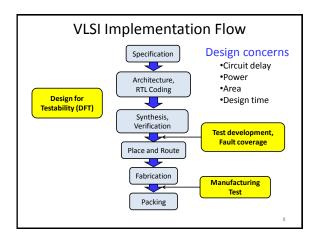
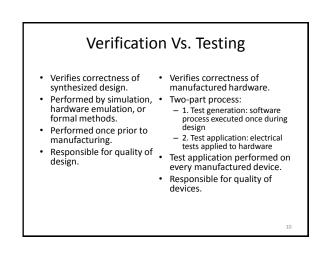
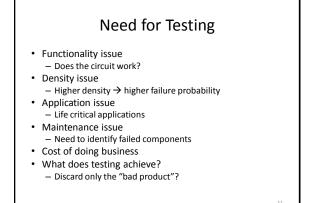
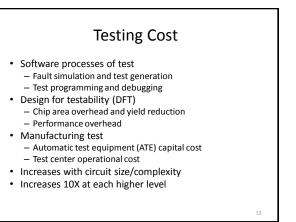

ECE-470 – Digital Design II Introduction






	1997 -2001	2003 - 2006
Feature size (micron)	0.25 - 0.15	0.13 - 0.10
Transistors/sq. cm	4 - 10M	18 - 39M
Pin count	100 - 900	160 - 1475
Clock rate (MHz)	200 - 730	530 - 1100
Power (Watts)	1.2 - 61	2 - 96



Verification Vs. Testing: Definitions

- Design synthesis: Given an I/O function, develop a procedure to manufacture a device using known materials and processes.
- Verification: Predictive analysis to ensure correctness of the synthesized design; when manufactured, will perform the given I/O function.
- Test: Manufacturing step that ensures that the physical device, manufactured from the synthesized design, has no manufacturing defect.

Cost of Manufacturing Testing (2000)

- 0.5-1.0GHz, analog instruments,1,024 digital pins: ATE purchase price
 - = \$1.2M + 1,024 x \$3,000 = \$4.272M
- Running cost (five-year linear depreciation)
 = Depreciation + Maintenance + Operation
 - = \$0.854M + \$0.085M + \$0.5M
 - = \$1.439M/year
- Test cost (24 hour ATE operation)
 \$1.439M/(365 x 24 x 3,600)
 - = 4.5 cents/second

Levels of Testing

- Levels
 - Chip
 - Board
 - System
 - Boards put together
 - System-on-Chip (SoC)
 - System in field
- Rule of 10: It costs 10 times more to test a device as we move to higher level in the product manufacturing process

Levels of Testing

- Other ways to define levels these are important to develop correct "fault models" and "simulation models"
 - Transistor
 - Gate
 - RTL
 - Functional
 - Behavioral
 - Architecture
- Focus in this course: Chip level testing gate level design

15

Role of Testing

- Detection: Determination whether or not the device under test (DUT) has some fault.
- Diagnosis: Identification of a specific fault that is present on DUT.
- Device characterization: Determination and correction of errors in design and/or test procedure.
- Failure mode analysis (FMA): Determination of manufacturing process errors that may have caused defects on the DUT.

16

14

Overview

- PART 1: Test generation
 - Test economics, Fault models, Fault simulation, Combinational, sequential ATPG, Memory test, IDDQ test.
- PART 2: Design for testability (DFT)
 - DFT refers to hardware design styles or added hardware that reduces test generation complexity.
 - Scan design, BIST.
 - System test