
Hardware Description of Event-driven Systems by

Translation of UML Statecharts to VHDL

Cristinel Ababei and Susan C. Schneider

Electrical and Computer Engineering Dept.

Marquette University, Milwaukee, WI, USA

Email: {cristinel.ababei,susan.schneider}@marquette.edu

Abstract—We present a complete implementation prototype of
the classic Fly-n-Shoot game on an FPGA. This is a famous
game that has been described in the past using UML statecharts
as an event-driven embedded system. Because it has a rather
complex functionality, attempting to describe it using a hardware
description language (HDL), such as VHDL or Verilog, with
the goal of deploying on a real FPGA becomes challenging.
As such, brute-force attempts to write HDL descriptions are
prone to errors and subject to long design times. Hence, in this
paper, we describe a practical approach for translating UML
statecharts used to specify event-driven embedded systems into
VHDL code written using the popular two-process coding style.
This approach consists of a set of mapping rules from statecharts
concepts into VHDL constructs. The efficacy and correct by
design characteristics of the presented approach are due to the
use of two-process VHDL coding to describe the hierarchical
finite state machine (FSM) corresponding to the UML statecharts.
This gives the designer better control over the current and next
state signals of the FSMs, it is more modular or object oriented,
and makes development and debugging much easier. We apply
the proposed approach to implement a prototype of the classic
Fly-n-Shoot game. The implementation is verified successfully on
real hardware, the DE1-SoC FPGA development board, that uses
a Cyclone IV FPGA chip.

Index Terms—UML statecharts; VHDL code; FPGA prototyp-
ing; event-driven embedded systems;

I. INTRODUCTION

In coding event-driven systems - which must react to

incoming events in a timely fashion - the main challenge is to

identify the correct actions to execute in response to a given

event [1]. The challenging aspect of that stems from the fact

that actions are determined by: 1) nature of the event and

2) current context, i.e., the history of events of the system.

It is the context factor that is neglected or handled poorly by

traditional programming approaches, which can result in multi-

level if statements and convoluted or “bowl of spaghetti” code.

State machines provide one of the most popular formalisms

for specification and implementation of event-driven systems.

That is because event handling is explicitly dependent on both

the context (i.e., state) of the system and on the nature of the

event [2].

Event-driven embedded systems are traditionally imple-

mented on processors/microcontrollers and therefore they

would typically be programmed in embedded C/C++ starting

from unified modeling language (UML) statecharts [2]. Trans-

lating or generating code in various programming languages

from UML statecharts has received a lot of attention and many

techniques and tools already exist. However, if such systems

are to be implemented on FPGAs, their description is done

in a hardware description language (HDL) such as VHDL or

Verilog. Converting statecharts to HDL code is considered an

ongoing research effort because existing conversion tools still

suffer from limitations [3].

II. RELATED WORK

Previous literature can be generally classified into ap-

proaches that use automated techniques and approaches that

are manual and require direct translation of UML statecharts

into HDL code. Here, we discuss relevant previous work that

also focused on translating UML statecharts into VHDL or

Verilog descriptions. For example, the study in [4] presented

HiCoS (hierarchical concurrent system) tool aimed at con-

verting UML statecharts to RTL-VHDL for real time digital

controllers. The study in [5] proposed a model-driven devel-

opment (MDD) technique as a set of rules to automatically

generate synthesizable VHDL code from UML notations. They

used metamodels of the two languages and a transformation

between the two metamodels. As a use case, they studied

an early warning system (EWS). Their approach uses one-

process coding approach, which tends to become one large

process, actually possibly suffering from a lack of clarity. In

contrast, in this paper, we advocate for the two-process VHDL

coding approach [6], which gives the designer a better control

over the current and next state signals, it is more modular or

object oriented, and makes debugging easier. In addition, we

directly convert or translate UM statecharts into two-process

FSM or FSMD descriptions and do not need intermediate

representations.

The study in [7], presented an approach integrated as an

extension into GenERTiCA tool to automatically generate

VHDL code from UML specifications. Their use case was

a distributed embedded system used for maintenance systems.

The extension consists of a new set of mapping rules to map

UML metamodel elements to VHDL constructs. Our work

is similar in that we use a direct mapping as well, where

events are translated into entity ports and signals. However,

our target VHDL code implements the two-process coding

style and our use case is a more complex one, in addition

to implementing a VGA driver as well. The work in [8]

presented a methodology that generates a VHDL model with

checkers from UML sequence diagrams with MARTE timing

Tunnel

Ship

Missile

Mine 1

Mine 2

Score

VGA Driver

Collision

Detection

Player

3 Buttons

VGA

Monitor

Figure 1. System level diagram of the Fly-n-Shoot game.

constraints. The proposed methodology is based on a set

of mapping rules between sequence diagrams and VHDL

constructs. Their use case was a wireless sensor node.

The study in [9] presented a method to translate UML

diagrams to Verilog, by first converting UML into hierarchical

concurrent finite state machines (HCFSMs) as an intermediate

model. This method was presented for the description of logic

controllers as a use case. The work in [10] presents a synthesis

methodology to automatically generate RTL VHDL/Verilog

code from UML diagrams. The methodology employs CubedC

tools to transform UML diagrams into ADA code, which in

turn is transformed into an intermediate predicate format (IPF)

database, and finally into VHDL/Verilog code. Simulations

were presented for several use cases including an FIR filter and

MPEG 4th routine. The study in [3] proposed a framework that

uses Yakindu statechart tools (Yakindu SCT) as a graphical

interface to input UML statecharts that are then converted into

XML files, which then are parsed with Xerces-C++ parser

to produce a VHDL file. However, to use case has been

demonstrated. More recently, the study in [11] presented an

automatic tool, which can generate VHDL code almost as

efficient as human-written code from a variant of the state

chart XML (SCXML) standard tailored to hardware systems.

However, the produced VHDL code may be verbose and

difficult to debug. Finally, a significant challenge with all

these previously reported tools is that they not made publicly

available - hence, they cannot be used on new designs or for

comparison purposes.

III. USE CASE: FLY-N-SHOOT GAME

The use case studied in this paper is the classic Fly-n-Shoot

game, whose system level diagram is shown in Fig. 1. We

briefly describe it here because we will refer to it in the next

sections to aid our presentation. The primary objects are the

Ship, which flies inside a Tunnel with walls, the Missile that

is fired from the Ship, and two mines, Mine1 and Mine2.

While in this paper we focus on a number of two mines only,

this number can be changed to a larger value. Our theoretical

presentation would not change for different numbers of mine

objects. The interactions between these objects and all possible

paths through the interactions are shown in the sequence

TIME_TICK

Player GameTop Ship Missile Tunnel Mine1 Mine2

SHIP_IMG
MINE1_IMG

MINE2_IMG
PLAYER_SHOOT

MISSILE_FIRE

MISSILE_IMG

HIT_MINE1DESTROYED_MINE1

HIT_MINE2

DESTROYED_MINE2 DESTROYED_MINE2

PLAYER_MOVE_SHIP

HIT_WALL

HIT_MINE1

HIT_MINE2

(1) (2)
(3)

(4) (5)

(6)
(7)

(8)

(9)
(10)

(11)

(12)(13)
(14)

(15)

(16)(17)
(18)

(19) (20)

(21)

(22)

Figure 2. Sequence diagram of the Fly-n-Shoot game - showing the high-
level interaction between the main objects.

diagram from Fig. 2. The Ship flies at constant speed and the

Player can move it up or down. It can fire only one missile,

which also flies at a higher speed until it hits the Wall of the

Tunnel, or any of the two mines, or it gets outside the screen

area. Then, the Missile becomes armed and the Ship can fire

it again. Mines are planted at random locations within the

Tunnel. When the Missile hits mine type 1, Mine1, the mine

explodes and tells the Ship via the Missile to increase the score

with 20 points because it destroyed a mine. Mine2 needs to be

hit twice by the Missile in order to destroy it, in which case

the score is increased by 50 points. As shown in Fig. 2, the

GameTop (the top level design entity of the game) provides

the clock signal TIME_TICK to the Tunnel, which then

passes it to all other objects. The Tunnel is the most complex

object in the system because it integrates the logic for collision

detection (signaled via events HIT_WALL, HIT_MINE1,

HIT_MINE2) and a VGA graphics driver, which allows

for all the game action to be displayed on the attached VGA

monitor.

IV. UML STATECHARTS

Developed in the nineties [12], the Unified Modeling Lan-

guage (UML) is a “specification defining a graphical language

for visualizing, specifying, constructing, and documenting the

artifacts of distributed object systems” [13] and a standard

maintained by the Object Management Group (OMG). UML is

a collection of various description techniques that can be used

to model different aspects of software systems. It can be re-

garded as a formalization of diagrams and sketches of software

systems, hand-drawn by software developers or programmers

to describe and assess ideas before actual implementation.

UML is a pictorial or visual language; it is a specification

language rather than a programming language like for example

C/C++.

However, UML alone suffers from ambiguous interpretation

because it lacks consistency in describing the dynamics of

a system; it lacks a formal semantics. And that is where

statecharts come in to provide a semantics foundation based

on a mathematical formalism. Statecharts is one of the two

different kinds of state machine formalisms that UML pro-

vides; the other one being activity diagrams. Statecharts are

a generalization of finite state machines (FSM - a type of

models of computation), extended with constructs to support

expression of concurrent processes and hierarchical organiza-

tion of transition systems. They represent a visual formalism

for describing states of communicating finite state machines

as well as transitions in modular fashion [14]. Statecharts help

to organize and suppress detail. It is important to note that one

can view statecharts as both a model of computation (perhaps

because of their underlying commonality with FSMs) and as

a graphical specification language.

UML statecharts or state machines are improved versions,

object-based variants of Harel statecharts [14] extended by

UML. They mitigate limitations of traditional finite-state ma-

chines, expand the concept of actions, and introduce novel

ideas of hierarchy, nested states, and orthogonal regions. They

are used when transitions between states take place upon the

occurrence of events of interest. The three basic elements of

statecharts are: states, transitions, and actions. States repre-

sent distinct conditions of existence and they can last for

certain periods of time. Transitions represent the mechanism

of changing states in response to events of interest. Actions

are executed upon entering or exiting a state or when the

occurrence of an event triggers a transition. They are what

is called atomic behaviors and can be for example simple

statements or operations. As a example, we show in Fig. 3

the simplified UML statechart for the Ship object of the use

case studied in this paper.

Translation of UML statecharts into code in different pro-

gramming languages (e.g., C/C+, Java, SystemC, etc.) can

be done manually/directly or by design automation tools

[15]–[17]. An excellent example of such translation of UML

statecharts into C/C++ code is demonstrated in [2], where

“the emphasis is on the role of UML state machines in

practical, everyday programming rather than mathematical

abstractions”. Such translation or conversion is also supported

by commercial tools. However, there has been less work done

on translating UML statecharts into synthesizable VHDL or

Verilog code.

V. VHDL DESCRIPTION OF FSMS USING TWO

PROCESSES

We briefly describe the two-process VHDL coding approach

because it is the approach that we advocate for and employ

in this work. This approach is not new. Our contribution here

is to identify it as the best approach to use in the process

of translating UML statecharts to VHDL constructs; previous

literature used single-process VHDL coding, which, while

more compact is more complex and prone to errors. This

VHDL coding style has been presented in [6] and its idea is to

describe any finite state machine (FSM) using precisely two

processes, which correspond to the registers (i.e., sequential)

portion and the combinational circuit portion that synthesizes

ACTIVE

entry /
 set_initial_location();
 reset_score();

Parked

Flying

TIME_TICK /
 post(Tunnel, x, y, score);
 incr_score_each_second();
PLAYER_MOVE_SHIP /
 move_ship_up_or_down();
PLAYER_SHOOT /
 post(Missile, x, y, MISSILE_FIRE)
DESTROYED_MINE(score_delta) /
 score += score_delta;

Exploding

entry / reset_stopwatch();
TIME_TICK [time_is_up = False] /
 post(Tunnel, SHIP_EXPLODE)

HIT_MINE

HIT_WALL

PLAYER_MOVE_SHIP

PLAYER_TRIGGER

TIME_TICK [else] /
 post(Tunnel, GAME_OVER);

Figure 3. UML statechart for the Ship object from the Fly-n-Shoot game;
adapted from [2].

Combinational

Circuit

(process #2)

State

Registers

(process #1)

x z

state_nextstate_reg

clk

reset

Figure 4. Block diagram of the HW implementation of a Mealy FSM.

the primary output z and the next state state_next signals -

from the hardware (HW) implementation of the FSM, which is

generally described by a block diagram as shown in Fig. 4 for

a Mealy type FSM (our discussion remains valid for Moore

or combined Mealy and Moore type FSMs). The separation

of the sequential and combinational portions of the FSM

implementation allows the designer to completely control these

portions, which in turn minimizes design errors.

The functionality of the two portions is captured by the

two processes used in the VHDL description. For example,

the two VHDL processes for the FSM describing the Ship

object (from Fig. 3) are shown in Fig. 5 and Fig. 6. In Fig.

5, process #1 models all necessary registered signals (i.e.,

denoted as _reg signals). In Fig. 6, process #2 captures the

-- state register; process #1

process (TIME_TICK, reset)

begin

if (reset = '1') then

superstate_reg <= INACTIVE;

state_reg <= Parked;

x_reg <= (OTHERS=>'0');

y_reg <= to_unsigned((MAX_Y-SHIP_HEIGHT)/2,10);

score_reg <= (OTHERS=>'0');

local_ctr_reg <= (OTHERS=>'0');

elsif (TIME_TICK' event and TIME_TICK = '1') then

superstate_reg <= superstate_next;

state_reg <= state_next;

x_reg <= x_next;

y_reg <= y_next;

score_reg <= score_next;

local_ctr_reg <= local_ctr_next;

end if;

end process;

Figure 5. VHDL code of process #1 that describes the sequential portion for
the Ship object.

Table I
MAPPING FROM UML STATECHART ELEMENTS TO VHDL CONCEPTS.

UML Statechart Element VHDL Concept

UML statechart FSM or Hierarchical FSM

(coded in two-process VHDL style)

Event Signals, In/Out Ports

Default State Initial State

History Counters

logic that generates primary outputs (i.e., indicated as z in

Fig. 4) and the next vaues of all registered signals, denoted

as _next signals. The one to one correspondence between the

two portions of the block diagram of the FSM and the two

VHDL processes can be easily be seen in Fig. 4 and Fig.

5, Fig. 6. This correspondence gives this two-process VHDL

coding approach the benefits of clarity and easy debugging.

VI. RULES TO TRANSLATE UML STATECHARTS TO VHDL

In this paper, a direct approach for translating UML stat-

echarts into VHDL code is used. This approach essentially

consists of a set of mapping rules between statecharts elements

into VHDL constructs. While this approach does require a

larger up-front effort than automated tools, it does not require

intermediate formats used by automated tools. Also, a direct

approach does not need third party libraries and gives the

VHDL programer better control over the coding patterns and

lower level details. Automated tools are usually restricted to

using templates for conversion, which limits the amount of

optimization of the VHDL code. In addition, most VHDL code

generated automatically still requires some amount of manual

intervention in order to integrate into actual practical designs.

Below, we list the mapping rules, which are summarized in

Table I. In this discussion, we refer to examples from the Fly-

n-Shoot use case that we present in the results section.

Statechart to Hierarchical FSM. VHDL handles concur-

rency by design: the statecharts’ property of having more than

one state active at the same time (e.g, expressed using AND

states) is naturally handled in VHDL through the concept

of concurrent statements, which include processes as well.

-- next state and output logic; process #2
process (superstate_reg, state_reg, exp_ctr_reg,

PLAYER_FIRE, PLAYER_SHIP_MOVE, TAKE_OFF,
DESTROYED_MINE, HIT_MINE, HIT_WALL)

begin
-- default initializations not shown

case superstate_reg is

when INACTIVE => -- superstate
if PLAYER_SHIP_MOVE = '1' then

superstate_next <= ACTIVE;
end if;

when ACTIVE => -- superstate;
case state_reg is

when Parked =>
-- place Ship at default, initial location
x_next <= (OTHERS=>'0');
y_next <= to_unsigned((MAX_Y-SHIP_HEIGHT)/2,10);
if PLAYER_SHIP_MOVE = '1' then

state_next <= Flying;
score_next <= (OTHERS=>'0');
SCORE <= '1'; -- generate event SCORE
local_ctr_next <= (OTHERS=>'0');

end if;

when Flying =>
if btn(1)='1' and

(y_reg + SHIP_HEIGHT - 1)<(MAX_Y-1-SHIP_DELTA_V) then
y_next <= y_reg + SHIP_DELTA_V; -- move down

elsif btn(0)='1' and y_reg>SHIP_DELTA_V then
y_next <= y_reg - SHIP_DELTA_V; -- move up

end if;
ship_flying<='1';
SHIP_IMG <= '1'; -- generate event SHIP_IMG;
local_ctr_next <= local_ctr_reg + 1;
if (local_ctr_reg = 30) then

score_next <= score_reg + 1; -- increment score each sec
SCORE <= '1'; -- generate event SCORE to Tunnel
local_ctr_next <= (OTHERS=>'0');

end if;
if PLAYER_FIRE = '1' then

MISSILE_FIRE <= '1'; -- generate event MISSILE_FIRE
end if;
if DESTROYED_MINE = '1' then

-- add to local score the amount passed thru event;
-- which depends on the type of mine destroyed;
score_next <= score_reg + unsigned(score_inc_val);

end if;
if (HIT_MINE = '1' or HIT_WALL = '1') then

state_next <= Exploding;
exp_ctr_next <= (OTHERS=>'0');
timer_2sec_start <='1'; -- start cowntdown counter 2 sec

end if;

when Exploding =>
EXPLOSION_SHIP <= '1'; -- post event to Tunnel
-- wait for 2 sec to display exploding ship
if timer_2sec_up='1' then

state_next <= Parked;
GAME_OVER <= '1'; -- generate event to Tunnel
superstate_next <= INACTIVE;

end if;

end case;
end case;

end process;

Figure 6. VHDL code of process #2 that describes the combinational portion
for the Ship object.

This makes VHDL (or Verilog) an intuitive target language

to translate UML statecharts. Therefore, UML statecharts are

mapped into simple FSMs or hierarchical FSMs. These FSMs

are coded directly in VHDL, using the two-process VHDL

coding style discussed earlier. Processes, as VHDL constructs,

are concurrent statements, which by design support parallelism

or concurrency of hardware. This concurrency allows us to

translate an arbitrary number of UML statecharts to VHDL

code; for example, in our use case we have several statecharts

(i.e., Tunnel, Ship, Missile, Mine1, and Mine2). Hierarchical

FSMs easily capture hierarchy in statecharts; for example,

the Ship statechart from Fig. 3 can be translated into a

hierarchical FSM that has the upper level FSM with two states

{INACTIV E, ACTIV E} while the ACTIV E state has

internally another FSM with three states {Parked, Flying,

Exploding}. Note that the orthogonality (i.e., independence

and concurrency) property of statecharts can be easily sup-

ported by communicating FSMs in VHDL. Also note that

hierarchical FSM provide an intuitive way of supporting the

clustering property of statecharts.

Event to Signals. The concept of event naturally lends

itself to the concept of signal from VHDL. In the proposed

direct translation approach, events from UML statecharts are

simply replaced with signals internal to design entities or

input/output ports of design entities. Some events may require

the introduction of more than one signal. For example, the

event of a mine being destroyed (example from the use

case presented later) includes the signals that carries that

information, plus an additional signal that conveys the value

that the score to be increased by, which needs to be passed to

the Ship object.

Default States to Initial States. This is a straightforward

mapping rule because FSM described using the two-process

coding style in VHDL can be easily initialized in any desired

initial state that precisely corresponds to the default state of

the chart. This is usually done in process #1 (see Fig. ??)

and different default states can be used in different conditions,

using just a simple “if" statement.

History to Counters. One way to support the history

concept (as refinement property of statecharts) is by using

counters in VHDL. Counters are cheap and easy to describe

in VHDL. Their values can be used to control entrance or

transitions between FSM states. For example, in our use case,

a counter is used to keep track of how many times mine type

2 has been hit by the missile; only after the mine gets hit

twice, does explode and the score is increased by 50 points.

The counter keeps track of the history of hits. Desired delays

and timeouts are easily implemented using timers/stopwatches,

which are also easy to describe in VHDL.

VII. RESULTS: HARDWARE VERIFICATION

The proposed approach presented in section VI was used to

write the complete VHDL description of the Fly-n-Shoot game

by translating all the UML statecharts describing the game

from [2] into synthesizable VHDL code. The VHDL code

was synthesized, placed and routed successfully using the Intel

Quartus Prime Lite Edition Design Software 21.1 [18]. The

summary of the final implemented design is shown in Table II.

Note that the prototype uses less than 10% of logic elements.

The target FPGA family for verification on real hardware was

the Intel Altera Cyclone V (device 5CSEMA5F31C6), used

by the DE1-SoC development board from Terasic [19]. The

board was programmed with the programming file generated

by the Quartus tool and the game was tested successfully. The

experimental setup, which uses the DE1-SoC board together

with a VGA monitor and an NEC Controller (NC) is shown

in Fig. 7. The Player can use the NEC Controller to send

commands Up, Down, and Shoot; or, alternatively can use the

board’s pushbuttons KEY 0, KEY 1, and KEY 2 for the same

controls. A screen snapshot taken during play action is shown

in Fig. 8. The entire system worked correctly as expected with

VGA Monitor

NES Controller

DE1-SoC Board

Figure 7. Experimental setup includes DE1-SoC board, VGA monitor, and
NES controller. The monitor shows the welcome screen.

Ship

Mine1

Missile

Mine2

Tunnel

Wall

Figure 8. Snapshot of game in action, showing the two types of mines and
missile being shot.

minimal debugging effort. We attribute this success to the very

modular and encapsulated coding approach provided by the

two-process VHDL coding style. The complete design files,

including the VHDL code, pin assignments, as well as a link

to a video demonstration will be made publicly available at

[20].

Table II
SUMMARY OF RESOURCES USED BY THE FINAL IMPLEMENTATION.

Logic utilization Total Total Total

(in ALMs) registers pins PLLs

2,512/32,070 (8 %) 650 42/457 (9 %) 1/6 (17 %)

VIII. CONCLUSION

We presented an FPGA prototype of an event-driven em-

bedded system. The prototype was developed using a practical

approach for translating UML statecharts into synthesizeable

VHDL code. This approach is based on a set of mapping

rules from UML constructs to VHDL code using specifically

the two-process VHDL coding style. This coding style creates

clean and correct-by-design VHDL code. The approach was

demonstrated successfully on a complex event-driven embed-

ded system use case: the Fly-n-Shoot game, which was verified

on real hardware, the Intel Altera Cyclone IV FPGA. In future

work, we plan to implement the mapping rules presented here

into an automated tool, which has advantages on its own,

including shorter translation times, elimination of potential

error due to designer manual coding, and elimination of the

need for VHDL programming skills from designers who would

need only to master UML statecharts.

REFERENCES

[1] Miro Samek, “A Crash Course in UML State Machines,” Application

Note, 2015.

[2] ——, “Practical UML Statecharts in C/C++,” Second Edition, Elsevier,
2009.

[3] J. Cereijo Garcia and R.R. Osorio, “Hardware Implementation of State-
charts for FPGA-based Control in Scientific Facilities,” IEEE Conf. on

Design of Circuits and Integrated Systems (DCIS), 2019.

[4] Grzegorz Labiak, “From UML statecharts to FPGA - the HiCoS ap-
proach,” FDL, 2003.

[5] S. Wood, D. Akehurst, O. Uzenkov, G. Howells, and K. McDonald-
Maier, “A Model-Driven Development Approach to Mapping UML
State Diagrams to Synthesizable VHDL,” IEEE Trans. on Computers,
vol. 57, no. 10, pp. 1357-1371, Oct. 2008.

[6] Pong P. Chu, “FPGA Prototyping by VHDL Examples,” Wiley, 2008.

[7] T.G. Moreira, M.A. Wehrmeister, C.E. Pereira, J.-F. Petin, and E. Levrat,
“Generating VHDL Source Code from UML Models of Embedded Sys-
tems,” IFIP Advances in Information and Communication Technology,

Springer, 2010.

[8] E. Ebeid, D. Quaglia, and F. Fummi, “Generation of VHDL code
from UML/MARTE sequence diagrams for verification and synthesis,”
Euromicro Conference on Digital System Design, 2012.

[9] G. Bazydlo, M. Adamski, M. Wegrzyn, and A. Rosado Munoz, “From
UML State Machine Diagram into FPGA Implementation,” IFAC Con-

ference on Programmable Devices and Embedded Systems, 2013.

[10] M. Dossis, “Custom Hardware Synthesis from UML,” Int. Journal of

Engineering Research And Management (IJERM), 2014.

[11] J. Cereijo Garcia and R.R. Osorio, “Comparison of Hardwired and Mi-
croprogrammed Statechart Implementations,” MDPI electronics, 2020.

[12] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified Modeling
Language User Guide (1st edition),” Addison-Wesley Professional, 1998.

[13] Unified Modeling Language, “Balancing the Equation: Where are
Women and Girls in Science, Engineering, and Technology,” [Online].
Available: https://www.omg.org/spec/UML/2.5.1/About-UML/, 2022.

[14] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming, vol. 8, no. pp. 231-274, June 1987.

[15] D. Bjorklund, J. Lilius, and I. Porres, “A Unified Approach to Code
Generation from Behavioral Diagrams,” Chapter 2 in Selected Contri-

butions on UML, SystemC, System Verilog, Mixed-Signal Systems, and

Property Specification from FDL’03, Springer, 2004.

[16] I.A. Niaz and J. Tanaka, “Java Code From UML Statecharts,” Int.

Journal of Computer and Information Science, vol. 6, no. 2, June 2005.
[17] N.A. Jagannathan, “A UML driven ASIC design methodology aided

by an automated UML-SystemC translator,” M.S. Thesis, National

University of Singapore, 2005.
[18] Intel Quartus Prime Lite Edition Design Software, Version 21.1, Intel

Altera, [Online]. Available: https://www.intel.com, 2022.
[19] DE1-SoC FPGA Development Board, Terasic, [Online]. Available:

https://www.terasic.com.tw, 2022.
[20] Fly-n-Shoot Game Implementation in VHDL, GitHub Repository, https:

//github.com/eigenpi/fly-n-shoot, 2023.

