILTERING APPROACHES.

Prediction Training and Accuracy
Model Predicting (s) (R2)
Linear Regression 0.0015 0.12
Collaborative Filtering 20.4579 0.76
Simple DNN 3.8427 0.81

D. D-Choices Greedy Scheduling

The scheduling algorithm distributes the jobs (e.g., applica-
tions) from the cluster queue shown in Fig. 1 to the servers
in the cluster. The proposed implementation builds on the
scheduling ideas from [5], where we introduced and described
details of the function D-ChoicesGreedyScheduling(H) from
Algorithm 1. Here, we modify those scheduling ideas by em-
ploying predictions of MIPS done with the developed training-
efficient simple DNN model. Unlike traditional scheduling
approachs, where only one optimal candidate server is picked,
here, we pick the top D (D ≥ 2) candidates and then randomly
select one from among these D candidates [5].

Further discussion: Why D choices instead of the best
one? The work in [5] mathematically proved that D-choices
greedy scheduling method achieves significantly better load
balancing over traditional best choice scheduling methods -
which is the case of Kubernetes [13] scheduler. It was also
shown that reduced load balancing translates into minimal
applications queuing time, which in turns results into improved
performance.

IV. EXPERIMENTS

A. Experimental Setup

Custom cluster: We implemented the cluster-level schedul-
ing framework from Fig. 1, called Qin2, as a “plug-in”
custom scheduler (will be released publicly) managed by the
Kubernetes v1.14.0 on a real small cluster containing six het-
erogeneous computers. Table II lists the specific characteristics
of these six computer-nodes. We use acpi-cpufreq to get the
current frequency of the CPU on the real server, and the Linux
perf tool v5.4.148 for fast profiling.

TABLE II
CHARACTERISTICS OF THE SIX COMPUTER NODES OF THE KUBERNETES

CLUSTER.

Server Type Role GHz Cores L1 (KB) Mem (GB)
Xeon E5-1620 master 3.60 8 32 16
Intel i5-6600 worker 3.30 4 32 16
Intel i7-4790 worker 3.60 8 32 16
Intel i5-7600 worker 3.50 4 32 8
Intel i5-4690 worker 3.50 4 32 8
Intel i5-4670 worker 3.40 4 32 8

Schedulers: We compare the implemented Qin2 scheduler
against the Kubernetes default scheduler [13] (deployed on
Amazon AWS, Google Cloud Platform, Microsoft Azure, and
IBM Cloud, assumed to be the best scheduler from industry),
and against the Qin scheduler [5] (tested on real cluster,

assumed to be the best scheduler from academia). Table III
lists the main characteristics of the cmpared schedulers.

TABLE III
SUMMARY OF THE COMPARED SCHEDULERS.

Scheduler Method Metrics
Kubernetes Best Node Multiple (resource, constraints, ...)

Qin Collaborative Filtering Performance, Energy, EDP
and D-choices Greedy

Qin2 Simple DNN Performance
and D-choices Greedy

Workloads: We evaluate the proposed Qin2 scheduler using
100 batch jobs generated by Splash-2 benchmarks [14]. Mod-
ern datacenter workloads contain throughput-bound jobs. To
represent modern datacenter workloads better, we use selected
throughput-bound applications from Parsec 3.0 [15] (blacksc-
holes, bodytrack, facesim, ferret, fluidanimate, raytrace, swap-
tions, canneal), randomly replicated with equal likelihood and
randomized interleaving to generate 60 throughput-bound jobs.

B. Results

We first fast profile the first 20% of the incoming application
workloads for sample-efficient feature selection. We do this
under the assumption that the rest of upcoming applications
will not have significant differences from the first 20% ap-
plications. If such an assumption does not hold, then, this
percentage must be increased. The identified critical features
are then used to train the proposed hand-tuned simple DNN
with 4 layers and 29 neurons - which will be used to predict
MIPS. We set the fast profiling time to be 0.05s for each
application. We use the same DNN architecture for both 100
batch jobs and 60 throughput-bound jobs workloads, but with
different weights due to fast re-training (less than 4s). We
selected d = 2 for the D-choices greedy scheduling algorithm
since it results in better load balancing.

Performance: We estimate performance as normalized jobs
completion time. Fig. 4 compares the proposed Qin2 scheduler
vs. Kubernetes and Qin schedulers for 60 throughput-bound
jobs workloads on six-node heterogeneous cluster. The x-axis
represents the number of workloads and the y-axis denotes
the normalized jobs completion time. We observe that on
average the proposed Qin2 scheduler outperforms Kubernetes
(by 23.75%) and Qin (by 14.57%), respectively.

Server utilization: Fig. 5 shows the heat map of the server
utilization (calculated as average CPU utilization and collected
by Metrics API) with respect to time for Kubernetes and
Qin2 schedulers for 60 throughput-bound jobs on five workers.
Fig.5.a shows that the Kubernetes scheduler leads to a long tail
phenomenon during the ending period, which is caused by the
best choice scheduling approach that Kubernetes employs. In
contrast, the Qin2 scheduler uses D-choices greedy scheduling
method and avoids such a long tail phenomenon. However,
we notice that there is still room for improvement in server
utilization because the throughput-bound jobs contain some
applications that have longer execution times (long jobs), and
the short jobs scheduled to server ID 1 and 2 are completed



10 20 30 40 50 60
Num. of workloads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

or
m

al
iz

ed
 J

ob
s 

C
om

pl
et

io
n 

T
im

e

Qin2
Kubernetes
Qin

Fig. 4. Comparison in terms of jobs completion time of the proposed Qin2
scheduler against state-of-the-art schedulers.

faster than the long jobs scheduled to server ID 3, 4, 5, which
results in spare utilization during the ending period of server
ID 1 and 2. In our future work, we plan to consider short/long
jobs in the scheduling process.

Further discussion: Why does the proposed Qin2 scheduler
outperform state-of-the-art schedulers? The proposed Qin2
scheduler outperforms the Kubernetes scheduler because of the
D-choices greedy scheduling method (mathematically proved
to achieve significantly better load balancing [5])- which
minimizes load imbalance and leads to reduced applications
queuing time, and in turn to shorter jobs completion time.
The proposed Qin2 scheduler outperforms the Qin scheduler
because of the better prediction capability of the developed
DNN model, which also requires shorter training and predic-
tion overheads.

Summary: A summary of the comparison of the proposed
Qin2 scheduler against state-of-the-art schedulers is listed in
Table IV for 100 batch jobs workloads and for 60 throughput-
bound jobs workloads.

TABLE IV
IMPROVEMENT ACHIEVED BY QIN2 SCHEDULER OVER KUBERNETES AND

QIN.

Cluster-level Performance Improv. Performance Improv.
Scheduler Batch jobs Throughput-bound jobs
Kubernetes 13.21% 23.75%
Qin 6.12% 14.57%

V. CONCLUSION

We developed a simple DNN model based scheduling
approach for heterogeneous datacenters. The main contribution
of this paper includes a technique to identify the most impor-
tant input features to train the DNN model - which translate

(a)

(b)

Fig. 5. Server utilization versus time: (a) Kubernetes scheduler and (b) Qin2
scheduler for 60 throughput-bound jobs workloads at the cluster-level.

into smaller datasets for training and shorter training and re-
training times - and the integration of simple and training-
efficient DNN models into a scheduler deployed on a real
cluster of heterogeneous nodes. Experimental results show that
the proposed scheduler improves the jobs completion time by
6.12%-23.75% over state-of-the-art schedulers.
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