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Abstract—In this study, we propose the use of dynamic
Markov trees to develop innovative benchmark compression
techniques and to naturally model the spatial characteristics of
thread scheduling. These models could enable a new class of
benchmark compression approaches that effectively capture the
effect of scheduling on the estimation of power, thermal profile,
and lifetime reliability — metrics which are increasingly relevant
in network-on-chip based chip multiprocessors (CMPs) that have
become the main trend in processor development.

I. FULL SYSTEM SIMULATION OF CMPSs

Full system simulation to evaluate the functionality and
performance of architectural innovations of chip multiproces-
sors is crucial to computer architects. The main challenge is
that benchmarks (e.g., applications) require very long sim-
ulation times due to the large number of instructions — in
the order of billions or more — that must be simulated. For
example, detailed simulation of single or multicore processors
is typically thousands of times slower than the simulated
hardware. One minute of execution in real time can correspond
to days or weeks of simulation time.

Aside from using algorithm parallelization, techniques that
use statistical simulation [1], simpoints [2] or statistical sam-
pling with checkpointing [3] can reduce the total simulation
effort required to estimate the performance of such appli-
cations by orders of magnitude. Although such techniques
have received a level of interest that makes them a research
area in its own right, the issue of faster and more accurate
simulation 1is still largely an open problem. In addition, it
is not obvious how these techniques account for the impact
of thread scheduling especially in the increasingly popular
chip multiprocessors. This is important due to primarily two
reasons. First, threads scheduling directly affects the power
consumption of different cores, thereby the overall thermal
profiles as well as the lifetime reliability. Imagine for example
a single threaded application being run on a four core processor
where the single thread is always run on the same core as
opposed to being switched between all four cores. The thermal
and thereby the lifetime reliability in these two scenarios are
two completely different pictures. In addition, especially in
CMPs that use increasingly popular networks-on-chip as the
communication medium, traffic through the network is also
affected by scheduling. The physical distance between cores
which run threads that exchange data impacts the amount of
data traffic or cache coherency messaging in the networks.

This represents the main motivation for the application
compression technique proposed in this study. Our innovative

method is based on dynamic Markov trees that enable: 1)
benchmark compression such that simulation time can be
shortened thousands of times and 2) natural modeling of
spatial characteristics of thread scheduling, thereby facilitating
accurate estimation of metrics of interest.

II. DYNAMIC MARKOV TREES

The idea of benchmark compression is to somehow capture
the essential characteristics and inherent variations of the
original benchmark into a convenient abstraction that can
then be utilized to replay the benchmark in a much shorter
version such that estimations of target metrics (e.g., power,
temperature, lifetime reliability) result into values that would
be obtained as if the original, much longer, benchmark would
be simulated. Inspired by [4], we introduce dynamic Markov
trees (DMTs) as an abstraction to capture essential spatial
behavior and to enable benchmark compression. A graphical
illustration of a DMT is shown in Fig.1.
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Figure 1.  Illustration of dynamic Markov tree construction for a chip

multiprocessor with 16 cores. Counters associated with arcs are incremented
during each Aty along paths that indicate the core on which the thread is
scheduled. In this example, the thread is scheduled on the core in tile 4 of
the CMP. At the end of all n iterations the probability of an arc is the ratio
m/n, where m is the counter value.

A DMT is essentially a binary tree with a root node and a
number of intermediate node layers that depends on the size



of the CMP. It is constructed as follows. Starting from the
root node, which represents the top-level CMP, we create two
child nodes that correspond to the two halves of the CMP
architecture. The two halves represent a first partitioning level
of the CMP. This partitioning with new nodes creation process
is continued hierarchically until each partition contains one tile
only.

Arcs of the tree are labeled with probabilities that denote
the chance of going from the parent node to each of the child
nodes depending on whether a given thread is scheduled to
a core of a tile located in either of the two halves. These
probabilities are calculated during an iterative process whose
total number of iterations, n, equals the number of time
intervals that we split the entire run (denoted as timeline in
Fig.1) of a given benchmark. During each iteration, we walk
the tree from the root node down toward the leaf nodes to
indicate the core on which a thread is scheduled during this
time interval, At;. Then, we go back to the root node and
start another walk that corresponds to the next time interval,
Atjy1. During these DMT construction walks, each arc along
the walking path from the root node to the leaf node has
its counter incremented. At the end of all n iterations, arc
probabilities are given by the ratio between the final values of
these counters and the total number of iterations, n.

Once the DTM is constructed, benchmark compression can
be achieved by performing a new set of walks on the tree
with a number of iterations n’ that is much smaller than the
number of iterations n done during the DMT construction:
n’ << n. During each iteration of the new walk, a path
from the root node to a leaf node is followed randomly as
dictated by the probabilities associated with each arc. In this
way, the compressed benchmark (shown abstractly in Fig.2) is
generated iteratively in only n’ iterations.
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Figure 2. Illustration of benchmark compression.

The compressed benchmark can then be utilized for full
system simulations. For any architectural changes (e.g, core
microarchitecture, dynamic voltage and frequency scaling
schemes, etc.) that need to be investigated, the compressed
benchmark can be run to estimate figures of merit such as
CMP lifetime reliability thousands of times faster.

The DMT model is straightforwardly extended to the
case when the benchmark is multithreaded or the top-level
application is a multicase or composite situation (i.e., multiple
benchmarks are run concurrently). In this case, the DTM can
be enhanced by maintaining lists attached to each node and
arc of the DTM. These lists would have as many entries as

the number of threads.

III. DISCUSSION

This study raises rather than answers questions. Because
understanding benchmark behavior is at the foundation of
computer architecture and software optimization, we believe
that the proposed benchmark compression approach opens up
a series of ideas that are exiting to investigate.

For example, one needs to find the value of n’ that offers
an optimal compromise between achieved simulation speed up
and statistical confidence of the estimated figures of merit.
Also, an interesting exercise is to think of how the DTM
model can capture also temporal not only spatial relationships
between threads scheduled on different cores. We would like
to also explore how the proposed DTM can be utilized to
construct enhanced versions of simulation techniques that use
statistical simulation, simpoints, or statistical sampling with
checkpointing [1]-[3].

IV. CONCLUSION

We proposed a novel benchmark compression technique
based on dynamic Markov trees for CMP research. The pro-
posed model can effectively capture the effect of scheduling
on the estimation of power, thermal profile, and lifetime
reliability. It can effectively speed up full system simulations
and therefore be tremendously helpful to computer architects.
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