Overview

- Motivation
- Built-in Logic Block Observer (BILBO)
- Test per clock systems
- Test per scan systems
- Circular self-test path (CSTP) BIST
- Circuit initialization
- Summary

Motivation

- Complex systems with multiple chips demand elaborate logic BIST architectures
 - BILBO and test per clock systems
 - Shorter test length, more BIST hardware
 - STUMPS & test per scan systems
 - Longer test length, less BIST hardware
 - Circular Self-Test Path
 - Lowest hardware, lower fault coverage
- Benefits: cheaper system test
- Cost: more hardware
- Must modify fully synthesized circuit for BIST to boost fault coverage
 - Initialization, loop-back, test point hardware

Example: BILBO Usage

- CUTs A and C: BILBO1 is MISR, BILBO2 is LFSR
- CUT B: BILBO1 is LFSR, BILBO2 is MISR

Built-in Logic Block Observer (BILBO)

- Combined functionality of D flip-flop, pattern generator, response compacter, & scan chain
 - Reset all FFs to 0 by scanning in zeros

BILBO Serial Scan Mode

- $B1 \ B2 = "00"
- Dark lines show enabled data paths
BILBO LFSR Pattern Generator Mode

- $B_1\ B_2 = “01”$

BILBO in D FF (Normal) Mode

- $B_1\ B_2 = “10”$

BILBO in MISR Mode

- $B_1\ B_2 = “11”$

Test per Clock System

- New fault set tested every clock period
- Shortest possible pattern length
- 10 million BIST vectors, 200 MHz test / clock
- Test Time $= 10,000,000 / 200 \times 10^6 = 0.05$ s
- Shorter fault simulation time than test per scan

Test per Scan System

- New fault tested during 1 clock vector with a complete scan chain shift
- Significantly more time required per test than test per clock
 - Advantage: Judicious combination of scan chains and MISR reduces MISR bit width
 - Disadvantage: Much longer test pattern set length, causes fault simulation problems
- Input patterns – time shifted & repeated
 - Become correlated – reduces fault detection effectiveness
 - Use XOR network to phase shift & decorrelate

STUMPS: Example of Test per Scan

- $SR_1 \ldots SR_n$: 25 full-scan chains, each 200 bits
- 5000 chip outputs, need 25 bit MISR (not 5000 bits)
STUMPS

- Test procedure:
 1. Scan in patterns from LFSR into all scan chains (200 clocks)
 2. Switch to normal functional mode and clock 1 x with system clock
 3. Scan out chains into MISR (200 clocks) where test results are compacted
 - Overlap Steps 1 & 3
- Requirements:
 - Every system input is driven by a scan chain
 - Every system output is caught in a scan chain or drives another chip being sampled

BILBO vs. STUMPS vs. ATE

- LSSD: Level-sensitive scan design
- ATE rate: 325 MHz
- $P = \# \text{ patterns}$
- $CP = \text{clock period} = 10^{-9} \text{ s}$
 \[k = \frac{\text{Self-test speed}}{\text{LSSD tester speed}} = 3.07692 \]
- Test times:
 - BILBO: $P \times CP$
 - STUMPS: $P \times L \times CP$
 - ATE: $P \times L \times CP \times k$
 - STUMPS: 100 x longer than BILBO
 - Due to extra scan chain shifting

Circular Self-Test Path (CSTP) BIST

- Combine pattern generator and response compacter into a single device
- Use synthesized hardware flip-flops configured as a circular shift register
 - Non-linear mathematical BIST system
 - Superposition does not hold
 - Flip-flop self-test cell – XOR’s D with Q state from previous FF in CSTP chain
- MISR characteristic polynomial: $f(x) = x^n + 1$
- Hard to compute fault coverage

Circuit Initialization

- Full-scan BIST – shift in scan chain seed before starting BIST
- Partial-scan BIST – critical to initialize all FFs before BIST starts
 - Otherwise we clock X’s into MISR and signature is not unique and not repeatable
- Discover initialization problems by:
 1. Modeling all BIST hardware
 2. Setting all FFs to X’s
 3. Running logic simulation of CUT with BIST hardware
Circuit Initialization (continued)

- If MISR finishes with BIST cycle with X's in signature, Design-for-Testability initialization hardware must be added
- Add MS (master set) or MR (master reset) lines on flip-flops and excite them before BIST starts
- Otherwise:
 1. Break all cycles of FF's
 2. Apply a partial BIST synchronizing sequence to initialize all FF's
 3. Turn on the MISR to compact the response

Isolation from System Inputs

- Must isolate BIST circuits and CUT from normal system inputs during test:
 - Input MUX
 - Blocking gates
- Note: Neither all of the Input MUX nor the blocking gate hardware can be tested by BIST
 - Must test externally or with Boundary Scan

Summary

- Logic BIST system architecture
 - Advantages:
 - Higher fault coverage
 - At-speed test
 - Less system test, field test & diagnosis cost
 - Disadvantage: Higher hardware cost
- Architectures: BILBO, test-per-clock, test-per-scan
- Needs DFT for initialization, loop-back, and test points