ECE-470 Digital Design II Logic Simulation

Outline

Logic Modeling

- Model types
- Models at different levels of abstractions
- Logic models and definitions
- Logic Simulation
- What is simulation?Design verification
- Circuit modeling
- Determining signal values
- True-value simulation algorithms
- Compiled-code simulation
- Event-driven simulation

Logic Modeling: Model Types

- Functional
 - DC behavior no timing
- Behavioral
 - System at I/O level
 - Timing information is provided
 - Internal details missing
- Structural
 - Gate level description
 - External representation (used by user)
 - Internal representation (inside a computer)

Models are often described using an hierarchy

Modeling Levels				
Modeling level	Circuit description	Signal values	Timing	Application
Function, behavior, RTL	Programming language-like HDL	0, 1	Clock boundary	Architectural and functional verification
Logic	Connectivity of Boolean gates, flip-flops and transistors	0, 1, X and Z	Zero-delay unit-delay, multiple- delay	Logic Verification and test
Switch	Transistor size and connectivity, node capacitances	0, 1 and X	Zero-delay	Logic verification
Timing	Transistor technology data, connectivity, node capacitances	Analog voltage	Fine-grain timing	Timing verification
Circuit	Tech. Data, active/ passive component connectivity	Analog voltage, current	Continuous time	Digital timing and analog circuit verification 5

Logic Models and Definitions

- Combinational circuit models
 - Function expressed as truth-table or cubes
 - Cubes and cube intersection can be used during simulation
- Sequential Circuits
 - Structure represented as a collection of flip-flops feeding combinational logic
 - Time frame expansion is possible
- Binary Decision Diagrams (BDD)

Logic Models and Definitions

- Program model of a circuit
 - Express circuit (gate level) as a program consisting of interconnected logic operations
 - Execute the program to determine circuit output for varying inputs
- RTL model
 - Higher level model of the circuit
- HDL model
 - Examples at this level: Verilog, VHDL

Logic Models and Definitions

Structural model

- External representation in the form of netlist
- Examples of this are: UW, ISCAS, BLIF, etc.
- Keywords used in such representations:
 - Primary Inputs (PI) and Primary Outputs (PO)
 - Gates: AND, OR, NOT, etc.
 - Storage: latch, flip-flop
 - Connections: lines, nets
 - Fanin: number of inputs to a gateFanout : number of lines a signal line feeds
 - Fanout free circuit: every line or gate has a fanout of one

Logic Models and Definitions

- Additional useful terms
 - Graph representation
 - Reconvergent fanouts
 - Stems and branches
 - Logic level/depth in a circuit
 - "levelization" of a circuit

Logic Simulation

Motivation

- Logic simulation is used to verify the correctness of the design and tests
- It avoids building costly hardware
- Can help debug a design in many more ways than the real hardware could
- Understanding simulation will help understand the limitations of the simulation process and the simulator in question

Simulation Defined Simulation refers to modeling of a design, its function and performance A software simulator is a computer program; an emulator is a hardware simulator Simulation is used for design verification: Validate assumptions Verify logic Verify performance (timing) Simulation is used for test generation Types of simulation: Logic or switch level Timing

- Circuit
- Fault

13

True-value Simulation Algorithms

- · Compiled-code simulation
 - Applicable to zero or constant delay combinational logic
 - Also used for cycle-accurate synchronous sequential circuits for logic verification
 - Efficient for highly active circuits, but inefficient for lowactivity circuits
 - High-level (e.g., C language) models can be used

· Event-driven simulation

- Only gates or modules with input events are evaluated (event means a signal change)
- Delays can be accurately simulated for timing verification
- Efficient for low-activity circuits
- Can be extended for fault simulation

Efficiency of Event-driven Simulator

- Simulates events (value changes) only
- Speed up over compiled-code can be ten times or more; in large logic circuits about 0.1 to 10% gates become active for an input change

Summary

- Logic or true-value simulators are essential tools for design verification
- A logic simulator can be implemented using either compiled-code or event-driven method
- Per vector complexity of a logic simulator is approximately linear in circuit size
- Modeling level determines the evaluation procedures used in the simulator

26