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Abstract—In this paper, we investigate the use of machine
learning (ML) models to estimate or predict concentrations of
pollutants based on measured concentrations of other pollutants.
Such models could be used in air quality index (AQI) detection
systems to decrease the number of physical sensors in order
to reduce overall and maintenance costs. Five different long-
short term memory (LSTM) models were explored in the prelim-
inary investigation. The most accurate model was then selected
for further refinement via simple hyperparameter search. The
final refined model was trained and tested on four different
air quality datasets from four different countries. Simulation
results indicate that prediction of pollutant concentrations based
solely on measured concentrations of other pollutants is not
accurate enough to warrant total sensor replacement with ML
models. However, when the same ML models are provided as
input past measurements of the predicted pollutant rather than
previously predicted values, the prediction accuracy is excellent.
We conclude that while ML models are not yet accurate enough
to completely replace physical sensors, such models could be very
helpful to provide predictions in situations of sensor failure and
thus to guarantee continuous sensor fusion processes.

Index Terms—air quality index (AQI), machine learning, long-
short term memory, LSTM

I. INTRODUCTION AND RELATED WORK

Monitoring of air quality is extremely important because

air pollution can negatively impact human health; in extreme

cases premature mortality are side-effects of common indoor

pollutants. Particularly, monitoring indoor air quality is very

important as people in the US and Canada spent on average

87 percent of their time in buildings, according to a National

Human Activity Pattern Survey [1]. Causes of indoor pollutant

concentration include cooking with heat and gas, furnaces,

smoking, and vehicle emission [1], [2]. Due to the major

health risks, it is important that air pollution is monitored to

ensure a safe indoor environment, as the first step in improving

air quality in an environment is knowing when significant

pollution is present.

An effective way to measure air pollution is the air quality

index (AQI) scale, which uses measurements of concentrations

of multiple pollutants to estimate the AQI value described

later in the paper. The majority of previous work studied

methods of predicting future pollutant levels based on present

pollutant measurements using machine-learning algorithms for

mostly outdoor environments. For example, the study from

citeMa2020 proposed a multivariate linear regression model

with outdoor NO2, SO2, O3, CO, PM2.5, PM10 concentra-

tions and temperature as inputs to predict future AQI levels.

The dataset used to develop the model was from the 2018 data

for China’s online air quality and analysis platform. The study

reported that the model predictions were within 10% to the

real values. The work in [3] tested multiple machine-learning

algorithms for air-quality prediction. The study found that

gradient boosting regression (GBR) and random forest regres-

sion (RFR) algorithms offered the best prediction accuracies.

Similarly, the study in [4] tested multiple machine learning

(ML) models including decision tree, random forest, support

vector machine (SVM), and artificial neural network (ANN) to

predict AQI. The data used to train and test the models came

from a Kaggle online dataset which featured hourly levels

of AQI and pollutants measured at different stations across

various cities in India over three years. The study reported

that the random forest model was the best with a maximum

of 74% accuracy. The authors of [5] compared results from

various studies on outdoor AQI prediction and concluded that

neural networks (NNs) and boosting models were superior in

providing accurate predictions for outdoor AQI. We only found

one study in [6] that focused on an indoor environment. It

presented a regression model for real-time prediction of PM10

in an indoor environment using CO, VOC and humidity as

inputs to train the model. The dataset used for this study was

gathered from an indoor air quality (IAQ) monitoring system

installed inside the National Institute of Technical Teachers

Training and Research in Chandigarh, India. The IAQ system

recorded pollutant concentration measurements every fifteen

minutes for six months to gather the data used for the model.

In contrast to previous work that focused on forecasting

future AQI values, in this paper, our goal is to develop

machine learning models to predict or estimate concentra-

tions of selected pollutants based on measurements of other

pollutants. We are interested in such models because they

could be used as substitutes for actual sensor units to reduce

system and maintenance costs or as a technique to fill in

missing measurement data in realtime during sensor failures.

This approach would enable accurate AQI estimations while

decreasing system and maintenance costs by reducing the

amount of sensors used to a minimal number.

II. BACKGROUND ON AIR QUALITY INDEX

In this paper, we assume that the air quality is estimated us-

ing the classic United States Environmental Protection Agency

(US EPA) AQI model, which is one of the most common AQI
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Table I
POLLUTANTS RANGE VALUES AND HEALTH CATEGORIES.

Concentration (µg/m3)

AQI Less Than SO2 NO2 CO O3 PM2.5 PM10 (Index j) Health Risk Category

50 50 40 2 100 35 50 (1) Good

100 150 80 4 160 75 150 (2) Moderate

150 475 180 14 215 115 250 (3) Unhealthy for sensitive groups

200 800 280 24 265 150 350 (4) Unhealthy

300 1600 565 36 800 250 420 (4) Very unhealthy

400 2100 750 48 1000 350 500 (6) Hazardous

500 2620 940 60 1200 500 600 (7) Severe

models [7]. The index is calculated using the concentration

values of six pollutants. The numerical scale used is 0-500

and the overall index is calculated by taking the maximum

value among all individual sub-AQI indices of all considered

pollutants.

Given the measured concentrations of the six, n = 6, pol-

lutants SO2, NO2, PM2.5 PM10, CO, and O3, the individual

sub-AQI index AQIi of each pollutant i = 1..n is calculated

with the following expressions:

AQIi =
(AQIi,j −AQIi,j−1)

(Ci,j − Ci,j−1)
× (Ci,m − Ci,j−1)

+AQIi,j−1, j > 1 (1)

AQIi = AQIi,1 ×
Ci,m

Ci,1

, j = 1 (2)

Where j is the health category index. The seven health

categories are shown in Table I. Ci,m is the measured con-

centration of pollutant i, which falls into the range defined by

Ci,j−1 and Ci,j , as the upper limit concentrations of the health

category indices j − 1 and j. AQIi,j , AQIi,j−1 are the AQI

values corresponding to Ci,j−1, Ci,j for pollutant i. Once the

individual sub-AQI values are calculated as above, the total

AQI is calculated as the maximum value among all of them:

AQI = max
i=1..n

AQIi (3)

III. DATASETS WITH POLLUTANT CONCENTRATIONS

A. Datasets Summary

We use four different datasets, which are all publicly avail-

able on the Internet. These datasets and their characteristics

are listed in Table II. All datasets have pollutant concentrations

measured hourly, i.e., 24 values per day. Dataset 1 has data

from multiple sites in India, but we only use the measurements

from Amaravati, Andhra Pradesh. Dataset 2 is from Hong

Kong, dataset 3 is from Beijing, and dataset 4 is from Seoul.

All datasets have hourly measurements of NO2, SO2, O3, CO,

PM2.5, and PM10.

All datasets required a limited amount of pre-processing,

which we describe next. For each dataset, we pruned the first

entries until until we reached the first 24 h with complete

data. That is because we then filled missing data values with

the values of 24 h earlier, i.e., the concentration at the same

hour in the previous day. Also, the last entries in the dataset

were pruned such that data for the last day has all 24 values.

In this way, each dataset starts with a datapoint at 0 h and ends

with a datapoint at 23 h. Our final pre-processed datasets will

Figure 1. Scatter matrix for dataset 1.

be made available in the github repository we have created for

this project.

B. Correlations and Trends

To investigate correlations between the six pollutants, a

scatter matrix was created for each dataset. For example, the

scatter matrix plot for dataset 1 is shown in Fig. 1. Because

the scatter plots for the other datasets are similar, we do

not show them here in the interest of space. Looking at the

these scatter matrices, some key correlations can be noticed.

NO2 appears to have good positive correlation with particulate

matter pollutants PM2.5 and PM10, negative correlation with

CO, and weak correlations to SO2 and O3. Similarly, PM2.5

shows a good correlation with NO2 and PM10, somewhat

good correlation with SO2, negative correlation with CO, and

weak correlation to O3. To a large extent, these observations

were confirmed by previous literature. For example, the study

in [8] found that the pollutants in the group formed by SO2,

NO, NO2, CO are more correlated among themselves. The

other group of correlated pollutants includes PM10, PM2.5,

and O3. The study also reported a strong negative correlation

between O3 and NO and NO2: when concentration of NOx

decreases the O3 concentration increases. Similar negative

correlation was observed for O3 with SO2 and particulate

matter in [9]. The study in [9] reported also a positive corre-

lation between particulate matter and NO2, SO2, and CO. A

strong correlation between PM10 and SO2 was found in [10].

Therefore, informed by the above observations and previous

literature, in this paper, we decided to investigate NO2 and

PM2.5 as the candidate pollutants whose concentrations to

predict.

IV. A CASE FOR AQI SYSTEMS WITH FEWER SENSORS

A. General Approach

Our idea is to build an AQI system that uses the EPA

model from section II, but, in which one or more pollutant

concentrations are not directly measured with costly sensor

units but, indirectly estimated using machine learning models.
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Table II
SUMMARY OF DATASETS WITH OUTDOOR POLLUTANT CONCENTRATIONS.

Measured Pollutant Concentrations

Dataset Location Length NO2 SO2 O3 CO PM2.5 PM10

1 Amaravati, Andhra Pradesh, India 2017/12/02 - 2020/06/30 (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)

2 Beijing, China 2013/03/01 - 2017/02/28 (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)

3 Seoul, Korea 2017/01/01 - 2019/01/23 (ppb) (ppb) (ppb) (ppb) (µg/m3) (µg/m3)

4 Madrid, Spain 2009/12/31 - 2022/03/31 (µg/m3) (µg/m3) (µg/m3) (mg/m3) (µg/m3) (µg/m3)

NO2

Particulate 

matter PM10

Ozone (O3)

Carbon 

monoxide (CO)

EPA 

AQI 

Model

Current 

AQI 

Estimate
Particulate 

matter PM2.5

Embedded Device (MCU)Sensor Units

Sulfur dioxide 

(SO2)

ML 

Predictor

Real-time

Figure 2. System level block diagram illustrates the replacement of the NO2
sensor unit with an ML model.

Output

Input

NO2 SO2 O3 CO PM2.5 PM10

… … … … … … …

t-n x x x x x x

… … … … … … …

t-2 x x x x x x

t-1 x x x x x x

t x x x x x x

… … … … … … …

Replaced with past predictions 

during model testing 

Figure 3. Illustration of what is used as input and output for studied ML
models out of a given multivariate dataset.

In other words, recalling the discussion from the previous

section, we use a machine learning model to predict for

example the concentration of NO2 (or PM2.5) based on

measured concentrations of the other pollutants as well as on

previous predictions of NO2. Implementing this model into an

AQI estimation device would allow for an AQI measurement to

be made with only five sensors instead of six, reducing overall

and maintenance costs while still providing an accurate AQI

estimation. Fig. 2 illustrates how the ML prediction is used in

the overall AQI estimation system.

B. Machine Learning Models

We have developed and investigated preliminarily five dif-

ferent machine learning models, which were tested on dataset

4 presented in section III. The models tested include: 1)

Model 1: Simple long-short term memory (LSTM), 2) Model

2: Stacked LSTM, 3) Model 3: LSTM Encoder-decoder, 4)

Model 4: CNN-LSTM Encoder-decoder, and 5) Model 5: Deep

Table III
PREDICTION ERRORS OF NO2/PM2.5 FOR DATASET 1.

Model RMSE MAE

LSTM 4.29/7.82 2.474/5.42

Stacked LSTM 4.35/8.02 3.25/5.74

LSTM Encoder-decoder 4.36/7.9 3.25/5.54

CNN-LSTM Encoder-decoder 4.51/9.53 3.19/6.76

DNN 4.33/7.25 2.64/5.06

neural network (DNN). All LSTM models were developed

to be single/multi-step multi-variate input with single-step

univariate output. That is, the input into the model represented

the pollutant concentrations from one or more time steps as

illustrated in Fig. 3. In the case of the DNN model, the above

inputs were all fed directly as a simple array of values.

During this model development phase, the number of epochs

(100), batch size (100), optimizer (adam), loss function (mae),

instances in the input (2 time steps), and predicted variable

(NO2 or PM2.5) were kept the same between the models

for consistency. The dataset was split into 70%/30% for

training/testing. The dataset was normalized to (0, 1) before

training. To evaluate the trained models, we use root-mean-

square error (RMSE) and mean-absolute error (MAE). The

prediction errors of each of the five models are listed in Table

III. We observe that after testing these models, Model 1 was

the most accurate. Therefore, Model 1 is selected to be refined

and investigated further.

C. Model Refinement

After determining the best model (Model 1: Simple LSTM)

among those investigated, additional investigations were per-

formed to further refine the selected model to increase its pre-

diction accuracy. To that end, we explored multiple different

values for various model hyperparameters, including: number

of units in the LSTM layer, batch size, loss function, optimizer,

and number of time-steps used as input. In all experiments

we used EarlyStopping with the argument patience=10. A

summary of the investigated hyperparameters is presented in

Table IV.

During this investigation, only the hyperparameter being

refined was changed while others were kept constant. Each

such experiment would be run 10 times and the average values

for RMSE were calculated. For example, the results of refining

batch size are shown using a box and whisker plot in Fig.

4. It shows that a batch_size = 30 provided best results in

this experiment. After this investigation, we found the most

accurate predictions were obtained with a refined model that:
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Table IV
SUMMARY OF INVESTIGATED HYPERPARAMETERS.

Hyperparameter Values investigted

units on LSTM layer 5, 10, 30, 60

batch size 10, 30, 50, 70, 100, 200

loss function mae, mse, binary_crossentropy

optimizer Adam, Sgd, Adagrad, Adadelta, RMSprop

n_input_steps 1, 2, 4, 5, 6, 12, 24

Figure 4. RMSE value results of NO2 prediction with Model 1 tested on
dataset 1 during model refinement in terms of batch_size.

used 30 units on the LSTM layer, batch size of 30, loss

function mae, and optimizer Adam, and problem being framed

with 2 lag time-steps used as input.

V. RESULTS

In this section, we conduct two types of experiments. In

Experiment 1, the refined model is tested on the test portion of

the datasets, where the past values of the predicted pollutants

(NO2 or PM2.5) are their actual real measurements (available

in the original datasets). In Experiment 2, we eliminate com-

pletely the actual real measurements of the target pollutants

from the test portion of the dataset and replace them with

the actual predictions of either NO2 or PM2.5. In other

words, for any prediction at any time during the evaluation

of the test dataset, the past values of NO2 and PM2.5 are

previous predictions of NO2 and PM2.5 obtained with the

refined model - during the step-by-step forward evaluation. For

the first n_input_steps evaluations, the past values of NO2

and PM2.5 are set to 0.5 (middle value of the normalization

interval) in order to mimic their unavailability in the practical

implementation of the proposed model - where the proposed

model replaces actual NO2 and SO2 sensors. In that case,

at the beginning of AQI monitoring no prior estimations of

NO2 and PM2.5 are available, and therefore, they must be

initialized to some default values. In all experiments, each

dataset was split into 70%/30% for training/testing of the final

refined model. Also, datasets were normalized to (0, 1) before

training.

Table V
PREDICTION ERRORS OF NO2/PM2.5 FOR ALL FOUR DATASETS

OBTAINED WITH REFINED MODEL IN Experiment 1.

Dataset RMSE MAE

Dataset 1 3.33/6.7 2.02/4.55

Dataset 2 14.52/19.1 9.3/10.41

Dataset 3 0.006/18.8 0.004/3.64

Dataset 4 9.33/5.17 6.61/3.56

Figure 5. Prediction results of NO2 with refined model on 100 points from
the test portion of dataset 4 in Experiment 1.

Figure 6. Prediction results of PM2.5 with refined model on 100 points from
the test portion of dataset 2 in Experiment 1.

The results from Experiment 1 are summarized in Table

V, where prediction errors of NO2 and PM2.5 are listed. As

examples of predictions, Fig. 5 shows the actual and predicted

first 100 values from the test portion of the dataset 4, while

Fig. 6 shows the actual and predicted first 100 values from the

test portion of the dataset 2. Similar high accuracy predictions

are observed in all cases for all datasets.

The results from Experiment 2 are summarized in Table

VI, where prediction errors of NO2 and PM2.5 are listed.
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Table VI
PREDICTION ERRORS OF NO2/PM2.5 IN Experiment 2, WHEN PAST

VALUES OF NO2 AND PM2.5 ARE AVAILABLE ONLY AS PRIOR

PREDICTIONS DURING TESTING.

Dataset RMSE MAE

Dataset 1 9.86/16.11 7.44/10.73

Dataset 2 44.27/54.67 38.34/37.27

Dataset 3 0.019/17.82 0.016/9.7

Dataset 4 33.55/7.45 20.58/4.91

Figure 7. Prediction results of NO2 with refined model on 100 points from
the test portion of dataset 4 in Experiment 2; past values of NO2 are available
only as prior predictions.

Figure 8. Prediction results of PM2.5 with refined model on 100 points
from the test portion of dataset 2 in Experiment 2; past values of PM2.5 are
available only as prior predictions.

Again, as examples of predictions, Fig. 7 shows the actual and

predicted first 100 values from the test portion of the dataset

4, while Fig. 8 shows the actual and predicted first 100 values

from the test portion of the dataset 2.

A. Discussion

We observe that in the first set of experiments (Experiment

1), the prediction quality is excellent. This can be seen in

Table V, where RMSE and MAE values are very small for

all investigated datasets, as well as in figures Fig. 5 and Fig.

6, where it can be seen that the predicted values follow very

closely the ground truth values, which are available from the

original datasets. In other words, the refined model can predict

very well either NO2 or PM2.5 in Experiment 1. This is

expected because in Experiment 1, the true real measurements

of NO2 and PM2.5 are available as n_input_steps past values

during each evaluation data point from the test portion of the

datasets. In this case, each prediction of NO2/PM2.5 is done

using as input to the model actual real measurements of past

values of NO2/PM2.5 - the same way as it was done during

the model training. While the results from Experiment 1 are

excellent, Experiment 1 is not the real scenario in which we

wanted to employ such prediction models (as described in Fig.

2). That is because, in the scenario described in Fig. 2, the ML

models are intended to completely replace sensors for NO2 or

PM2.5, case in which we do not have available the ground

truth values of the concentrations of these pollutants, from

the previous time steps, to feed as part of the input to the

models used during inference. We only have available past

predicted values from the previous time steps. This scenario

is what Experiment 2 mimics.

However, in Experiment 2, the prediction quality degrades

- as observed in Table VI and figures Fig. 7 and Fig. 8. In this

experiment, the actual real measurements (i.e., ground truth)

of past values of NO2/PM2.5 are not available anymore, and

each prediction of NO2/PM2.5 is now done using as input

to the model previous predictions obtained with the same

model. In this case, the prediction quality depends more on

how correlated NO2/PM2.5 were to the other pollutants, as

discussed earlier (Fig. 1). Such correlations are not perfect and

therefore the refined model is bound to introduce prediction

errors. In addition, because during testing past actual measure-

ment values of NO2/PM2.5 are not available, the refined model

will miss any variation or impact over NO2/PM2.5 caused by

independent and random events that may have affected the true

measurements recorded during the test interval.

We note that the accuracy of the refined LSTM models as

substitutes of actual hardware sensors is not satisfactory to

warrant their use as complete replacements of actual sensor

units. Nevertheless, given the excellent performance observed

in Experiment 1, these models still have practical value:

they could be incorporated in the AQI system, but used

as a back-up in the event of sensor units failure. In other

words, between the moment when a sensor failure occurs

and its repair/replacement, the proposed models could be

triggered to generate estimations in real-time and thus to fill in

measurement values that would otherwise be missing from the

failed sensors. Furthermore, in the context of recently proposed

machine learning sensors paradigm [11], the refined LSTM

models can be integrated with the sensor units themselves

and be used as estimation techniques in cases of missing

measurements due to sensing elements failure.
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VI. CONCLUSION

We investigated the use of LSTM models to estimate or

predict concentrations of NO2 and PM2.5 pollutants based

on measured concentrations of other pollutants. The objective

was to answer the question of whether such models could

be used as substitutes for actual sensor units in practical air

quality index (AQI) detection systems - in order to reduce

the overall cost of such systems. Results from Experiment

2 (Table VI and Figs. 7, 8) indicated that prediction is not

accurate enough to warrant total sensor replacement with

ML models. However, when the ground truth values of the

predicted pollutant concentrations at times previous to the

prediction time are available in Experiment 1 - and such values

are included as input to the ML models - then, the prediction

quality is excellent (Table V and Figs. 5, 6). Therefore, we

concluded that the proposed ML models could still be very

valuable in providing predictions in situations of temporary

sensors failure - situations that are emulated by Experiment

1. The complete implementation in Python of the model

development presented in this paper, together with the cleaned

datasets, will be made publicly available at [12].
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