
1 

EE-379 Embedded Systems and Applications 
Intro to ARM Cortex-M3 (CM3) and LPC17xx MCU 

Cristinel Ababei 
Department of Electrical Engineering, University at Buffalo 

Spring 2013 
Note: This course is offered as EE 459/500 in Spring 2013 

• ARM Cortex-M3 processor 

• NXP LPC17xx microcontroller unit (MCU) 

Outline 



2 

Cortex-M3 Processor 

• RISC general purpose 32-bit microprocessor, released 
2006 

• Cortex-M3 differs from previous generations of ARM 
processors by defining a number of key peripherals as 
part of the core: 
– interrupt controller 
– system timer 
– debug and trace hardware (including external interfaces) 

• This enables for real-time operating systems and 
hardware development tools such as debugger 
interfaces be common across the family of processors 

• Various Cortex-M3 based microcontroller families differ 
significantly in terms of hardware peripherals and 
memory 

Cortex-M3 Processor 
• Greater performance efficiency: more work to be done 

without increasing the frequency or power requirements 
– Implements the new Thumb-2 instruction set architecture 

• 70% more efficient per MHz than an ARM7TDMI-S processor 
executing Thumb instructions 

• 35% more efficient than the ARM7TDMI-S processor executing ARM 
instructions for Dhrystone benchmark 

• Low power consumption: longer battery life, especially 
critical in portable products including wireless networking 
applications 

• Improved code density: code fits in even the smallest 
memory footprints 

• Core pipeline has 3 stages 
– Instruction Fetch 
– Instruction Decode 
– Instruction Execute 



3 

Simplified Cortex-M3 Architecture 

Simplified Cortex-M3 Architecture 



4 

Cortex-M3 Processor Architecture 

• Harvard architecture: it uses separate interfaces to 
fetch instructions (Inst) and (Data) 

• Processor is not memory starved: it permits accessing 
data and instruction memories simultaneously 

• From CM3 perspective, everything looks like memory 
– Only differentiates between instruction fetches and data 

accesses 

• Interface between CM3 and manufacturer specific 
hardware is through three memory buses: 
– ICode, DCode, and System (for peripherals), which are 

defined to access different regions of memory 

Cortex-M3 Processor 

• Cortex-M3 is a load/store architecture with 
three basic types of instructions 

• register-to-register operations for 
processing data 

• memory operations which move data 
between memory and registers 

• control flow operations enabling 
programming language control flow such as 
if and while statements and procedure calls 



5 

Cortex-M3 Pipeline 

Instruction Prefetch & Execution 



6 

Processor Modes 

Operating Modes 



7 

Exceptions 

Processor Register Set 

• Cortex-M3 core has 16 user-visible registers  
– All processing takes place in these registers 

• Three of these registers have dedicated functions  
– program counter (PC) - holds the address of the next 

instruction to execute 
– link register (LR) - holds the address from which the 

current procedure was called 
– “the” stack pointer (SP) - holds the address of the 

current stack top (CM3 supports multiple execution 
modes, each with their own private stack pointer).  

• Processor status register (PSR) which is implicitly 
accessed by many instructions 



8 

Processor Register Set 

Program Memory Model 

• RAM for an executing program is divided into three regions 
– Data in RAM are allocated during the link process and initialized by 

startup code at reset 
– The (optional) heap is managed at runtime by library code 

implementing functions such as the malloc and free which are part 
of the standard C library 

– The stack is managed at runtime by compiler generated code which 
generates per-procedure-call stack frames containing local variables 
and saved registers 



9 

Cortex-M3 Memory Address Space 

• ARM Cortex-M3 processor has 
a single 4 GB address space 

• The SRAM and Peripheral 
areas are accessed through 
the System bus 

• The “Code” region is accessed 
through the ICode 
(instructions) and DCode 
(constant data) buses 

Memory 
Map 



10 

Instruction Set Architecture (ISA) 

• Instruction set 

– Addressing modes 

– Word size 

– Data formats 

– Operating modes 

– Condition codes 

Major Elements of ISA 
32-bits 32-bits 

Endianess 

 
 mov r0, #1 
 
 ld  r1, [r0,#5] 
 
      r1=mem((r0)+5) 

 
 bne loop 
 
 subs r2, #1 

Endianess 



11 

Addressing: Big Endian vs Little Endian 

• Endian-ness: ordering of bytes within a word 
– Little - increasing numeric significance with increasing memory 

addresses 
– Big – The opposite, most significant byte first 
– MIPS is big endian, x86 is little endian 

Instruction Encoding 

• Instructions are encoded in machine language 
opcodes 

Instructions 
movs r0, #10 
 
movs r1, #0 

Register Value      Memory Value 
001|00|000|00001010 (LSB) (MSB) 
(msb)         (lsb) 0a 20 00 21 
001|00|001|00000000 

A
R

M
v7

 A
R

M
 



12 

Traditional ARM instructions 

• Fixed length of 32 bits 

• Commonly take two or three operands 

• Process data held in registers 

• Shift & ALU operation in single clock cycle 

• Access memory with load and store instructions only 
– Load/Store multiple register 

• Can be extended to execute conditionally by adding 
the appropriate suffix 

• Affect the CPSR status flags by adding the ‘S’ suffix to 
the instruction 

Thumb-2 Instruction Set 
• Thumb-2 instruction set is a superset of the previous 16-bit Thumb 

instruction set 
• Provides  

– A large set of 16-bit instructions, enabling 2 instructions per memory 
fetch 

– A small set of 32-bit instructions to support more complex operations 

• Specific details of this ISA not our focus (we’ll mostly program in C) 
 



13 

16bit Thumb-2 
• Some of the changes used to reduce the length of the 

instructions from 32 bits to 16 bits 
– reduce the number of bits used to identify the register 

• less number of registers can be used 

– reduce the number of bits used for the immediate value 
• smaller number range 

– remove options such as ‘S’ 
• make it default for some instructions 

– remove conditional fields (N, Z, V, C) 
– no conditional executions (except branch) 
– remove the optional shift (and no barrel shifter operation 

• introduce dedicated shift instructions 

– remove some of the instructions 
• more restricted coding 

Thumb-2 Implementation 



14 

32bit Instruction Encoding 

ARM and 16-bit Instruction Encoding 



15 

Thumb 
Instruction 

Set 

• See 4_THUMB_Instr_Set_pt3.pdf included in lab1_files.zip 

Application Program Status Register (APSR) 



16 

Updating the APSR 

• SUB Rx, Ry 
– Rx = Rx - Ry 
– APSR unchanged 

• SUBS 
– Rx = Rx - Ry 
– APSR N or Z bits might be set 

• ADD Rx, Ry 
– Rx = Rx + Ry 
– APSR unchanged 

• ADDS 
– Rx = Rx + Ry 
– APSR C or V bits might be set 

Overflow and Carry in APSR 

 

unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in); 

 

signed_sum = SInt(x) + SInt(y) + UInt(carry_in); 

 

result = unsigned_sum<N-1:0>; // == signed_sum<N-1:0> 

 

carry_out = if UInt(result) == unsigned_sum then ’0’ else ’1’; 

 

overflow = if SInt(result) == signed_sum then ’0’ else ’1’; 



17 

Conditional Execution 

Conditional Execution 



18 

Conditional Execution and Flags 

Conditional execution examples 



19 

ARM Instruction Set 

Data Processing Instructions 

• Arithmetic and logical operations 

• 3-address format: 

– Two 32-bit operands (op1 is register, op2 is 
register or immediate) 

– 32-bit result placed in a register 

• Barrel shifter for op2 allows full 32-bit shift 
within instruction cycle 



20 

Data Processing Instructions 

• Arithmetic operations: 

– ADD, ADDC, SUB, SUBC, RSB, RSC 

• Bit-wise logical operations: 

– AND, EOR, ORR, BIC 

• Register movement operations: 

– MOV, MVN 

• Comparison operations: 

– TST, TEQ, CMP, CMN 

Data Processing Instructions 



21 

Data Processing Instructions 

Multiply Instructions 

• Integer multiplication (32-bit result) 

• Long integer multiplication (64-bit result) 

• Built in Multiply Accumulate Unit (MAC) 

• Multiply and accumulate instructions add 
product to running total 



22 

Multiply Instructions 

Data Transfer Instructions 

• Load/store instructions 
• Used to move signed and unsigned 
• Word, Half Word and Byte to and from registers 
• Can be used to load PC (if target address is beyond 

branch instruction range) 



23 

Addressing Modes 

• Offset Addressing 
– Offset is added or subtracted from base register 
– Result used as effective address for memory access 
– [<Rn>, <offset>] 

• Pre-indexed Addressing 
– Offset is applied to base register 
– Result used as effective address for memory access 
– Result written back into base register 
– [<Rn>, <offset>]! 

• Post-indexed Addressing 
– The address from the base register is used as the EA 
– The offset is applied to the base and then written back 
– [<Rn>], <offset> 

<offset> options 

• An immediate constant 

– #10 

• An index register 

– <Rm> 

• A shifted index register 

– <Rm>, LSL #<shift> 



24 

Block Transfer Instructions 

Swap Instruction 



25 

Modifying the Status Registers 

Software Interrupt 



26 

Branching Instructions 

• Branch (B):  

– jumps forwards/backwards up to 32 MB 

• Branch link (BL): 

– same + saves (PC+4) in LR 

• Suitable for function call/return 

• Condition codes for conditional branches 

Branching Instructions 



27 

IF-THEN Instruction 

Barrier instructions 



28 

Unified Assembly Language 
• UAL supports generation of either Thumb-2 or ARM 

instructions from the same source code 
– same syntax for both the Thumb code and ARM code 
– enable portability of code for different ARM processor 

families 

• Interpretation of code type is based on the directive 
listed in the assembly file 
 

• Example: 
– For GNU Assembler, the directive for UAL is 

 .syntax unified 
– For ARM assembler, the directive for UAL is 

 THUMB 

Example 1 

data: 

        .byte 0x12, 20, 0x20, -1 

func: 

        mov r0, #0 

        mov r4, #0 

        movw    r1, #:lower16:data 

        movt    r1, #:upper16:data 

top:    ldrb    r2, [r1],1 

        add r4, r4, r2 

        add r0, r0, #1 

        cmp r0, #4 

        bne top 

 



29 

There are similar entries for 
move immediate, move shifted 
(which actually maps to different  
instructions) etc. 

From ARM 
Architecture 

Reference Manual 



30 

int counter; 

int Counter_Inc(void) {  

return counter ++; 

} 

Resulting (annotated) assembly language with 
corresponding machine code: 
 

Counter_Inc: 

0: f240 0300   movw r3 , #:lower16:counter    // r3 = &counter 

4: f2c0 0300   movt r3 , #:upper16:counter 

8: 6818        ldr  r0 , [r3 , #0]            // r0 = *r3 

a: 1c42        adds r2 , r0  , #1             // r2 = r0 + 1 

c: 601a        str  r2 , [r3 , #0]            // *r3 = r2 

e: 4740        bx   lr                        // return r0 

Example 2 

• Two 32-bit instructions (movw, movt) are used to load 
the lower/upper halves of the address of counter 
(known at link time, and hence 0 in the code listing) 

• Then, three 16-bit instructions load (ldr) the value of 
counter, increment (adds) the value, and write back 
(str) the updated value 

• Finally, the procedure returns the original counter 

 

• Key points: 
– Cortex-M3 utilizes a mixture of 32-bit and 16-bit 

instructions (mostly the latter) and the core interacts with 
memory solely through load and store instructions 

– While there are instructions that load/store groups of 
registers (in multiple cycles) there are no instructions that 
directly operate on memory locations 



31 

How does an assembly language program  
get turned into a executable program image? 

Assembly 
files (.s) 

Object 
files (.o) 

as 
(assembler) 

ld 
(linker) 

 
 

 
Memory 
layout 

Linker 
script (.ld) 

Executable 
image file 

Binary program 
file (.bin) 

Disassembled 
code (.lst) 

An ARM assembly language program for GNU 

 .equ STACK_TOP, 0x20000800  
 .text     
 .syntax unified    
 .thumb     
 .global _start    
 .type start, %function   
 
_start:      
 .word STACK_TOP, start   
start:      
 movs r0, #10    
 movs r1, #0    
loop:      
 adds r1, r0    
 subs r0, #1    
 bne  loop    
deadloop:     
 b    deadloop    
 .end     
 



32 

What information does the disassembled file provide? 

 .equ STACK_TOP, 0x20000800  
 .text 
 .syntax unified 
 .thumb 
 .global _start 
 .type start, %function 
 
_start: 
 .word STACK_TOP, start 
start: 
 movs r0, #10 
 movs r1, #0 
loop: 
 adds r1, r0 
 subs r0, #1 
 bne  loop 
deadloop: 
 b    deadloop 
 .end 
 
 

example1.out:     file format elf32-littlearm 
 
 
Disassembly of section .text: 
 
00000000 <_start>: 
   0: 20000800  .word 0x20000800 
   4: 00000009  .word 0x00000009 
 
00000008 <start>: 
   8: 200a       movs r0, #10 
   a: 2100       movs r1, #0 
 
0000000c <loop>: 
   c: 1809       adds r1, r1, r0 
   e: 3801       subs r0, #1 
  10: d1fc       bne.n c <loop> 
 
00000012 <deadloop>: 
  12: e7fe       b.n 12 <deadloop> 
 

all: 
 arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o 
 arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o 
 arm-none-eabi-objcopy -Obinary example1.out example1.bin 
 arm-none-eabi-objdump -S example1.out > example1.lst 

 .equ STACK_TOP, 0x20000800 /* Equates symbol to value */ 
 .text    /* Tells AS to assemble region */ 
 .syntax unified   /* Means language is ARM UAL */ 
 .thumb    /* Means ARM ISA is Thumb */ 
 .global _start   /* .global exposes symbol */ 
     /* _start label is the beginning */ 
     /* ...of the program region */ 
 .type start, %function  /* Specifies start is a function */ 
     /* start label is reset handler */ 
_start:      
 .word STACK_TOP, start  /* Inserts word 0x20000800 */ 
     /* Inserts word (start) */ 
start:      
 movs r0, #10    
 movs r1, #0    
loop:      
 adds r1, r0    
 subs r0, #1    
 bne  loop    
deadloop:     
 b    deadloop    
 .end 
 

Elements of an assembly program? 



33 

How does a mixed C/Assembly program  
get turned into a executable program image? 

Assembly 
files (.s) 

Object 
files (.o) 

as 
(assembler) 

gcc 
(compile 
+ link) 

 
 

 
Memory 
layout 

Linker 
script (.ld) 

Executable 
image file 

Binary program 
file (.bin) 

Disassembled 
Code (.lst) 

ld 
(linker) 

Library object 
files (.o) 

C files (.c) 

Nested Vector Interrupt Controller (NVIC) 

• A programmable device that sits between the CM3 core 
and the microcontroller 

• CM3 uses a prioritized vectored interrupt model – the 
vector table is defined to reside starting at memory 
location 0 

• First 16 entries in this table are defined for all Cortex-M3 
implementations while the remainder, up to 240, are 
implementation specific 

• NVIC supports dynamic redefinition of priorities with up 
to 256 priority levels 

• Two entries in the vector table are especially important:  
– address 0 contains the address of the initial stack pointer 
– address 4 contains the address of the “reset handler” to be 

executed at boot time 



34 

Nested Vector Interrupt Controller (NVIC) 

• Provides key system control registers including the 
System Timer (SysTick) that provides a regular timer 
interrupt 

• Provision for a built-in timer across the Cortex-M3 
family has the significant advantage of making 
operating system code highly portable – all operating 
systems need at least one core timer for time-slicing 

• Registers used to control the NVIC are defined to reside 
at address 0xE000E000 and are defined by the Cortex-
M3 specification 

• These registers are accessed with the system bus 

• ARM Cortex-M3 processor 

• NXP LPC17xx microcontroller unit (MCU) 

Outline 



35 

Basic Processor Based System 

Cortex-M3 processor vs.  
CM3-based Microcontroller Units 



36 

While there is significant overlap between the families and 
their peripherals, there are also important differences 
In the lab of this course we focus on the NXP’s LPC17xx family 

LPC17xx 
• LPC17xx (of NXP) is an ARM Cortex-M3 based microcontroller  
• The Cortex-M3 is also the basis for microcontrollers from other 

manufacturers including TI, ST, Toshiba,  Atmel, etc. 
• LPC1768 operates at up to a 100 MHz CPU frequency 
• Sophisticated clock system 
• Peripherals include: 

– up to 512 kB of flash memory, up to 64 kB of data memory 
– Ethernet MAC 
– a USB interface that can be configured as either Host, Device, or OTG  
– 8 channel general purpose DMA controller 
– 4 UARTs, 2 CAN channels, 2 SSP controllers, SPI interface  
– 3 I2C interfaces, 2-input plus 2-output I2S interface 
– 8 channel 12-bit ADC, 10-bit DAC, motor control PWM 
– Quadrature Encoder interface, 4 general purpose timers,  
– 6-output general purpose PWM 
– ultra-low power RTC with separate battery supply 
– up to 70 general purpose I/O pins 



37 

LPC1768 

LPC1768 
• LPC1768 microcontrollers are based on the Cortex-M3 

processor with a set of peripherals distributed across three 
buses – Advanced High-performance Bus (AHB) and its two 
Advanced Peripheral Bus (APB) sub-buses APB1 and APB2.  

• These peripherals: 
– are controlled by the CM3 core with load and store instructions 

that access memory mapped registers 
– can “interrupt” the core to request attention through peripheral 

specific interrupt requests routed through the NVIC 

• Data transfers between peripherals and memory can be 
automated using DMA 

• Labs will cover among others: 
– basic peripheral configuration (e.g., lab1 illustrates GPIO 

General Purpose I/O peripherals) 
– how interrupts can be used to build effective software 
– how to use DMA to improve performance and allow processing 

to proceed in parallel with data transfer 



38 

LPC1768 
• Peripherals are “memory-mapped” 

– core interacts with the peripheral hardware by reading and writing peripheral 
“registers” using load and store instructions 

• The various peripheral registers are documented in the user and reference 
manuals 
– documentation include bit-level definitions of the various registers and info on 

how interpret those bits 
– actual physical addresses are also found in the reference manuals 

• Examples of base addresses for several peripherals (see page 14 of the 
LPC17xx user manual):  
0x40010000 UART1 

0x40020000 SPI 

0x40028000 GPIO interrupts 

0x40034000 ADC 

… 

• No real need for a programmer to look up all these values as they are 
defined in the library file lpc17xx.h as: 
LPC_UART1_BASE 

LPC_SPI_BASE 

LPC_GPIOINT_BASE 

LPC_ADC_BASE 

… 

LPC1768 

• Typically, each peripheral has: 

• control registers to configure the peripheral 

• status registers to determine the current 
peripheral status 

• data registers to read data from and write 
data to the peripheral  



39 

LPC1768 
• In addition to providing the addresses of the 

peripherals, lpc17xx.h also provides C language level 
structures that can be used to access each peripheral.  

• For example, the SPI and GPIO ports are defined by the 
following register structures: 

 
typedef struct 

{ 

  __IO uint32_t SPCR; 

  __I  uint32_t SPSR; 

  __IO uint32_t SPDR; 

  __IO uint32_t SPCCR; 

       uint32_t RESERVED0[3]; 

  __IO uint32_t SPINT; 

} LPC_SPI_TypeDef; 

LPC1768 
typedef struct 

{ 

  union { 

    __IO uint32_t FIODIR; 

    struct { 

      __IO uint16_t FIODIRL; 

      __IO uint16_t FIODIRH; 

    }; 

    struct { 

      __IO uint8_t  FIODIR0; 

      __IO uint8_t  FIODIR1; 

      __IO uint8_t  FIODIR2; 

      __IO uint8_t  FIODIR3; 

    }; 

  }; 

  uint32_t RESERVED0[3]; 

  union { 

    __IO uint32_t FIOMASK; 

    struct { 

      __IO uint16_t FIOMASKL; 

      __IO uint16_t FIOMASKH; 

    }; 

    struct { 

      __IO uint8_t  FIOMASK0; 

      __IO uint8_t  FIOMASK1; 

      __IO uint8_t  FIOMASK2; 

      __IO uint8_t  FIOMASK3; 

    }; 

  }; 

 

  union { 

    __IO uint32_t FIOPIN; 

    struct { 

      __IO uint16_t FIOPINL; 

      __IO uint16_t FIOPINH; 

    }; 

    struct { 

      __IO uint8_t  FIOPIN0; 

      __IO uint8_t  FIOPIN1; 

      __IO uint8_t  FIOPIN2; 

      __IO uint8_t  FIOPIN3; 

    }; 

  }; 

  union { 

    __IO uint32_t FIOSET; 

    struct { 

      __IO uint16_t FIOSETL; 

      __IO uint16_t FIOSETH; 

    }; 

    struct { 

      __IO uint8_t  FIOSET0; 

      __IO uint8_t  FIOSET1; 

      __IO uint8_t  FIOSET2; 

      __IO uint8_t  FIOSET3; 

    }; 

  }; 

 union { 

    __O  uint32_t FIOCLR; 

    struct { 

      __O  uint16_t FIOCLRL; 

      __O  uint16_t FIOCLRH; 

    }; 

    struct { 

      __O  uint8_t  FIOCLR0; 

      __O  uint8_t  FIOCLR1; 

      __O  uint8_t  FIOCLR2; 

      __O  uint8_t  FIOCLR3; 

    }; 

  }; 

} LPC_GPIO_TypeDef; 



40 

• The register addresses of the various ports are defined in 
the library (see lpc17xx.h): 
 
#define LPC_APB0_BASE         (0x40000000UL) 

… 

#define LPC_UART1_BASE        (LPC_APB0_BASE + 0x10000) 

#define LPC_SPI_BASE          (LPC_APB0_BASE + 0x20000) 

#define LPC_GPIOINT_BASE      (LPC_APB0_BASE + 0x28080) 

#define LPC_ADC_BASE          (LPC_APB0_BASE + 0x34000) 

… 

#define LPC_GPIO1  ((LPC_GPIO_TypeDef *) LPC_GPIO1_BASE) 

… 

 
• For example, to turn on LED P1.29 on the development 

board, the following code can be used: 
 
LPC_GPIO1->FIOSET = 1 << 29; 

LPC1768 

Memory 

• On-chip flash memory system 
– Up to 512 kB of on-chip flash memory 
– Flash memory accelerator maximizes performance for 

use with the two fast AHB-Lite buses 
– Can be used for both code and data storage 

• On-chip Static RAM 
– Up to 64 kB of on-chip static RAM memory 
– Up to 32 kB of SRAM, accessible by the CPU and all 

three DMA controllers are on a higher-speed bus 
– Devices with more than 32 kB SRAM have two 

additional 16 kB SRAM blocks 



41 

LPC17xx system memory map 

References & Credits 

• Joseph Jiu, The Definitive guide to the ARM 
Cortext-M3, 2007 

• LPC17xx microcontroller user manual 

• Cortex-M3 Processor Technical Reference 
Manual 

• Lab manual (G. Brown, Indiana) 

• EECS 373, UMich 

http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://www.nxp.com/documents/user_manual/UM10360.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://www.cs.indiana.edu/~geobrown/book.pdf
http://www.cs.indiana.edu/~geobrown/book.pdf
http://www.eecs.umich.edu/courses/eecs373/refs.html
http://www.eecs.umich.edu/courses/eecs373/refs.html

