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Overview  

 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Pipelining 
• Single-Cycle Computer Issues 

• Pipelining concept 

• Pipelined design of Simple Computer 
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Introduction 

 Computer Specification 

• Instruction Set Architecture (ISA) - the specification of a 

computer's appearance to a programmer at its lowest level 

• Computer Architecture - a high-level description of the hardware 

implementing the computer derived from the ISA 

• The architecture usually includes additional specifications such as 

speed/performance, cost, and reliability 

Introduction 

 Simple computer architecture decomposed into: 

• Datapath: performing operations (i.e., data manipulation) 

 A set of registers 

 Microoperations performed on the data stored in the registers 

 A control interface 

• Control unit: controlling datapath operations 

 Programmable & Non-programmable 

Control 
inputs 

Data 

inputs 

Data 

outputs 

Datapath 

Control 
outputs 

Control signals 

Status signals 

Control 
unit 
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 Register file: 

• Four parallel-load regs  

• Two mux-based  
register selectors 

• Register destination  
decoder 

 Microoperation implementation 

• Mux B for external  
constant input 

• Buses A and B with external 
address and data outputs 

• Function Unit: 

 ALU and Shifter with 
Mux F for output select 

 Mux D for external data input 

 Logic for generating status bits:  
V, C, N, Z 

 Datapath Example 

MD select 
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F 
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3 
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Decoder 

Load 
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Load 

Load 

Load enable 

Write 

D data 

D address 

2 

Destination select 

Constant in 

MB select 
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A address 
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R3 

R2 

R1 
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Microoperation: R0 ← R1 + R2 
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V 
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Decoder 

Load 

Load 

Load 

Load 

Load enable 

Write 

D data 

D address 
2 

Destination select 

Constant in 

MB select 

A select 

A address 

B select 

B address 

R3 

R2 

R1 

R0 

Bus D n 

Data In 

I L 
I R 

0 0 

0 1 

Datapath Example: Performing a Microoperation 

 Apply 01 to A select to place  

contents of R1 onto Bus A 

  Apply 10 to B select to place  

contents of R2 onto B data and  

apply 0 to MB select to place  

B data on Bus B 

 
 Apply 0010 to G select to perform 

addition  G = Bus A + Bus B  

 Apply 0 to MF select and 0 to MD 

select to place the value of G onto 

BUS D 

 Apply 00 to Destination select to 

enable the Load input to R0  

 Apply 1 to Load Enable to force the Load 

input to R0 to 1 so that R0 is loaded on 

the clock pulse (not shown) 

 The overall microoperation requires 

1 clock cycle 
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Datapath Example: Key Control Actions for 

Microoperation Alternatives 

Various microoperations: 

 Perform a shift microoperation: 

apply 1 to MF select 

 Use a constant in a micro-operation 

using Bus B:  apply 1 to MB select 

 Provide an address and data for a 

memory or output  write 

microoperation – apply 0 to Load 

enable to prevent register loading 

 Provide an address and obtain data 

for a memory or output read 

microoperation – apply 1 to MD 

select 

 For some of the above, other control 

signals become don't cares 

MD select 
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G 

B 
S 

Shifter 

H 

MUX 

0 

1 

2 

3 

MUX 

0 

1 

2 

3 

0 1 2 3 

Decoder 

Load 

Load 

Load 

Load 

Load enable 

Write 

D data 

D address 
2 

Destination select 

Constant in 

MB select 

A select 

A address 

B select 

B address 

R3 

R2 

R1 

R0 

Bus D n 
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 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Pipelining 
• Single-Cycle Computer Issues 

• Pipelining concept 

• Pipelined design of Simple Computer 

Overview  
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Arithmetic Logic Unit (ALU) 

C i C i  + 
 1 

One stage of 
arithmetic 

circuit 

One stage of 
logic circuit 

2-to-1 
MUX 0 

1 
S 

A i 

B i 

S 0 

S 1 

S 2 

C i 

G i 

A i 

B i 

S 0 

S 1 

A i 

B i 

S 0 

S 1 

C in 

 Decompose the ALU into: 

• An arithmetic circuit & A logic circuit 

• A selector to pick between the two circuits 

 There are only four functions of B 
to select as Y in G = A + Y +Cin: 

 

• 0 

• B 

• B 

• 1 

Arithmetic Circuit 

 Arithmetic circuit design 

• Decompose the arithmetic circuit 
into: 

 An n-bit parallel adder 

 A logic block that selects four 
choices for input B to the adder  

S 1 

S 0 

B 

n 

B input 
logic 

n 
A 

n 

X 

C in 

Y 

n G = 
 X + 

Y + 
 C in 

C out 

n-bit 
parallel 
adder 

Cin = 0 Cin = 1 

G = A 

G = A + 1 

G = A – 1 

G = A + B 

G = A 

G = A + B 

G = A + B + 1 

G = A + B + 1 

Y 

Arithmetic 

operations 
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4-Bit Basic Left/Right Shifter 

 

 
 

 
 
 

 

 

 

 Serial Inputs: 
• IR for right shift 

• IL for left shift 

 

  

  

  

  

  
  

  

 Shift Functions: 
(S1, S0) = 00  Pass B unchanged 

                01  Right shift 

                10  Left shift 

                11  Unused 

B 3 

I R I L 

S 

2 

B 2 
B 1 

B 0 

H 0 H 1 H 2 H 3 

S 

M 
U 
X 

0 1 2 
S 

M 
U 
X 

0 1 2 
S 

M 
U 
X 

0 1 2 
S 

M 
U 
X 

0 1 2 

Barrel Shifter 

 

 

 

 
 

 

 

 

 A rotate is a shift in which the bits shifted out are inserted into the positions 

vacated 

 The circuit rotates its contents left from 0 to 3 positions depending on S: 

S = 00 position unchanged                  S = 10 rotate left by 2 positions 

S = 01 rotate left by 1 positions           S = 11 rotate left by 3 positions 

D 3 

S 0 

3 S 1 S 0 

M 
U 
X 

D 2 D 1 D 0 

Y 0 Y 1 Y 2 Y 3 

S 1 

0 1 2 3 S 1 S 0 

M 
U 
X 

0 1 2 3 S 1 S 0 

M 
U 
X 

0 1 2 3 S 1 S 0 

M 
U 
X 

0 1 2 
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 Large barrel shifters can be constructed using: 

• Layers of multiplexers  

• 2-dimensional array circuits designed at the electronic level 

• Example 8-bit: 

 Layer 1 shifts by 0, 4 

 Layer 2 shifts by 0, 2 

 Layer 3 shifts by 0, 1 

 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Multiple Cycle Hardwired Control 
• Single Cycle Computer Issues 

• Sequential Control Design 

Overview  
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Datapath Representation 

 In the register file: 
• Select inputs for multiplexers 

=> A address & B address  

• Decoder input => D address 

• Load enable => write 

• Input data to the registers => 
D data 

• Multiplexer outputs => A 
data & B data 

 

 The register file now 
appears like a memory 
based on clocked flip-
flops 

 

 FS? 

Address out 

Data out 

Constant in 

MB select 

Bus A 

Bus B 

FS 

V 

C 

N 

Z 

MD select 

n 

D data 

Write 

D address 

A address B address 

A data B data 

2 
m x 

 n 
Register file 

m 

m m 

n 
n 

n 

n 

n 

A B 

Function 
unit 

F 
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MUX B 

1 0 

MUX D 

0 1 

n 

n 
Data in 

Boolean Equations: 

MFi = F3 F2 

Gi = Fi 

Hi = Fi 

FS(3:0) 

MF 

Select 

G 

Select(3:0) 

H 

Select(1:0) Micr ooperation 

0000 0 0000 XX 

0001 0 0001 XX 

0010 0 0010 XX 

0011 0 0011 XX 

0100 0 0100 XX 

0101 0 0101 XX 

0110 0 0110 XX 

0111 0 0111 XX 

1000 0 1 X 00 XX 

1001 0 1 X 01 XX 

1010 0 1 X 10 XX 

1011 0 1 X 11 XX 

1100 1 XXXX 00 

1101 1 XXXX 01 

1110 1 XXXX 10 

F        A  

F      A 1 

 

 

F      A B  

F      A B 1  

F      A B  

F      A B 1  

F      A 1   

F A  

F A    B   

F A    B   

F A     B  

F A  

F B  

F sr B  

F sl B  
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The Control Word 

 The datapath has many control 

input signals, can be organized 

into a control word 

 To execute a microinstruction, we 

apply control word values for a 

clock cycle  

 Control word 

D A AA BA 
M 

B 

FS 
M 

D 

R 

W 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

DA – D Address,  AA – A Address 

BA – B Address,  MB – Mux B 

FS – Function Select,  MD – Mux D 

RW – Register Write 

10 

8 

14 

0 

13 

11 

Bus D 

Constant in 

n 

n 

MUX B 

1 0 

D data Write 

D address 

A address B address 

A data B data 

8 x 
 n 

Register file 

A B 

Function 

unit 

n 

n 

n 

MUX D 

0 1 

n 
n 

Data in 

Bus A 

Bus B 

R W 

12 

AA 

15 

D A 

n 

BA 

9 

Address out 

Data out 

V 

C 

N 

Z 

7 

MD 1 

MB 6 

4 FS 

5 

3 

2 

F      A 

D A ,  AA,  B A MB FS MD R W 

Function Code Function Code Function Code Function Code Function Code 

R 0 000 Register 0 0000 Function 0 No write 0 

R 1 001 Constant 1 0001 Data In 1 Write 1 

R 2 010 0010 

R 3 011 0011 

R 4 100 0100 

R 5 101 0101 

R 6 110 0110 

R 7 111 0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

F A  

F      A 1 

 

 

B  

F      A B 1  

F      A B  

F      A B 1  

F      A 1   

F      A  

F      A B   

F      A B   

F      A B  

F A  

F      B  

F sr B  

F sl B  

 

  

 

  

 

Control Word Encoding 
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Microoperations for the Datapath – Symbolic & 

Binary Representation 

Micr o- 

o p eratio n D A A A B A M B F S M D R W 

0 0 1 0 1 0 011 0 010 1 0 1 

10 0 XX X 110 0 111 0 0 1 

11 1 1 11 XXX 0 000 1 0 1 

00 1 0 00 XXX 1 001 0 0 1 

XX X X XX 011 0 XXX  X X 0 

10 0 XX X XXX X XXX  X 1                 1 

1 0 1 0 0 0 000 0 101 0 0 1 

R 1 R 2 R 3 –  

R 4 s  l R6  

R 7 R 7    1 +  

R 1 R 0    2 +  

Data out R 3  

R 4 D ata in  

R 5     0  

Micr o- 

op eratio n D A A A B A M B F S M D R W 

R 1 R 2 R 3 R e g ister F unction Write 

R 4 — R 6 R e g ister F unction Write 

R 7 R 7 — Re gister Function Write 

R 1 R 0 — Con s tant Write 

—— R 3 R eg i s t e r — — N o Wr it e 

R 4 —— — — Data in Write 

R 5 R 0 R 0 R e g ister F unction Write 

R 1 R 2 R 3 –  F     A B 1 +    + = 

R 4 s l R6  F sl B = 

R 7 R 7    1 +  F     A 1 + = 

R 1 R 0    2 +  F     A B + = 

Data out R 3  

R 4 D ata in  

R 5     0  F     A B  = 

Function 

Datapath  

Simulation 
1 4 7 1 0 4 5 

2 0 7 0 

3 6 0 3 0 

X X 

2 0 7 0 

3 6 0 2 3 0 

14 1 2 0 10 

2 0 0 1 X 

18 18 

1 255 2 

2 

3 

4 12 18 

5 0 

6 

7 8 

clock 

DA 

1 4 

AA 
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BA 

3 6 

Constant_in 2 

MB 

Address_out 

Data_out 

FS 

5 

Status_bits 

Data_in 

MD 

RW 

reg0 0 

reg1 

 reg2 

reg3 

reg4 

reg5 

reg6 

reg7 

7 
8 
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 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Pipelining 
• Single-Cycle Computer Issues 

• Pipelining concept 

• Pipelined design of Simple Computer 

Overview  

Instruction Set Architecture (ISA) for Simple 

Computer (SC) 

 Instructions are stored in RAM or ROM as a program, the addresses 
for instructions are provided by a program counter (PC)  
• Count up or load a new address  

• The PC and associated control logic are part of the Control Unit 

 

 A typical instruction specifies: 
• Operands to use  

• Operation to be performed 

• Where to place the result, or which instruction to execute next 

 

 Executing an instruction  
• Activate the necessary sequence of operations specified by the 

instruction 

• Be controlled by the control unit and performed in: 
 Datapath 

 Control unit 

 External hardware such as memory or input/output 
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ISA Examples 

 RISC (Reduced Instruction Set Computer) 
• Digital Alpha 

• Sun Sparc 

• MIPS RX000 

• IBM PowerPC 

• HP PA/RISC 

 

 CISC (Complex Instruction Set Computer) 
• Intel x86 

• Motorola 68000 

• DEC VAX 

 

 VLIW (Very Large Instruction Word) 
• Intel Itanium  

ISA: Storage Resources 

 "Harvard architecture“:  

    separate instruction and 

data memories 

 

 Permit use of 

single clock cycle per 

instruction 

implementation 

 

 Due  to use of "cache" in  

modern computer 

architectures, it is a fairly 

realistic model 

Instruction 
memory 

2 
15 x  16 

Data 
memory 

2 
15  x  16 

Register file 

8 x  16 

Program counter 

(PC) 
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ISA: Instruction Formats 

 The three formats are: Register, Immediate, and Jump/Branch 

 

 

 

 

 

 

 

 

 

 

 

 

 All formats contain an Opcode field in bits 9 through 15. 

• The Opcode specifies the operation to be performed 

(c) Jump and Branch 

(a) Register 

Opcode 

Destination 
register (DR) 

Source reg- 
ister A (SA) 

Source reg- 
ister B (SB) 

15 9 8 6 5 3 2 0 

(b) Immediate 

Opcode 

Destination 
register (DR) 

Source reg- 
ister A (SA) 

15 9 8 6 5 3 2 0 

Operand (OP) 

Opcode 

Source reg- 
ister A (SA) 

15 9 8 6 5 3 2 0 

Address (AD) 
(Right) 

Address (AD) 
(Left) 

ISA: Instruction Format - Register 

 This format supports: 

• R1 ← R2 + R3 

• R1 ← sl R2 

 Three 3-bit register fields: 

• DR - destination register (R1 in the examples) 

• SA - the A source register (R2 in the first example) 

• SB - the B source register (R3 in the first example and R2 in the 

second example) 

 Why is R2 in the second example SB instead of SA? 

(a) Register 

Opcode 

Destination 

register (DR) 

Source reg- 

ister A (SA) 

Source reg- 

ister B (SB) 

15 9 8 6 5 3 2 0 
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ISA: Instruction Format - Immediate 

(b) Immediate 

Opcode 

Destination 

register (DR) 

Source reg- 

ister A (SA) 

15 9 8 6 5 3 2 0 

Operand (OP) 

 This format supports: 

• R1 ← R2 + 3 

 The B Source Register field is replaced by an Operand field OP 

specifying a constant. (3-bit constant, values from 0 to 7) 

 The constant: 

• Zero-fill (on the left of) the operand to form 16-bit constant 

• 16-bit representation for values 0 through 7 

ISA: Instruction Format - Jump & Branch 

 This instruction supports changes in the sequence of instruction 
execution by adding an extended, 6-bit, signed 2’s-complement 
address offset to the PC value 

 

 The SA field: permits jumps and branches on N or Z based on 
the contents of Source register A  

 

 The Address (AD) field (6-bit) replaces the DR and SB fields 

• Example: Suppose that a jump for the Opcode and the PC contains 
45 (0…0101101) and AD contains -12 (110100). Then the new PC 
value will be: 
0…0101101 + (1…110100) = 0…0100001   (i.e.,  45 + (-12) = 33)    

(c) Jump and Branch 

Opcode 

Source reg- 

ister A (SA) 

15 9 8 6 5 3 2 0 

Address (AD) 

(Right) 

Address (AD) 

(Left) 
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ISA: Instruction Specifications 
Instr u ctio n O pc ode Mnem on ic Form a t D escrip tion 

St a t u s 

Bits 

Move A 0000000 
MO V A RD ,RA R [DR]  R[SA ] N , Z 

Increment 0000001 
INC R D , RA R[DR]  R [ SA] + 1 N , Z 

Add 0000010 
ADD R D , RA,RB R [DR]  R[SA ] + R[ SB] N , Z 

Subtr a ct 0000101 
SUB R D , RA,RB R [DR]  R[SA ] [ SB] N , Z 

D e crement 0000110 
DEC R D , RA R[DR]  R[SA ]  1 N , Z 

AND 0001000 
AND R D , RA,RB R [DR]  R[SA ] R[SB ] N , Z 

O R 0001001 OR RD ,RA,RB R[DR]  R[SA ] R[SB ] N , Z 

Exclusive OR 0001010 XOR R D , RA,RB R [DR]  R[SA ]  R[SB] N ,  Z 

NO T 0001011 
NO T R D , RA R[DR]  N, Z R[SA ] 

R 

Move B 0001100 MO VB RD ,RB R [DR]  R[SB] 

Shift Right 0001101 SHR R D , RB R[DR]  sr  R[SB] 

Shift Left 0001110 SHL R D , RB R[DR]  sl R[SB] 

Load Imm e diate 1001100 LDI R D , O P R[DR]  zf OP 

Add Immediate 1000010 ADI R D , RA,OP R [DR]  R[SA] + zf OP 

Load 0010000 LD RD ,RA R [DR]  M[ R[SA] ] 

Store 0100000 ST RA,RB M [R[SA]]  R[SB] 

Branch on Zero 1100000 BRZ R A,AD if (R[ S A] =  0) PC  PC  + s e  A D 

Branch on Negative 1100001 BRN R A,AD if (R[ S A] <  0) PC  PC  + s e  A D 

J u mp 1110000 JMP R A P C  R[SA ] 

ISA: Example Instructions and Data in Memory 

Memory Representation of Instruction and Data 

D ecimal 

Ad d r ess 
Memory Contents 

Decimal 

Opcode Other Field Operation 

25 00001 01 001  010 011 5 (Subtract) DR:1, SA:2, SB:3 R1   R2  R3 

35 01000 00 000  100 101 32 (Store ) S A:4, SB:5 M[ R4]   R5 

45 10000 10 010  111 011 66 (Add 

Im mediate) 

DR: 2 , S A : 7 , OP :3 R 2   R7  

55 11000 00 101  110 100 96 (Branch 

on  Z e ro ) 

AD: 44, SA:6 If R6 = 0, 
PC   PC  20 

70 000 0000 00110  0 000 Data = 1 92. After  execution of instruction in 35, 
Data = 8 0 . 
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 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Pipelining 
• Single-Cycle Computer Issues 

• Pipelining concept 

• Pipelined design of Simple Computer 

Overview  

 Based on the ISA defined, 

design a computer architecture 

to support the ISA 

 The architecture is to fetch and 

execute each instruction in a 

single clock cycle 

Single-Cycle 

Hardwired  

Control: 

Bus A Bus B 

Address out 

Data out MW 

Data in 

MUX B 

1 0 

MUX D 

0 1 

DATAPATH 

RW 
DA 

AA 

Constant 
in 

BA 

MB 

FS 

V 

C 

N 

Z 

Function 
unit 

A B 

F 

MD 
Bus D 

IR(2:0) 

Data_in  Address 

Data 
memory 

Data out 

Register 
file 

D 

A B 

Instruction 
memory 

Address 

Instruction 

Zero fill 

D 
A 

B 
A 

A 
A 

F 
S 

M 
D 

R 
W 

M 
W 

M 
B 

Instruction decoder 

J 
B 

Extend 

L 

P B 
C 

Branch 
Control 

V 
C 
N 
Z 

J 
B L 

P B 
C 

IR(8:6) || IR(2:0) 

PC 

CONTROL 
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The Control Unit 

 Datapath: the Data Memory has been attached to the Address 

Out, Data Out, and Data In lines of the Datapath. 

 

 Control Unit:  

• The MW input to the Data Memory is the Memory Write signal from 

the Control Unit. 

• The Instruction Memory address input is provided by the PC and its 

instruction output feeds the Instruction Decoder. 

• Zero-filled IR(2:0) becomes Constant In 

• Extended IR(8:6) || IR(2:0) and Bus A are address inputs to the PC. 

• The PC is controlled by Branch Control logic 

Program Counter (PC) Function 

 PC function is based on instruction specifications involving jumps 

and branches: 

 

 

 

• The first two transfers require addition to the PC of:   

 Address Offset = Extended IR(8:6) || IR(2:0)  

• The third transfer requires that the PC be loaded with:   

 Jump Address = Bus A = R[SA] 

 

 In addition to the above register transfers, the PC must implement 

the counting function:   

• PC ←  PC + 1 

Branch on Zero BRZ if (R[ S A] =  0) PC 

← 
 PC  + s e   A D 

Branch on Negative BRN if (R[ S A] <  0) PC  PC  + s e  A D 

J u mp JMP P C  R[SA ] 

← 

← 
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PC Function (Contd.) 

 Branch Control determines the PC transfers based on five 

inputs: 

• N,Z – negative and zero status bits 

• PL – load enable for the PC 

• JB – Jump/Branch select: If JB = 1, Jump, else Branch 

• BC  –  Branch Condition select: If BC = 1, branch for N = 1, else 

branch for Z = 1.  

  
PL JB BC PC Operation 

0 X X Count Up 

1 1 X Jump 

1 0 1 Branch on Negative (else Count Up) 

1 0 0 Branch on Zero (else Count Up) 

Instruction Decoder 

 Converts the instruction into the signals necessary to 
control the computer during the single cycle execution, 
combinational 
• Inputs: the 16-bit Instruction 

• Outputs: control signals 

 DA, AA, and BA: Register file addresses (IR (8:0)) 

• simply pass-through signals:  DA = DR, AA = SA, and BA = SB 

 FS: Function Unit Select 

 MB and MD: Multiplexer Select Controls 

 RW and MW: Register file and Data Memory Write Controls 

 PL, JB, and BC: PC Controls 

 Observe that for other than branches and jumps, FS = 
IR(12:9)  
• The other control signals should depend as much as possible on 

IR(15:13) 
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Instruction Decoder (Contd.) 

T ruth T a ble for Instruction Decoder Logic 

Instruction Function T ype 

Instruction Bits 

15 14 13 9 

1. Function unit operations using 

registers 

0       0       0 X 

2. Memory read 0 0 1 X 

3. Memory write 0 1 0 X 

4. Function unit operations using 

register and constant 

1       0       0 X 

5. Conditional branch on zero (Z) 1 1 0 0          X 

6. Conditional branch on negative  

(N) 

1 1 0 1 

7. Unconditional J     ump 1 1 1 X         X 

Contr ol W o r d  Bits 

M B M D R W M W P L J B B C 

0       0      1       0 0 X     X 

0       1      1       0 0 X     X 

0 X 0      1 0 X     X 

1        0      1      0 0 X     X 

X 0 0      1      0      0 

X      X 0 0      1      0      1 

X 0 0      1      1 X 

Instruction Decoder (Contd.) 

 Instruction types are based on the control blocks and the 
seven control signals to be generated (MB, MD, RW, 
MW, PL, JB, BC): 

 
• Datapath and Memory Control (types 1-4)  

 Mux B 

 Memory and Mux D 

 

• PC Control (types 5-7)  
 Bit 15 = Bit 14 = 1 =>  PL 

 Bit 13 => JB. 

 Bit 9 was use as BC which contradicts FS = 0000 needed for 
branches.  To force FS(0) to 0 for branches, Bit 9 into FS(0) is 
disabled by PL. 
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Instruction Decoder (Contd.) 

 The end result by use of the types, careful assignment of codes, 

and use of don't cares, yields very simple logic: 

 

 This completes the 

design of most of the  

essential parts of 

the single-cycle  

simple computer 

 

19 – 17 

DA 

16 – 14 

AA 

13 – 11 

BA 

10 

MB 

9 – 6 

FS 

5 

MD 

4 

RW 

3 

MW 

2 

PL 

1 

JB 

0 

BC 

Instruction 

Opcode DR SA SB 

Control word 

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0 

Example Instruction Execution 

 Decoding, control inputs and paths shown for 

ADI, LD and BRZ  on next 6 slides 
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Decoding for ADI 

19 – 17 

DA 

16 – 14 

AA 

13 – 11 

BA 

10 

MB 

9 – 6 

FS 

5 

MD 

4 

RW 

3 

MW 

2 

PL 

1 

JB 

0 

BC 

Instruction 

Opcode DR SA SB 

Control word 

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0 

1  0  0   0   0  1  0 

1 1 0 0 1 0 0 0 0 0 0 

Bus A Bus B 

Address out 

Data out MW 

Data in 

MUX B 

1 0 

MUX D 

0 1 

DATAPATH 

RW 
DA 

AA 

Constant 
in 

BA 

MB 

FS 

V 

C 

N 

Z 

Function 
unit 

A B 

F 

MD 
Bus D 

IR(2:0) 

Data in Address 

Data 
memory 

Data out 

Register 
file 

D 

A B 

Instruction 
memory 

Address 

Instruction 

Zero fill 

D 
A 

B 
A 

A 
A 

F 
S 

M 
D 

R 
W 

M 
W 

M 
B 

Instruction decoder 

J 
B 

Extend 

L 

P B 
C 

Branch 
Control 

V 
C 
N 
Z 

J 
B L 

P B 
C 

IR(8:6) || IR(2:0) 

PC 

CONTROL 
1 1 

0
 0

 1
 0

 

0 0 0 0 0 
0 0 1 0 

1 

0 

1 

0 

0 0 0 

+ 

No  

Write 

Increment  

PC 

Control Inputs and  

Paths for ADI 
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Decoding for LD 

19 – 17 

DA 

16 – 14 

AA 

13 – 11 

BA 

10 

MB 

9 – 6 

FS 

5 

MD 

4 

RW 

3 

MW 

2 

PL 

1 

JB 

0 

BC 

Instruction 

Opcode DR SA SB 

Control word 

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0 

0  0  1   0   0  0  0 

0 1 0 0 0 0 1 0 0 1 0 

Bus A Bus B 

Address out 

Data out MW 

Data in 

MUX B 

1 0 

MUX D 

0 1 

DATAPATH 

RW 
DA 

AA 

Constant 
in 

BA 

MB 

FS 

V 

C 

N 

Z 

Function 
unit 

A B 

F 

MD 
Bus D 

IR(2:0) 

Data in Address 

Data 
memory 

Data out 

Register 
file 

D 

A B 

Instruction 
memory 

Address 

Instruction 

Zero fill 

D 
A 

B 
A 

A 
A 

F 
S 

M 
D 

R 
W 

M 
W 

M 
B 

Instruction decoder 

J 
B 

Extend 

L 

P B 
C 

Branch 
Control 

V 
C 
N 
Z 

J 
B L 

P B 
C 

IR(8:6) || IR(2:0) 

PC 

CONTROL 
0 1 

0
 0

 0
 0

 

1 0 0 1 0 
0 0 0 0 

0 

1 

1 

0 

0 1 0 

No Write 

Increment 

PC 

Control Inputs and  

Paths for LD 
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Decoding for BRZ 

19 – 17 

DA 

16 – 14 

AA 

13 – 11 

BA 

10 

MB 

9 – 6 

FS 

5 

MD 

4 

RW 

3 

MW 

2 

PL 

1 

JB 

0 

BC 

Instruction 

Opcode DR SA SB 

Control word 

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0 

1 1  0   0   0  0  0 

1 0 0 0 0 0 0 1 0 0 0 

Bus A Bus B 

Address out 

Data out MW 

Data in 

MUX B 

1 0 

MUX D 

0 1 

DATAPATH 

RW 
DA 

AA 

Constant 
in 

BA 

MB 

FS 

V 

C 

N 

Z 

Function 
unit 

A B 

F 

MD 
Bus D 

IR(2:0) 

Data in Address 

Data 
memory 

Data out 

Register 
file 

D 

A B 

Instruction 
memory 

Address 

Instruction 

Zero fill 

D 
A 

B 
A 

A 
A 

F 
S 

M 
D 

R 
W 

M 
W 

M 
B 

Instruction decoder 

J 
B 

Extend 

L 

P B 
C 

Branch 
Control 

V 
C 
N 
Z 

J 
B L 

P B 
C 

IR(8:6) || IR(2:0) 

PC 

CONTROL 
1 0 

0
 0

 0
 0

 

0 1 0 0 0 
0 0 0 0 

1 

0 

0 

0 

1 0 0 

No Write 

Branch on 

Z 

No Write 

Control Inputs and  

Paths for BRZ 
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 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Pipelining 
• Single-Cycle Computer Issues 

• Pipelining concept 

• Pipelined design of Simple Computer 

Overview  

Single-Cycle Computer Issues 

 Shortcoming of Single Cycle Design 

• Complexity of instructions executable in a single cycle is limited 

• Accessing both an instruction and data from a simple single 

memory impossible 

• A long worst case delay path limits clock frequency and the rate of 

performing instructions 

 

 Handling of Shortcomings 

• The first two shortcomings can be handled by the multiple-cycle 

computer  (not covered in these slides) 

• The third shortcoming is dealt with by using a technique 

called pipelining 
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Pipelining a digital system 

 Key idea: break big computation into pieces 

 

 

 

 

 Separate each piece with a pipeline register 

1ns 

200ps 200ps 200ps 200ps 200ps 

Pipeline 

Register 

Pipelining a digital system 

 Why do this?  Because it's faster for repeated 

computations 

1ns 

Non-pipelined: 

1 operation finishes 

every 1ns  

200ps 200ps 200ps 200ps 200ps 

Pipelined: 

1 operation finishes 

every 200ps  
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 Pipelining increases throughput, but not total 

computation time of a task 

• Answer available every 200ps, BUT 

• A single computation still takes 1ns 

 

 Limitations: 

• Computations must be divisible into stage size 

• Pipeline registers add overhead  

Pipelining 

Pipelining 

 Pipelining transformation leads to a 

reduction in the critical path, which can be 

exploited to increase the clock speed or to 

reduce power consumption at same speed. 

 

 In parallel processing, multiple outputs are 

computed in parallel in a clock period.  

Therefore, the effective clock speed is 

increased by the level of parallelism. 
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Example: 3-tap FIR digital filter 

Example: 3-tap FIR digital filter 
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The Laundry Analogy 

 Ann, Brian, Cathy, Dave  

each have one load of clothes  

to wash, dry, and fold 

 Washer takes 30 minutes 

 Dryer takes 30 minutes 

 “Folder” takes 30 minutes 

 “Stasher” takes 30 minutes 

to put clothes into drawers 

A B C D 

If we do laundry sequentially... 

30 

T 
a 
s 
k 
 
O 
r 
d 
e 
r 

Time 

A 

30 30 30 30 

B 

30 30 30 

C 

30 30 30 30 

D 

30 30 30 30 

6 PM 7 8 9 10 11 12 1 2 AM 

 Time Required: 8 hours for 4 loads 
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12 2 AM 6 PM 7 8 9 10 11 1 

Time 
30 

A 

C 

D 

B 

30 30 30 30 30 30 
T 
a 
s 
k 
 
O 
r 
d 
e 
r 

To Pipeline, We Overlap Tasks 

 Time Required: 3.5 Hours for 4 Loads 

12 2 AM 6 PM 7 8 9 10 11 1 

Time 
30 

A 

C 

D 

B 

30 30 30 30 30 30 
T 
a 
s 
k 
 
O 
r 
d 
e 
r 

To Pipeline, We Overlap Tasks 

• Pipelining doesn’t help latency of 
single task, it helps throughput of 
entire workload 

• Pipeline rate limited by slowest 
pipeline stage 

• Multiple tasks operating 
simultaneously 

• Potential speedup = Number pipe 
stages 

• Unbalanced lengths of pipe stages 
reduces speedup 

• Time to “fill” pipeline and time to 
“drain” it reduces speedup 
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 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Pipelining 
• Single-Cycle Computer Issues 

• Pipelining concept 

• Pipelined design of Simple Computer 

Overview  

Abstract View of Critical Path 
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Pipelined critical path 

 Critical path is longest path between stage 

registers 

Steps in Instruction Processing 
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Un-pipelined (Non-overlapped) Implementation 

 Consider loads with DF stage 

 

Pipelined Implementation 
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5-stage Pipeline 

 CPU stages 

• IF: Instruction fetch 

• DR: Instruction decode & Register read 

• E: Execute 

• DF: Data fetch (Memory load/store) 

• W: Write Back Registers 

 Another set of mnemonic names 

• IF, ID, E, MEM, WB 

IF DR E DF W 

IF DR E DF W 

IF DR E DF W 

Computer Pipelines 

 Execute billions of instruction, so throughput is 
what matters 

 Throughput versus latency 
• + Throughput increases 

• -  Latency for a single instruction increases  
 May have to wait longer for single instruction to complete 

 Allows much faster clock cycle 

 RISC pipeline architecture features: 
• All instructions same length 

• Registers located in same place in instruction format 

• Memory operands only in loads and stores 
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Summary 

 Concept of Datapath for implementing 

computer microinstructions 

 Control word provides a means of organizing 

the control of the microoperations 

 Concept of ISA and instruction formats and 

operations of Simple Computer (SC) 

 Pipelining 

For Adventurers 

 I have a VHDL implementation of the Single Cycle 

Computer (SCC) described in this presentation. It’s 

verified via simulation and actual hardware 

implementation on an FPGA (Spartan-6) 

 If you are interested in studying it via simulation: 

• Download and install the free Aldec-HDL simulator as 

described here: 

 http://dejazzer.com/ee478/labs/lab1_aldec_tutorial.pdf 

• Then, simulate the SCC using the VHDL source code 

available for download here: 

 http://dejazzer.com/ee478/labs/lab11_files.zip 

http://dejazzer.com/ee478/labs/lab1_aldec_tutorial.pdf
http://dejazzer.com/ee478/labs/lab1_aldec_tutorial.pdf
http://dejazzer.com/ee478/labs/lab11_files.zip
http://dejazzer.com/ee478/labs/lab11_files.zip

