ECE-470 Digital Design Il
Logic Simulation

Outline

* Logic Modeling
— Model types
—Models at different levels of abstractions
— Logic models and definitions
¢ Logic Simulation
— What is simulation?
— Design verification
— Circuit modeling
— Determining signal values
— True-value simulation algorithms
— Compiled-code simulation
— Event-driven simulation

Logic Modeling: Model Types

* Functional
— DC behavior — no timing
* Behavioral
— System at I/0 level
— Timing information is provided
— Internal details missing
e Structural
— Gate level description
— External representation (used by user)
— Internal representation (inside a computer)

Models are often described using an hierarchy

Hierarchical Model: A Full-Adder

HA;

inputs: a, b;
outputs:c, f;

AND: A1, (a, b), (c);
AND: A2, (d, e), (f);
OR: 01, (a, b), (d);
NOT: N1, (c), (e);

—] b Carry FA;
__HA1 E F ’ — inputs: A, B, G;

S outputs: Carry, Sum;
HA: HA1, (A, B), (D, E);
HA: HA2, (E, C), (F Sum);
OR: 02, (D, F), (Carry);

Modeling Levels

Modeling Circuit Signal Timing Application
level description values
. . Clock Architectural
Function, ReLamiing 0,1 and functional
behavior, RTL language-like HDL boundary verification
Logic Connectivity of 0,1,X Zero-delay Logic
Boolean gates, andz unit-delay, Verification
flip-flops and multiple- and test
transistors delay
Switch Transistor size 0,1 Zero-delay
and connectivity, and X Logic
node capacitances verification
Timing Transistor technology Analog Fine-grain Timing
data, connectivity, voltage timing verification
node capacitances
Circuit Tech. Data, active/ Analog C.ontlnuous Digital timing
passive component voltage, b EI"d alralog
connectivity current @]

verification

Logic Models and Definitions

* Combinational circuit models
— Function expressed as truth-table or cubes

— Cubes and cube intersection can be used during
simulation

* Sequential Circuits

— Structure represented as a collection of flip-flops
feeding combinational logic

— Time frame expansion is possible

* Binary Decision Diagrams (BDD)

Logic Models and Definitions

* Program model of a circuit

— Express circuit (gate level) as a program consisting
of interconnected logic operations

— Execute the program to determine circuit output
for varying inputs

* RTL model
— Higher level model of the circuit
* HDL model
— Examples at this level: Verilog, VHDL

Logic Models and Definitions

* Structural model
— External representation in the form of netlist
— Examples of this are: UW, ISCAS, BLIF, etc.
— Keywords used in such representations:
* Primary Inputs (PI) and Primary Outputs (PO)
* Gates: AND, OR, NOT, etc.
* Storage: latch, flip-flop
* Connections: lines, nets
* Fanin: number of inputs to a gate
* Fanout : number of lines a signal line feeds
* Fanout free circuit: every line or gate has a fanout of one

Example: BLIF netlist format

BLIF format, mapped using SIS
tool with a library of gates

-.model C17.iscas
.inputs 1GAT(0) 2GAT(1) 3GAT(2) 6GAT(3) 7GAT(4)

.outputs 22GAT(10) 23GAT(9)

.default_input_arrival 0.00 0.00]
default_output_required 0.00 0.00 _‘—D
.default_input_drive 1.98 1.82 —
.default_output_load 0.10

.gate nand2 a=1GAT(0) b=3GAT(2) O=10GAT(6)
.gate nand2 a=3GAT(2) b=6GAT(3) 0=11GAT(5)
.gate nand2 a=11GAT(5) b=2GAT(1) 0=16GAT(8)
.gate nand2 a=10GAT(6) b=16GAT(8) 0=22GAT(10)
.gate nand2 a=11GAT(5) b=7GAT(4) 0=19GAT(7)
.gate nand2 a=16GAT(8) b=19GAT(7) 0=23GAT(9)
.end

Logic Models and Definitions

 Structural model

— Internal representation in the form of tables
* Tables of gates and storage elements (names)
* Tables of connections
* Tables of fanin and fanouts
— Objective is to make the storage and search
processes (integral part of simulation) more efficient
— Knowledge of data structures and algorithms is very
useful

Logic Models and Definitions

* Additional useful terms
— Graph representation
— Reconvergent fanouts
— Stems and branches
— Logic level/depth in a circuit
— “levelization” of a circuit

Logic Simulation

Motivation

* Logic simulation is used to verify the correctness
of the design and tests

* It avoids building costly hardware

* Can help debug a design in many more ways
than the real hardware could

* Understanding simulation will help understand
the limitations of the simulation process and the
simulator in question

Simulation Defined

» Simulation refers to modeling of a design, its function
and performance
* A software simulator is a computer program; an
emulator is a hardware simulator
* Simulation is used for design verification:
— Validate assumptions
— Verify logic
— Verify performance (timing)
* Simulation is used for test generation
* Types of simulation:
— Logic or switch level
— Timing
— Circuit
— Fault

Simulation for Verification

Synthesis

Response| Design Design
analysis | changes |(netlist)

Computed True-value AT
. . '—| Input stimuli
responses simulation

Simulation for Test Generation

Vector 1
Vector N ‘l
—-— > B
0...00

Test

> Sy vectors
{ Diagnostic
data

Modeling for Simulation

* Modules, blocks or components described by
— Input/output (I/0) function
— Delays associated with 1/0 signals
— Examples: binary adder, Boolean gates, resistors and
capacitors
* Interconnects represent
— Ideal signal carriers, or
— Ideal electrical conductors
* Netlist: a format (or language) that describes a
design as an interconnection of modules. Netlist
may use hierarchy

17

Logic Model of MOS Circuit

Vv
DD
a—D, |
o - 4 R ol
L ¢
| C
b T | &&e D, and Dy are
b interconnect or

—| propagation delays

C,, C,and C,are D_is inertial delay of gate

parasitic capacitances

Options for Inertial Delay

(simulation of a NAND gate)

Ir
‘ LI —
2 region
‘g g
g s |
T~
¢ (CMOS) T~
¢ (zero delay) |
<
S .
§ ¢ (unit delay)
E]
X .
£ ¢ (multiple delay) | ™ rise=s, fall=5
2
g X]
S ¢ (minmax delay) | (X I min =2, max =5
0 5 Time units

Signal States

Two-states (0, 1) can be used for purely

combinational logic with zero-delay

Three-states (0, 1, X) are essential for timing hazards

and for sequential logic initialization

Four-states (0, 1, X, Z) are essential for MOS devices

* Analog signals are used for exact timing of digital
logic and for analog circuits

* Determining gate values:

— Use of software logic primitives such as AND, OR, NOT
instructions

— Search the truth table
— Use cubes and cube intersection rules for processing

True-value Simulation Algorithms

¢ Compiled-code simulation
— Applicable to zero or constant delay combinational logic

— Also used for cycle-accurate synchronous sequential
circuits for logic verification

— Efficient for highly active circuits, but inefficient for low-
activity circuits

— High-level (e.g., C language) models can be used

* Event-driven simulation

— Only gates or modules with input events are evaluated
(event means a signal change)

— Delays can be accurately simulated for timing verification

— Efficient for low-activity circuits

— Can be extended for fault simulation

Compiled-code Algorithm

* Step 1: Levelize combinational logic and encode
in a compilable programming language

* Step 2: Initialize internal state variables (flip-
flops)

* Step 3: For each input vector
— Set primary input variables

— Repeat (until steady-state or max. iterations)
* Execute compiled code
— Report or save computed variables

Event-driven Algorithm

Scheduled Activity
events list

t=0| c=0 de

N

2 | d=1,e=0 fg

g=0

Time stack
IS

Time Wheel

Current
time
pointer

Linked list with events

Efficiency of Event-driven Simulator

* Simulates events (value changes) only
* Speed up over compiled-code can be ten times

or more; in large logic circuits about 0.1 to 10%
gates become active for an input change

Steady 0

Steady 0
(no event)

Oto1event

Summary

Logic or true-value simulators are essential tools
for design verification

A logic simulator can be implemented using
either compiled-code or event-driven method
Per vector complexity of a logic simulator is
approximately linear in circuit size

Modeling level determines the evaluation
procedures used in the simulator

