
1

ECE-470 Digital Design II
Logic Simulation

1

Outline

2

• Logic Modeling

– Model types

– Models at different levels of abstractions

– Logic models and definitions

• Logic Simulation

– What is simulation?

– Design verification

– Circuit modeling

– Determining signal values

– True-value simulation algorithms

– Compiled-code simulation

– Event-driven simulation

Logic Modeling: Model Types
• Functional

– DC behavior – no timing

• Behavioral
– System at I/O level

– Timing information is provided

– Internal details missing

• Structural
– Gate level description

– External representation (used by user)

– Internal representation (inside a computer)

3

Models are often described using an hierarchy

Hierarchical Model: A Full-Adder

4

HA;
inputs: a, b;
outputs: c, f;
AND: A1, (a, b), (c);
AND: A2, (d, e), (f);
OR: O1, (a, b), (d);
NOT: N1, (c), (e);

a

b

c

d

e

f

HA

FA;
inputs: A, B, C;
outputs: Carry, Sum;
HA: HA1, (A, B), (D, E);
HA: HA2, (E, C), (F, Sum);
OR: O2, (D, F), (Carry);

HA1
HA2

A
B
C

D
E F

Sum

Carry

Modeling Levels

5

Circuit
description

Programming
language-like HDL

Connectivity of
Boolean gates,
flip-flops and
transistors

Transistor size
and connectivity,
node capacitances

Transistor technology
data, connectivity,
node capacitances

Tech. Data, active/
passive component
connectivity

Signal
values

0, 1

0, 1, X

and Z

0, 1
and X

Analog
voltage

Analog
voltage,
current

Timing

Clock
boundary

Zero-delay
unit-delay,
multiple-
delay

Zero-delay

Fine-grain

timing

Continuous
time

Modeling
level

Function,
behavior, RTL

Logic

Switch

Timing

Circuit

Application

Architectural
and functional
verification

Logic
Verification
and test

Logic
verification

Timing
verification

Digital timing
and analog
circuit
verification

Logic Models and Definitions

• Combinational circuit models

– Function expressed as truth-table or cubes

– Cubes and cube intersection can be used during
simulation

• Sequential Circuits

– Structure represented as a collection of flip-flops
feeding combinational logic

– Time frame expansion is possible

• Binary Decision Diagrams (BDD)

6

2

Logic Models and Definitions

7

• Program model of a circuit

– Express circuit (gate level) as a program consisting
of interconnected logic operations

– Execute the program to determine circuit output
for varying inputs

• RTL model

– Higher level model of the circuit

• HDL model

– Examples at this level: Verilog, VHDL

Logic Models and Definitions

• Structural model
– External representation in the form of netlist

– Examples of this are: UW, ISCAS, BLIF, etc.

– Keywords used in such representations:
• Primary Inputs (PI) and Primary Outputs (PO)

• Gates: AND, OR, NOT, etc.

• Storage: latch, flip-flop

• Connections: lines, nets

• Fanin: number of inputs to a gate

• Fanout : number of lines a signal line feeds

• Fanout free circuit: every line or gate has a fanout of one

8

Example: BLIF netlist format

9

BLIF format, mapped using SIS
tool with a library of gates

.model C17.iscas

.inputs 1GAT(0) 2GAT(1) 3GAT(2) 6GAT(3) 7GAT(4)

.outputs 22GAT(10) 23GAT(9)

.default_input_arrival 0.00 0.00

.default_output_required 0.00 0.00

.default_input_drive 1.98 1.82

.default_output_load 0.10

.gate nand2 a=1GAT(0) b=3GAT(2) O=10GAT(6)

.gate nand2 a=3GAT(2) b=6GAT(3) O=11GAT(5)

.gate nand2 a=11GAT(5) b=2GAT(1) O=16GAT(8)

.gate nand2 a=10GAT(6) b=16GAT(8) O=22GAT(10)

.gate nand2 a=11GAT(5) b=7GAT(4) O=19GAT(7)

.gate nand2 a=16GAT(8) b=19GAT(7) O=23GAT(9)

.end

Logic Models and Definitions

• Structural model

– Internal representation in the form of tables
• Tables of gates and storage elements (names)

• Tables of connections

• Tables of fanin and fanouts

– Objective is to make the storage and search
processes (integral part of simulation) more efficient

– Knowledge of data structures and algorithms is very
useful

10

Logic Models and Definitions

• Additional useful terms
– Graph representation
– Reconvergent fanouts
– Stems and branches
– Logic level/depth in a circuit
– “levelization” of a circuit

11 12

Logic Simulation

3

Motivation

• Logic simulation is used to verify the correctness
of the design and tests

• It avoids building costly hardware

• Can help debug a design in many more ways
than the real hardware could

• Understanding simulation will help understand
the limitations of the simulation process and the
simulator in question

13

Simulation Defined

14

• Simulation refers to modeling of a design, its function
and performance

• A software simulator is a computer program; an
emulator is a hardware simulator

• Simulation is used for design verification:
– Validate assumptions
– Verify logic
– Verify performance (timing)

• Simulation is used for test generation
• Types of simulation:

– Logic or switch level
– Timing
– Circuit
– Fault

Simulation for Verification

15

True-value
simulation

Specification

Design
(netlist)

Input stimuli
Computed
responses

Response
analysis

Synthesis

Design
changes

Simulation for Test Generation

16

ATPGModel

Fault
universe

Tests

Diagnostic
data

1…11
0…10
1…01
0…00

Vector 1
Vector N

Test
vectors

Modeling for Simulation

• Modules, blocks or components described by
– Input/output (I/O) function

– Delays associated with I/O signals

– Examples: binary adder, Boolean gates, resistors and
capacitors

• Interconnects represent
– Ideal signal carriers, or

– Ideal electrical conductors

• Netlist: a format (or language) that describes a
design as an interconnection of modules. Netlist
may use hierarchy

17

Logic Model of MOS Circuit

18

Ca
Cc

Cb

VDD

a

b

c

Ca , Cb and Cc are
parasitic capacitances

Dc

Da c
a

b

Da and Db are
interconnect or
propagation delays

Dc is inertial delay of gate

Db

4

Options for Inertial Delay
(simulation of a NAND gate)

19

b

a

c (CMOS)

Time units0 5

c (zero delay)

c (unit delay)

c (multiple delay)

c (minmax delay)

In
p

u
ts

Lo
g

ic
 s

im
u

la
ti

o
n

min =2, max =5

rise=5, fall=5

Transient
region

Unknown (X)

X

Signal States

• Two-states (0, 1) can be used for purely
combinational logic with zero-delay

• Three-states (0, 1, X) are essential for timing hazards
and for sequential logic initialization

• Four-states (0, 1, X, Z) are essential for MOS devices
• Analog signals are used for exact timing of digital

logic and for analog circuits
• Determining gate values:

– Use of software logic primitives such as AND, OR, NOT
instructions

– Search the truth table
– Use cubes and cube intersection rules for processing

20

True-value Simulation Algorithms

• Compiled-code simulation
– Applicable to zero or constant delay combinational logic

– Also used for cycle-accurate synchronous sequential
circuits for logic verification

– Efficient for highly active circuits, but inefficient for low-
activity circuits

– High-level (e.g., C language) models can be used

• Event-driven simulation
– Only gates or modules with input events are evaluated

(event means a signal change)

– Delays can be accurately simulated for timing verification

– Efficient for low-activity circuits

– Can be extended for fault simulation
21

Compiled-code Algorithm

• Step 1: Levelize combinational logic and encode
in a compilable programming language

• Step 2: Initialize internal state variables (flip-
flops)

• Step 3: For each input vector

– Set primary input variables

– Repeat (until steady-state or max. iterations)

• Execute compiled code

– Report or save computed variables

22

Event-driven Algorithm

23

Time, t
0 4 8

g

t = 0

1

2

3

4

5

6

7

8

Scheduled
events

c = 0

d = 1, e = 0

g = 0

f = 1

g = 1

Activity
list

d, e

f, g

g

Ti
m

e
st

ac
k

2

2

4
2

a =1->0

b =1

c =1

d = 0

e =1

f =0

g =1

Time Wheel

24

t=0

1

2

3

4

5

6

7

maxCurrent
time
pointer

Linked list with events

5

Efficiency of Event-driven Simulator

• Simulates events (value changes) only

• Speed up over compiled-code can be ten times
or more; in large logic circuits about 0.1 to 10%
gates become active for an input change

25

Large logic
block without

activity

Steady 0

0 to 1 event

Steady 0

(no event)

• Logic or true-value simulators are essential tools
for design verification

• A logic simulator can be implemented using
either compiled-code or event-driven method

• Per vector complexity of a logic simulator is
approximately linear in circuit size

• Modeling level determines the evaluation
procedures used in the simulator

Summary

26

