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ECE-470 Digital Design II
Logic Simulation
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• Logic Modeling

– Model types

– Models at different levels of abstractions

– Logic models and definitions

• Logic Simulation

– What is simulation?

– Design verification

– Circuit modeling

– Determining signal values

– True-value simulation algorithms

– Compiled-code simulation

– Event-driven simulation

Logic Modeling: Model Types
• Functional

– DC behavior – no timing

• Behavioral
– System at I/O level

– Timing information is provided

– Internal details missing

• Structural
– Gate level description

– External representation (used by user)

– Internal representation (inside a computer)
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Models are often described using an hierarchy

Hierarchical Model: A Full-Adder
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HA; 
inputs: a, b;
outputs: c, f;
AND: A1, (a, b), (c);
AND: A2, (d, e), (f);
OR: O1, (a, b), (d);
NOT: N1, (c), (e);
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FA;
inputs: A, B, C;
outputs: Carry, Sum;
HA: HA1, (A, B), (D, E);
HA: HA2, (E, C), (F, Sum);
OR: O2, (D, F), (Carry);
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Modeling Levels
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Logic Models and Definitions

• Combinational circuit models

– Function expressed as truth-table or cubes

– Cubes and cube intersection can be used during 
simulation

• Sequential Circuits

– Structure represented as a collection of flip-flops 
feeding combinational logic

– Time frame expansion is possible

• Binary Decision Diagrams (BDD)
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Logic Models and Definitions
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• Program model of a circuit

– Express circuit (gate level) as a program consisting 
of interconnected logic operations

– Execute the program to determine circuit output 
for varying inputs

• RTL model

– Higher level model of the circuit

• HDL model

– Examples at this level: Verilog, VHDL

Logic Models and Definitions

• Structural model
– External representation in the form of netlist

– Examples of this are: UW, ISCAS, BLIF, etc.

– Keywords used in such representations:
• Primary Inputs (PI) and Primary Outputs (PO)

• Gates: AND, OR, NOT, etc.

• Storage: latch, flip-flop

• Connections: lines, nets

• Fanin: number of inputs to a gate

• Fanout : number of lines a signal line feeds

• Fanout free circuit: every line or gate has a fanout of one
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Example: BLIF netlist format
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BLIF format, mapped using SIS 
tool with a library of gates

.model C17.iscas

.inputs 1GAT(0) 2GAT(1) 3GAT(2) 6GAT(3) 7GAT(4)

.outputs 22GAT(10) 23GAT(9)

.default_input_arrival 0.00 0.00

.default_output_required 0.00 0.00

.default_input_drive 1.98 1.82

.default_output_load 0.10

.gate nand2 a=1GAT(0) b=3GAT(2) O=10GAT(6)

.gate nand2 a=3GAT(2) b=6GAT(3) O=11GAT(5)

.gate nand2 a=11GAT(5) b=2GAT(1) O=16GAT(8)

.gate nand2 a=10GAT(6) b=16GAT(8) O=22GAT(10)

.gate nand2 a=11GAT(5) b=7GAT(4) O=19GAT(7)

.gate nand2 a=16GAT(8) b=19GAT(7) O=23GAT(9)

.end

Logic Models and Definitions

• Structural model

– Internal representation in the form of tables
• Tables of gates and storage elements (names)

• Tables of connections

• Tables of fanin and fanouts

– Objective is to make the storage and search 
processes (integral part of simulation) more efficient

– Knowledge of data structures and algorithms is very 
useful
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Logic Models and Definitions

• Additional useful terms
– Graph representation
– Reconvergent fanouts
– Stems and branches
– Logic level/depth in a circuit
– “levelization” of a circuit
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Logic Simulation
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Motivation

• Logic simulation is used to verify the correctness 
of the design and tests

• It avoids building costly hardware

• Can help debug a design in many more ways 
than the real hardware could

• Understanding simulation will help understand 
the limitations of the simulation process and the 
simulator in question
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Simulation Defined
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• Simulation refers to modeling of a design, its function 
and performance

• A software simulator is a computer program; an 
emulator is a hardware simulator

• Simulation is used for design verification:
– Validate assumptions
– Verify logic
– Verify performance (timing)

• Simulation is used for test generation
• Types of simulation:

– Logic or switch level
– Timing
– Circuit
– Fault

Simulation for Verification
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Simulation for Test Generation
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Modeling for Simulation

• Modules, blocks or components described by
– Input/output (I/O) function

– Delays associated with I/O signals

– Examples: binary adder, Boolean gates, resistors and 
capacitors

• Interconnects represent
– Ideal signal carriers, or

– Ideal electrical conductors

• Netlist: a format (or language) that describes a 
design as an interconnection of modules. Netlist
may use hierarchy
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Logic Model of MOS Circuit
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Options for Inertial Delay
(simulation of a NAND gate)
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Signal States

• Two-states (0, 1) can be used for purely 
combinational logic with zero-delay

• Three-states (0, 1, X) are essential for timing hazards 
and for sequential logic initialization

• Four-states (0, 1, X, Z) are essential for MOS devices
• Analog signals are used for exact timing of digital 

logic and for analog circuits
• Determining gate values:

– Use of software logic primitives such as AND, OR, NOT 
instructions

– Search the truth table
– Use cubes and cube intersection rules for processing
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True-value Simulation Algorithms

• Compiled-code simulation
– Applicable to zero or constant delay combinational logic

– Also used for cycle-accurate synchronous sequential 
circuits for logic verification

– Efficient for highly active circuits, but inefficient for low-
activity circuits

– High-level (e.g., C language) models can be used

• Event-driven simulation
– Only gates or modules with input events are evaluated 

(event means a signal change)

– Delays can be accurately simulated for timing verification

– Efficient for low-activity circuits

– Can be extended for fault simulation
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Compiled-code Algorithm

• Step 1: Levelize combinational logic and encode 
in a compilable programming language

• Step 2: Initialize internal state variables (flip-
flops)

• Step 3: For each input vector

– Set primary input variables

– Repeat (until steady-state or max. iterations)

• Execute compiled code

– Report or save computed variables
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Event-driven Algorithm
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Efficiency of Event-driven Simulator

• Simulates events (value changes) only

• Speed up over compiled-code can be ten times 
or more; in large logic circuits about 0.1 to 10% 
gates become active for an input change
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• Logic or true-value simulators are essential tools 
for design verification

• A logic simulator can be implemented using 
either compiled-code or event-driven method

• Per vector complexity of a logic simulator is 
approximately linear in circuit size

• Modeling level determines the evaluation 
procedures used in the simulator

Summary
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