ECE-470 Digital Design II
Testability Measures

Overview

• Testability measures: powerful heuristic used during test generation
 - Purpose and origins
 - SCOAP measures
• Combinational circuit example
• Sources of correlation error
• Sequential circuit example

Purpose: Testability Analysis

• Need approximate measure of:
 - Difficulty of setting internal circuit lines to 0 or 1 by setting PIs
 - Difficulty of observing internal circuit lines by observing POs
• Uses:
 - Analysis of difficulty of testing internal circuit parts – redesign or add special test hardware
 - Guidance for algorithms computing test patterns – avoid using hard-to-control lines
 - Estimation of fault coverage (FC)
 - Estimation of test vector length

Origins

• Control theory
• Rutman 1972 - First definition of controllability
• Goldstein 1979 - SCOAP
 - First definition of observability
 - First elegant formulation
 - First efficient algorithm to compute controllability and observability
• Parker & McCluskey 1975
 - Definition of Probabilistic Controllability
• Brglez 1984 - COP
 - 1st probabilistic measures
• Seth, Pan & Agrawal 1985 - PREDICT
 - 1st exact probabilistic measures

Testability Analysis - Constraints

• Involves circuit topological analysis, but no test vectors and no search algorithm
 - Static analysis
• Linear computational complexity
 - Otherwise, is pointless – might as well use automatic test-pattern generation and calculate:
 • Exact fault coverage
 • Exact test vectors

Types of Measures

• SCOAP – Sandia Controllability and Observability Analysis Program
• Combinational measures:
 - CC0 – Difficulty of setting circuit line to logic 0
 - CC1 – Difficulty of setting circuit line to logic 1
 - CO – Difficulty of observing a circuit line
• Sequential measures:
 - SC0
 - SC1
 - SO
Ranges of SCOAP Measures

- **Controllabilities:**
 1 (easiest) to infinity (hardest)
- **Observabilities:**
 0 (easiest) to infinity (hardest)
- **Combinational measures:**
 - Roughly proportional to # circuit lines that must be set to control or observe given line
- **Sequential measures:**
 - Roughly proportional to # times a flip-flop must be clocked to control or observe given line

Goldstein’s SCOAP Measures

- All PIs have set CC0=1 and CC1=1
- AND gate output 0 controllability:
 $$\text{output_controllability} = \text{min}(\text{input_controllabilities}) + 1$$
- AND gate output 1 controllability:
 $$\text{output_controllability} = \Sigma(\text{input_controllabilities}) + 1$$
- XOR gate output controllability
 $$\text{output_controllability} = \min(\text{controllabilities of each input set}) + 1$$
- Fanout stem observability:
 $$\Sigma \text{ or min (fanout branch observabilities)}$$

Controllability Examples

- **Controllability Example 1**
- **Controllability Example 2**
- **Controllability Example 3**

Observability Examples

- **Observability Example 1**
- **Observability Example 2**
- **Observability Example 3**

- To observe a gate input: Observe output and make other input values non-controlling

- To observe a fanout stem: Observe it through branch with best observability
Error: Stems & Reconvergent Fanout

- SCOAP measures wrongly assume that controlling or observing x, y, z are independent events
 - $CC_0(x)$, $CC_0(y)$, $CC_0(z)$ correlate
 - $CC_1(x)$, $CC_1(y)$, $CC_1(z)$ correlate
 - $CO(x)$, $CO(y)$, $CO(z)$ correlate

Example: Correlation Error

- Exact computation of measures is NP-Complete and impractical
- Italicized (blue) measures show correct values
- SCOAP measures (red) are not italicized
- Each signal line: CC_0, CC_1 (CO)

Levelization Algorithm

- Label each gate with max # of logic levels from primary inputs or with max # of logic levels from primary output
- Assign level #0 to all primary inputs (PIs)
- For each PI fanout:
 - Label that line with the PI level number, &
 - Queue logic gate driven by that fanout
- While queue is not empty:
 - Dequeue next logic gate
 - If all gate inputs have level #'s, label the gate with the maximum of them +1
 - Else, requeue the gate

Example

Controllability Through Level 0

- Circled numbers give level number (CC_0, CC_1)

Controllability Through Level 2

- Circled numbers give level number (CC_0, CC_1)
Sequential Measures Differences

- Combinational
 - Increment CC0, CC1, CO whenever you pass through a gate, either forwards or backwards

- Sequential
 - Increment SC0, SC1, SO only when you pass through a flip-flop, either forwards or backwards, to Q, Q̅, D, C, SET, or RESET

- Both
 - Must iterate on feedback loops until controllabilities stabilize

D Flip-Flop Equations

- Assume a synchronous RESET line
- \(CC1 (Q) = CC1 (D) + CC1 (C) + CC0 (C) + CC0 (RESET) \)
- \(SC1 (Q) = SC1 (D) + SC1 (C) + SC0 (C) + SC0 (RESET) + 1 \)
- \(CC0 (Q) = \min \{ CC1 (RESET) + CC1 (C) + CC0 (C), \)
 \(CC0 (D) + CC1 (C) + CC0 (C) \}\)
- \(SC0 (Q) \) is analogous
- \(CO (D) = CO (Q) + CC1 (C) + CC0 (C) + CC0 (RESET) \)
- \(SO (D) \) is analogous
D Flip-Flop Clock and Reset

- \(CO (\text{RESET}) = CO (Q) + CC1 (Q) + CC1 (\text{RESET}) + CC1 (C) + CC0 (C) \)
- \(SO (\text{RESET}) \) is analogous
- Three ways to observe the clock line:
 1. Set \(Q \) to 1 and clock in a 0 from \(D \)
 2. Set the flip-flop and then reset it
 3. Reset the flip-flop and clock in a 1 from \(D \)
- \(CO (C) = \min \{ CO (Q) + CC1 (Q) + CC0 (D) + CC1 (C) + CC0 (C), \)
 \(CO (Q) + CC1 (Q) + CC1 (\text{RESET}) + CC1 (C) + CC0 (C), \)
 \(CO (Q) + CC0 (Q) + CC0 (\text{RESET}) + CC1 (D) + CC1 (C) + CC0 (C) \) \)
- \(SO (C) \) is analogous

Algorithm 6.2 for Testability Computation

1. For all PIs, \(CC0 = CC1 = 1 \) and \(SC0 = SC1 = 0 \)
2. For all other nodes, \(CC0 = CC1 = SC0 = SC1 = \infty \)
3. Go from PIs to POs, using \(CC \) and \(SC \) equations to compute controllabilities - Iterate on loops until SC stabilizes - convergence guaranteed
4. For all POs, set \(CO = SO = 0, \infty \) for other nodes
5. Work from POs to PIs, Use \(CO, SO, \) and controllabilities to get observabilities
6. Fanout stem \((CO, SO) = \min \) branch \((CO, SO) \)
7. If a \(CC \) or \(SC \) \((CO \) or \(SO) \) is \(\infty \), that node is uncontrollable (unobservable)
Stable Sequential Measures

Final Sequential Observabilities

Test Vector Length Prediction

• First compute testabilities for stuck-at faults
 • \(T(f_{s-a-0}) = CC1(f) + CO(f) \)
 • \(T(f_{s-a-1}) = CC0(f) + CO(f) \)
 • Testability index = \(\log \sum T(f_i) \)

Summary

• Testability approximately measures:
 — Difficulty of setting circuit lines to 0 or 1
 — Difficulty of observing internal circuit lines
 — Examples for computing these values

 • Uses:
 — Analysis of difficulty of testing internal circuit parts
 • Redesign circuit hardware or add special test hardware
 where measures show bad controllability or observability
 — Guidance for algorithms computing test patterns/vectors
 — Estimation of fault coverage (FC) - 3-5 % error
 — Estimation of test vector length

High Level Testability

• Build data path control graph (DPCG) for circuit
• Compute sequential depth - # arcs along path between PIs, registers, and POs
• Improve Register Transfer Level Testability with redesign
Improved RTL Design

(a) Unlatchable implementation.
(b) DFG of unlatchable implementation.
(c) Testable implementation.
(d) DFG of testable implementation.