ECE-470 Digital Design II BIST Architectures

Overview

- Motivation
- Built-in Logic Block Observer (BILBO)
- Test per clock systems
- Test per scan systems
- Circular self-test path (CSTP) BIST
- Circuit initialization
- Summary

Motivation

- Complex systems with multiple chips demand elaborate logic BIST architectures
 - BILBO and test per clock systems
 - Shorter test length, more BIST hardware
 - STUMPS & test per scan systems
 Longer test length, less BIST hardware
 - Circular Self-Test Path
 Lowest hardware, lower fault coverage
- Benefits: cheaper system test
- Cost: more hardware
- Must modify fully synthesized circuit for BIST to boost fault coverage
 - Initialization, loop-back, test point hardware

- New fault tested during 1 clock vector with a complete scan chain shift
- Significantly more time required per test than test per clock
 - Advantage: Judicious combination of scan chains and MISR reduces MISR bit width
 - Disadvantage: Much longer test pattern set length, causes fault simulation problems
- Input patterns time shifted & repeated
 - Become correlated reduces fault detection effectiveness
 - Use XOR network to phase shift & decorrelate

STUMPS

- Test procedure:
 - 1. Scan in patterns from LFSR into all scan chains (200 clocks)
 - 2. Switch to normal functional mode and clock 1 x with system clock
 - 3. Scan out chains into MISR (200 clocks) where test results are compacted $% \left(\mathcal{A}^{\prime}_{0}\right) =0$
 - Overlap Steps 1 & 3
- Requirements:
 - Every system input is driven by a scan chain
 - Every system output is caught in a scan chain or drives another chip being sampled

BILBO vs. STUMPS vs. ATE

- LSSD: Level-sensitive scan design
- ATE rate: 325 MHz
- *P* = # patterns
- $CP = clock period = 10^{-9} s$ $k = \frac{Self\text{-test speed}}{LSSD tester speed} = 3.07692$
- Test times:
 - BILBO: P x CP, STUMPS: P x L x CP, ATE: P x L x CP x k
 - External test & ATE: 307 x longer than BILBO
 - STUMPS: 100 x longer than BILBO
 - Due to extra scan chain shifting

15

Circuit Initialization (continued)

- If MISR finishes with BIST cycle with X's in signature, *Design-for-Testability* initialization hardware must be added
- Add *MS* (*master set*) or *MR* (*master reset*) lines on flip-flops and excite them before BIST starts
- Otherwise:
 - 1. Break all cycles of FF's
 - 2. Apply a partial BIST *synchronizing sequence* to initialize all FF's
 - 3. Turn on the MISR to compact the response

Isolation from System Inputs

- Must isolate BIST circuits and CUT from normal system inputs during test:
 - Input MUX
 - Blocking gates
- Note: Neither all of the *Input MUX* nor the *blocking gate* hardware can be tested by BIST

20

- Must test externally or with Boundary Scan

Summary

- Logic BIST system architecture
 - Advantages:
 - Higher fault coverage
 - At-speed test
 - Less system test, field test & diagnosis cost
 - Disadvantage: Higher hardware cost
- Architectures: BILBO, test-per-clock, test-perscan
- Needs DFT for initialization, loop-back, and test points

21