EE-379 Embedded Systems and Applications
Intro to ARM Cortex-M3 (CM3) and LPC17xx MCU

Cristinel Ababei
Department of Electrical Engineering, University at Buffalo
Spring 2013
Note: This course is offered as EE 459/500 in Spring 2013

Outline

* ARM Cortex-M3 processor
* NXP LPC17xx microcontroller unit (MCU)

Cortex-M3 Processor

RISC general purpose 32-bit microprocessor, released
2006

Cortex-M3 differs from previous generations of ARM
processors by defining a number of key peripherals as
part of the core:

— interrupt controller

— system timer

— debug and trace hardware (including external interfaces)
This enables for real-time operating systems and
hardware development tools such as debugger
interfaces be common across the family of processors

Various Cortex-M3 based microcontroller families differ
significantly in terms of hardware peripherals and
memory

Cortex-M3 Processor

Greater performance efficiency: more work to be done
without increasing the frequency or power requirements

— Implements the new Thumb-2 instruction set architecture

¢ 70% more efficient per MHz than an ARM7TDMI-S processor
executing Thumb instructions

* 35% more efficient than the ARM7TDMI-S processor executing ARM
instructions for Dhrystone benchmark

Low power consumption: longer battery life, especially
critical in portable products including wireless networking
applications

Improved code density: code fits in even the smallest
memory footprints

Core pipeline has 3 stages

— Instruction Fetch

— Instruction Decode

— Instruction Execute

Simplified Cortex-M3 Architecture

CM3 Core |,

Interrupts

L o

|

|

|

|

|

|

|

|

|

| Inst Data

: FY A

|

|

I

|

|

| —

I R
| -
1 =
| —
1 -
| w
| z
| —

|

|

|

|

|

Cortex-M3

e [(03]
{_i—? DCode
M S}-‘:;I[‘]l‘]

Simplified Cortex-M3 Architecture

Interrupts

Cortex-M3 i
Processor Core Slystem
- . @
8 c = Register 8
I 5] Es o Bank T
\| Es Syt B8 £ [=
88 256 e =\ Debug | } Trace
= 2 a S system [T
=% E=gi @
2 ALU =
8
c
= I
Memory Interface A
Memory
Instruction Bus === Protection = Data Bus
Unit
Debug
Bus Interconnect b Debug [+ >
Interface
= = = = = = H
d__ - - \ ;
Code Memaory System Private .
Memory and Peripherals Peripherals Optional

Cortex-M3 Processor Architecture

* Harvard architecture: it uses separate interfaces to
fetch instructions (Inst) and (Data)

* Processor is not memory starved: it permits accessing
data and instruction memories simultaneously
From CM3 perspective, everything looks like memory

— Only differentiates between instruction fetches and data
accesses
* Interface between CM3 and manufacturer specific
hardware is through three memory buses:

— ICode, DCode, and System (for peripherals), which are
defined to access different regions of memory

Cortex-M3 Processor

* Cortex-M3 is a load/store architecture with
three basic types of instructions

* register-to-register operations for
processing data

* memory operations which move data
between memory and registers

» control flow operations enabling
programming language control flow such as
if and while statements and procedure calls

Cortex-M3 Pipeline

* The Cortex-M3 Uses the 3-stage pipeline for instruction
executions
— Fetch = Decode = Execute
— Pipeline design allows effective throughput to increase to one
instruction per clock cycle

— Allows the next instruction to be fetched while still decoding or
executing the previous instructions

1st
2nd
3rd
[} | } } f time
Instruction Prefetch & Execution
Byte
Instruction EE—— ! 2 Unaligned 32-bit Thumb-2
memary | instruction in memory
N Ad -~
N+ 4 Bi Az A Executing
N+8 C1 Bz - Decoding
N + 0xC Dy Cz__w— Fetching
Handles mix of 16+32b
nstructions which can
e misaligned in word Instuction Branch speculation
ddress buffer o
N {Inst C1) Pipeline stage
1T
=
. Instiuction —,\ Decads —‘\ Execute
Instruction “mf?ﬂ o) [y nstB A (nsta)

Processor Modes

* The ARM has seven basic operating modes:
— Each mode has access to:
+ Its own stack space and a different subset of registers
— Some operations can only be carried out in a privileged mode

Mode Description
[| Supervisor Entered on reset and when a Software Interrupt
° (SVC) instruction (SWI) is executed
o Entered when a high priority {fast) interrupt is
] FlQ)
£ raised
5 — IRQ Entered when a low priority (normal) interrupt is
2 raised Privileged
] modes
w Abort Used to handle memory access violations
| | Undef Used to handle undefined instructions
System Privileged mode using the same registers as User
mode
e Mode under which most Applications / OS tasks Unprivileged
run mode

Operating Modes
User mode: Exception modes:

— Normal program execution mode — Entered

— System resources unavailable upon exception

— Full access
to system resources

— Mode changed
by exception only
— Mode changed freely

Exception / Pmlauad .
ot hﬂndlsr Operations Stacks
trgsgt) (privilege out of reset) (Main out of reset)
Exception
Pril d\ Exca on I‘Exmmmn 'i Handler Privileged execution | Main Stack Used by
;::::; / exaw | N - &n exceprion is being processed Full control 05 and Exceptions
I -
A
3
e
Progmm of B Thread Privileged/Unprivileged Main/Process
CONTROL Jser thread E - No exception is being processed
rggmgr E - Normal vode is executing

Exceptions

Exception Maode Priority IV Address

Reset Supervisor 1 0x00000000
Undefined instruction Undefined 6 0x00000004
Software interrupt Supervisor 6 0x00000008
Prefetch Abort Abort 5 0x0000000C
Data Abort Abort 2 0x00000010
Interrupt IRQ 4 0x00000018
Fast interrupt FlQ 3 0x0000001C

Table 1 - Exception types, sorted by Interrupt Vector addresses

Processor Register Set

* Cortex-M3 core has 16 user-visible registers
— All processing takes place in these registers

* Three of these registers have dedicated functions

— program counter (PC) - holds the address of the next
instruction to execute

— link register (LR) - holds the address from which the
current procedure was called

— “the” stack pointer (SP) - holds the address of the
current stack top (CM3 supports multiple execution
modes, each with their own private stack pointer).

* Processor status register (PSR) which is implicitly
accessed by many instructions

Processor Register Set

0
rl
2
T3
rd
rd
6
7
8
0
rl0
rll
rl2
r13 (SP) | PSP | | MSP |
rl4 (LR)
rl5 (PC)

PSR

Program Memory Model

* RAM for an executing program is divided into three regions

— Data in RAM are allocated during the link process and initialized by
startup code at reset

— The (optional) heap is managed at runtime by library code
implementing functions such as the malloc and free which are part
of the standard C library

— The stack is managed at runtime by compiler generated code which
generates per-procedure-call stack frames containing local variables
and saved registers

RAM End (high) —

Main Stack

!
]

«— Heap End

«—— Heap Start

Data

RAM Start (low) —

Cortex-M3 Memory Address Space

0xFFFFFFFF
W
* ARM Cortex-M3 processor has |~/ R
a single 4 GB address space 0%60000000
. 0x5!
¢ The SRAM and Peripheral HOFFFFFEE
Peripheral
areas are accessed through 0.5CB
the System bus 0x40000000
. . 0x3FFFFFFF
* The “Code” region is accessed SRAM *
through the ICode 0.5GB
(instructions) and DCode 0x20000000
(constant data) buses Ox1FFFFFFF
Code
0.5GB
0xz00000000
SaElWrrET OxFFFFFFFF
OxEODFFODD ROM table :
M e m O ry 0xE0042000 External PPB ¥eador Specihie
M o ETM Private Peripheral Bus - External | 5. ro040000(
a p o EE Private Peripheral Bus - Internal g:Egﬁ:EE:
0xDFFFFFFF
OxE0D3FFFF
0xE00OFO0D Rescrved
0xE0DDE0DD hALE External Device IGB
OxE0003000. Reserved
0xE0002000 KD =
DXE0001000 DWT OX9FFFFEFF
04E0000000 ENT
External RAM 1GB
0x43FFFFFF
Bit band alias
0%42000000 0x60000000
0xMFFFFFF| Dx5FFFFFFF
iy - - Peripheral 0.5GB
0x40000000 Bit band region
0x40000000
0x3FFFFFFF
0x23FFFFFF S s
Bit band alias
0x22000000 #x20000000
0x21FFFFFF 0x1FFFFFFF
0x20100000 Code 0.5GB
0x20000000 Bit band region issine

Instruction Set Architecture (ISA)

* |nstruction set

— Addressing modes

— Word size

— Data formats

— Operating modes

— Condition codes

32-bits

Major Elements of ISA

RO

A

R1

R2

R3

mov ro, #1

R4

R5

R6

1d ri, [ro,#5]

R7

R8

A
ri=mem((ro0)+5)

R9

R10

R1

R12

bne loop

R13 (SP)

R14 (LR)

R15 (PC)

subs r2, #1

xPSR

Endigness

31 30 29 28 27 26 \ 4

32-bits

System

Private peripheral bus - Extemal

Private peripheral bus - Intemal

External device 1.0G8

External RAM 1.0GB

Peripheral 0.5GB

srAM 05GB

Code 05GB

Endianess

OxFFFFFFFF

0xE0100000

0xE0040000

0xE0000000

0xA0000000

0x 60000000

0x 40000000

0x 20000000

0x00000000

v

NIZ|C|V|Q RESERVED

10

Addressing: Big Endian vs Little Endian

* Endian-ness: ordering of bytes within a word
— Little - increasing numeric significance with increasing memory

addresses

— Big— The opposite, most significant byte first
— MIPS is big endian, x86 is little endian

Register Register

Memory 0AOBOCOD

a+1: 0B | -e——k

— a;

—= g+1:

0A0BOCOD Memory

0D

0C
0B

a+2:|0C | -g—— = a+2;
a+3:|0D |-« = aid:
1 Big-endian Little-endian

0A

Instruction Encoding

* Instructions are encoded in machine language

ARMv7 ARM

opcodes
Instructions Register Value Memory Value
movs r@, #10 | |001|00]|000 00001010
©a 20 09 21

movs rl, #0 001 | 00| 001 | 00000000

Encoding T1 All versions of the Thumb ISA.

MOVS <Rd> , #<imm8> Outside IT block.

MIVer> <Rds,#<imm3s Inside IT block.

1514131211109 B 7 6 5 4 3 210

00 1{o 0 Fd mm#

d = UInt(Rd); setrflags = !InITBlock(); 1imm32 = ZeroExtend(imm8, 32); carry = APSR.C;

11

Traditional ARM instructions

* Fixed length of 32 bits

* Commonly take two or three operands

* Process data held in registers

* Shift & ALU operation in single clock cycle

* Access memory with load and store instructions only
— Load/Store multiple register

* Can be extended to execute conditionally by adding
the appropriate suffix

» Affect the CPSR status flags by adding the ‘S’ suffix to
the instruction

Thumb-2 Instruction Set

* Thumb-2 instruction set is a superset of the previous 16-bit Thumb
instruction set
* Provides

— Alarge set of 16-bit instructions, enabling 2 instructions per memory
fetch
— A small set of 32-bit instructions to support more complex operations

* Specific details of this ISA not our focus (we’ll mostly program in C)

" Thumb2

- Instruction Set
(32-bit and 16-bit)

Cortex-M3 S

l". VY " Thumb \ .*'l

\ | Instructions

\ _ (1ebi) / Y4

12

16bit Thumb-2

* Some of the changes used to reduce the length of the
instructions from 32 bits to 16 bits
— reduce the number of bits used to identify the register
* less number of registers can be used
reduce the number of bits used for the immediate value
* smaller number range
remove options such as ‘S’
* make it default for some instructions
remove conditional fields (N, Z, V, C)
no conditional executions (except branch)
remove the optional shift (and no barrel shifter operation
* introduce dedicated shift instructions
remove some of the instructions
* more restricted coding

Thumb-2 Implementation

The 32-bit ARM Thumb-2 instructions are added
through the space occupied by the Thumb BL and
BLX instructions

31 16 15 0
Hwl Hw2

32-bit Thumb-2 Instruction format

The first Halfword (Hw1)
— determines the instruction length and functionality
If the processor decodes the instruction as 32-bit long

— the processor fetches the second halfword (hw2) of the
instruction from the instruction address plus two

13

32bit Instruction Encoding

Example: ADD instruction format
* ARM 32-bit encoding for ADD with immediate field

28 27 26 25 24 2120 19 16 15 12 11 8 7 0
‘cono [Mall| Mi IS Rn LRd | R | N
-, 1 1 1
Condition Minor Destination 8-bit immediate
flags) opcode register number
Major Set 4-bit
opcode status rotate field
Immediate flag First
flag operand
Typical settings: register

Major opcode = 00 (this indicates data operation instructions)
Minor opcode = 0100 (specifically, 100 => ADD instruction)
Immediate flag=1 (immediate field in operand 2)

Set status flag = 1 (set carry flag after operation)

ARM and 16-bit Instruction Encoding

ARM 32-bit encoding: ADDS rl1, rl, #2

H 28 2726 25 24 2120 13 16 15 121 8 7

| 1110 [o0o 1| 0100 [1] o001 [T0001 | 0000 00000010
'_v_)"_v_-' / s
| 7

/ o
BOTTA101G07] 0000 0010 \

15 1812 1110 8 7

* Equivalent 16-bit Thumb instruction: ADD ri, #2
— No condition flag

— No rotate field for the immediate number
— Use 3-bit encoding for the register

— Shorter opcode with implicit flag settings (e.g. the set status flag is
always set)

14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0jo|o0 Op Offsets Rs Rd Move shifted register
Th um b 2 Jola]oln ‘ 1|0 ‘ Op| Rn/offseta Rs Rd Add/subtract
. 0]0]1 Op Rd Offsetd Move/compare/add
I n st r u ct I o n /subtract immediate
4 of1|{o0ofl0j0D]O Op Rs Rd ALU operations
S et 5 of1j0]0|0]1 Op [H1]|H2 Rs/Hs Rd/Hd Hi register operations
fbranch exchange
6 O|l1jofoj1 Rd Word8 PC-relative Joad
7 ojt1j0]1|L|B|D Ro Rb Rd Load/store with register
offset
8 Ol1jo]l1|H|S|1 Ra Rb Rd Load/store sign-extended
byte/halfword
] o|l1]1|BJL Offsets Rb Rd Load/store with immediate
offset
0 |1 |0j0(0|L Offsets Rb Rd Load/store haifword
17 |1]0j0(1]L Rd Word8s SP-relative load/store
2 |10 1]0/SP Rd Word8s Load address
13 1{0(1f(1]j0f0j0Of0O]|S SWord7 Add offsef to stack pointer
14 1{of1|{1|L|[1T]O0[R Rlist Push/pop registers
%5 (1 |1]0]0]|L Rb Rlist Multiple load/store
6 |1 |1]0/(1 Cond Soffset8 Conditional branch
AR ERERE ‘ 1 | 1 Values Software Interrupt
1 |11]1[(0]0 Offset11 Unconditional branch
19 1111]|H Offset Long branch with link
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

See 4_THUMB_Instr_Set_pt3.pdf included in lab1_files.zip

Application Program Status Register (APSR)

31 30 29 28 27 26 0
N|Z|C|V|Q RESERVED
APSR bit fields are in the following two categories:

. Reserved bits are allocated to system features or are available for future expansion. Further

information on currently allocated reserved bits 1s available in The special-purpose program status
registers (xPSR) on page B1-8. Application level software must ignore values read from reserved bits,
and preserve their value on a write. The bits are defined as UNK/SBZP.

. Flags that can be set by many instructions:

N, bit [31] Negative condition code flag. Set to bit [31] of the result of the instruction. If the result
is regarded as a two's complement signed integer, then N == 1 1f the result is negative and
N =0 if it 15 positive or zero.

Z, bit [30] Zero condition code flag. Set to 1 if the result of the instruction is zero. and to 0 otherwise.
A result of zero often indicates an equal result from a comparison.

C, bit [29] Carrv condition code flag. Set to 1 if the instruction results in a carry condition, for
example an unsigned overflow on an addition.

V, bit [28] Overflow condition code flag. Set to 1 if the instruction results in an overflow condition.
for example a signed overflow on an addition.

Q, bit [27] Set to 1 if an SSAT or USAT instruction changes (saturates) the input value for the signed or

unsigned range of the result.

Updating the APSR

SUB Rx, Ry
— Rx=Rx-Ry
— APSR unchanged
* SUBS
— Rx=Rx-Ry
— APSR N or Z bits might be set
ADD Rx, Ry
— Rx=Rx +Ry
— APSR unchanged
ADDS
— Rx=Rx +Ry
— APSR Cor V bits might be set

Overflow and Carry in APSR

unsigned_sum = Ulnt(x) + UInt(y) + Ulnt(carry_in);
signed_sum = Sint(x) + Sint(y) + Ulnt(carry_in);

result = unsigned_sum<N-1:0>; // == signed_sum<N-1:0>
carry_out = if Ulnt(result) == unsigned_sum then '0’ else ’1’;

overflow = if SInt(result) == signed_sum then 0’ else '1’;

16

Conditional Execution

* Each data processing instruction
prefixed by condition code

* Result —smooth flow of instructions through pipeline

* 16 condition codes:

EQ |equal MI | negative HI | unsigned higher | GT f’riglled ELE
NE | not equal PL | positive or zero | LS gpzia?r::zd LE LE fr:%r;egrlgzﬁ al
CS (et e | VS [overton |G | neATEEr o | avays

CC | unsigned lower | VC | no overflow LT | signed less than | NV | special purpose

Conditional Execution

Every ARM (32 bit) instruction is conditionally executed.

The top four bits are ANDed with the CPSR condition codes, If
they do not matched the instruction is executed as NOP

The AL condition is used to execute the instruction irrespective
of the value of the condition code flags.

By default, data processing instructions do not affect the
condition code flags but the flags can be optionally set by using
“S”, Ex: SUBSrl,rl,#1

Conditional Execution improves code density and performance
by reducing the number of forward branch instructions.

[Normal Conditional

CMP 13.#0 CMP r3.#0
BEQ skip ADDNE r0,r1,r2
ADD 10,r1,12

skip

17

Conditional Execution and Flags

* ARM instructions can be made to execute conditionally by post-
fixing them with the appropriate condition code

— This can increase code density and increase performance by reducing the
number of forward branches

CMP r0, rl r0 - r1, compare r0 with r1 and set flags
ADDGT «r2, r2, #1 if > r2=r2+1 flags remain unchanged

ADDLE r3, r3, #1 if <= r3=r3+1 flags remain unchanged

+ By default, data processing instructions do not affect the condition
flags but this can be achieved by post fixing the instruction (and any
condition code) with an “S”

loop
ADD r2, r2, r3

SUBS rl, rl, #0x0 decrement r1 and set flags
BNE loop if Z flag clear then branch

Conditional execution examples

C source code ARM instructions

unconditional conditional

if (xr0 == 0) CMP x0, #0 CMP x0, #0
{ BNE else ADDEQ rl, rl,

rl = rl + 1; ADD rl, rl, #1 #1
} B end ADDNE r2, r2,
else else #1
{ ADD r2, r2, #1 ..

r2 = r2 + 1; end
} ..

= 5instructions
= 5words
= 5o0r6 cycles

= 3 instructions
= 3 words
= 3cycles

18

ARM Instruction Set

Data Processing Instructions

* Arithmetic and logical operations
* 3-address format:

— Two 32-bit operands (op1 is register, op2 is
register or immediate)

— 32-bit result placed in a register

* Barrel shifter for op2 allows full 32-bit shift
within instruction cycle

19

Data Processing Instructions

Arithmetic operations:

— ADD, ADDC, SUB, SUBC, RSB, RSC
Bit-wise logical operations:

— AND, EOR, ORR, BIC

Register movement operations:
— MOV, MVN

* Comparison operations:

— TST, TEQ, CMP, CMN

Data Processing Instructions

Conditional codes
+
Data processing instructions
+

Barrel shifter

Powerful tools for efficient coded programs

20

Data Processing Instructions

e.g.
Rn Rm
if (z==1) R1=R2+(R3*4)
Barrel shifter
compiles to w
EQADDS R1,R2,R3, LSL #2 &x--m...wuc mmunv
(SINGLE INSTRUCTION !) R'd

Multiply Instructions

Integer multiplication (32-bit result)

Long integer multiplication (64-bit result)
Built in Multiply Accumulate Unit (MAC)

Multiply and accumulate instructions add
product to running total

21

MUL

MULA

UMULL

UMLAL

SMULL

SMLAL

Multiply Instructions

Multiply

Multiply accumulate

Unsigned multiply

Unsigned multiply accumulate
Signed multiply

Signed multiply accumulate

32-bit result

32-bit result

64-bit result

64-bit result

64-bit result

64-bit result

Data Transfer Instructions

* Load/store instructions
* Used to move signed and unsigned
* Word, Half Word and Byte to and from registers

* Can be used to load PC (if target address is beyond
branch instruction range)

LDR Load Word STR Store Word

LDRH Load Half Word STRH | Store Half Word
LDRSH | Load Signed Half Word | STRSH | Store Signed Half Word
LDRB Load Byte STRB | Store Byte

LDRSB | Load Signed Byte STRSB | Store Signed Byte

22

Addressing Modes

* Offset Addressing
— Offset is added or subtracted from base register
— Result used as effective address for memory access
— [<Rn>, <offset>]

* Pre-indexed Addressing
— Offset is applied to base register
— Result used as effective address for memory access
— Result written back into base register
— [<Rn>, <offset>]!

* Post-indexed Addressing
— The address from the base register is used as the EA
— The offset is applied to the base and then written back
— [<Rn>], <offset>

<offset> options

* An immediate constant
—#10

* Anindex register
— <Rm>

* Ashifted index register
— <Rm>, LSL #<shift>

23

Block Transfer Instructions

* Load/Store Multiple instructions
(LDM/STM)

* Whole register bank or a subset LDM

copied to memory or restored RO J

with single instruction

Swap Instruction

* Exchanges a word

between registers RO
* Two cycles R1
R2
but I I
. L | |
single atomic action R7
* Support for RT | R8 |
semaphores ! !
R15

24

Modifying the Status Registers

Only indire

ctly

MSR moves contents

from CPSR/SPSR to
selected GPR

MRS moves contents

from selected GPR to

CPSR/SPSR

modes

Only in privileged

RO
R1

| |

MRS ' |

L R7
cPsR MsR R®
SPSR i i

I

R14
R15

Software Interrupt

e SWI instruction

— Forces CPU into supervisor mode

— Usage: SWI #n
31 28 27 24 23
Cond Opcode | Ordinal

« Maximum 224 calls

» Suitable for running privileged code and
making OS calls

25

Branching Instructions

Branch (B):
— jumps forwards/backwards up to 32 MB

Branch link (BL):
— same + saves (PC+4) in LR

Suitable for function call/return

Condition codes for conditional branches

Branching Instructions

Table A4-1 Branch instructions

Instruction Usage Range

B on page A6-40 Branch to target address +-1MB

CBNZ, CBZ on page A6-52 Compare and Branch on Nonzero, 0-126B
Compare and Branch on Zero

EBL on page AB6-49 Call a subroutine +-16 MB

BLY {register) on page A6-30 Call a subroutine, optionally change Any
instruction set

BX on page A6-51 Branch to target address, change Any
instruction set

TBB, TBH on page A6-258 Table Branch (byte offsets) 0-510B
Table Branch (halfword offsets) 0-131070 B

26

IF-THEN Instruction

* Another alternative to execute conditional code is the new

16-bit IF-THEN (IT) instruction
— no change in program flow
— no branching overhead

* Can use with 32-bit Thumb-2 instructions that do not
support the ‘S’ suffix

* Example:
CMP R1, R2 ;IFR1=R2
ITEQ ; execute next (1st)

; instruction
ADDEQ R2, R1, RO ; 1stinstruction

* The conditional codes can be extended up to 4 instructions

Barrier instructions

» Useful for multi-core & Self-modifying code

w

DMB Data memory barrier; ensures that all memory accesses are
completed before new memory access is committed

DSB Data synchronization barrier; ensures that all memory accesses are
completed before next instruction is executed

ISB Instruction synchronization barrier; flushes the pipeline and ensures

that all previous instructions are completed before executing new
instructions

27

Unified Assembly Language

* UAL supports generation of either Thumb-2 or ARM
instructions from the same source code

— same syntax for both the Thumb code and ARM code

— enable portability of code for different ARM processor
families

* Interpretation of code type is based on the directive
listed in the assembly file

* Example:
— For GNU Assembler, the directive for UAL is
.syntax unified
— For ARM assembler, the directive for UAL is
THUMB

Example 1

data:

.byte 0x12, 20, 0x20, -1
func:

mov r0, #0

mov r4d, #0

movw rl, #:lowerl6:data

movt rl, #:upperl6:data
top: ldrb r2, [rl],1

add r4, r4, r2
add r0, r0, #1
cmp r0, #4

bne top

28

AG.7.76 MOV (register)

Move (register) copies a value from a register to the destination register. It can optionally update the
condition flags based on the value.

Encoding T1 ARMvE-M, ARMvT-M If <Rd= and <Am:= both from RO-R7,
otherwise all versions of the Thumb ISA.
MV<c> <R, <Rm- If «Rd= 15 the PC. must be outside or last n IT block
151413121110 9 8 7 6 5 4 3 21 0
0 10001|10|D| R | Rd | From ARM
Architecture

d = UInt(D:Rd); m = UInt{Rm); setflags = FALSE;
if d — 15 & InITElock() & |LastInlTBlock() <hen weREDICTELE: Reference Manual
Encoding T2 All versions of the Thumb ISA.

MOVS. <Rd> ,<Rm> MM—M Not pemmed mside IT block
151413121110 9 8 7 6 5 4 3 21 0
‘ooo‘oo‘ooooo‘ h‘ Rd ‘

There are similar entries for

d = UInt{Rd); m = UInt(Rm); setflags = TRUE; H H R
if InITBlock() then UNPREDICTABLE; mO\{e immediate, move sf_ufted

_ ~ (which actually maps to different
Encoding T3 ARMvT-M instructions) etc.

MOV{5}<c> W <R, <Rme

151413121110 9 &8 7 6 5 4 3 21 0150141351211 109% 8 7 6 5 43 210
11101‘01‘0010|5‘1111”(0)‘000‘ Rd |0000‘ Ru ‘

d = UInt(Rd); m = UInt{Rm); setflags = (5 = "1"];
if setflags & (d IN {13,15} || m IN {13,15}) then UNPREDICTABLE;
if Isetflags && (d = 15 || m = 15 || (d = 13 & m == 13)) then UNPREDICTAELE;

AG.T.78

MOVT

Move Top writes an immediate value to the top halfword of the destination register. It does not affect the
contents of the bottom halfword.

Encoding T1 ABRMvT-M
MNT<C> <Rds, #<immlfe

151413121110 9 8 7 6 5 4 3 21 0151413121110 9 8 7 6 5 43 210
111 10|i|1 0|1|1‘0|0|

imm4 H 0 ‘ imm3 ‘ Rd | imm8
d = UInt(Rd); imml€ = imm4:i:imm3:immd;
if d IN {13,15} then UNPREDICTABLE;
Assembler syntax
MNT<Csaq> <Rd-, #F<immlés
where:
x> See Standard assembler syntax fields on page A6-7.
<Rt Specifies the destination register.
<imm16 Specifies the immediate value to be written to <Rd>. It must be in the range 0-65535.
Operation

if ConditionPassed() then
EncodingSpeci ficlperations();
R[d]<31:16> = immis6;
/f R[d]<15:8> unchanged

29

Example 2

int counter;
int Counter_Inc(void) {
return counter ++;

}

Resulting (annotated) assembly language with
corresponding machine code:

Counter_ Inc:

0: £240 0300 movw r3 , #:lowerlé:counter // r3 = &counter
4: £2c0 0300 movt r3 , #:upperl6:counter

8: 6818 1dr r0 , [r3 , #0] // r0 = *r3

a: lc42 adds r2 , r0 , #1 // r2 = r0 + 1
c: 601la str r2 , [r3 , #0] // *r3 = r2

e: 4740 bx 1r // return r0

* Two 32-bit instructions (movw, movt) are used to load
the lower/upper halves of the address of counter
(known at link time, and hence 0 in the code listing)

* Then, three 16-bit instructions load (ldr) the value of
counter, increment (adds) the value, and write back
(str) the updated value

* Finally, the procedure returns the original counter

* Key points:
— Cortex-M3 utilizes a mixture of 32-bit and 16-bit

instructions (mostly the latter) and the core interacts with
memory solely through load and store instructions

— While there are instructions that load/store groups of
registers (in multiple cycles) there are no instructions that
directly operate on memory locations

30

How does an assembly language program
get turned into a executable program image?

Binary program
file (.bin)

Assembly Object Executable
files (.s) files (.0) image flle&@
5
—> . ”
link ’:>
as (lin er) %
(assembler) VEZ
Nk
Memory
layout
- Disassembled
Linker code (.1lst)

script (.1d)

An ARM assembly language program for GNU

.equ STACK_TOP, 0x20000800
.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:

.word STACK_TOP, start
start:

movs ro, #10

movs ril, #0

loop:
adds ri1, re
subs ro, #1
bne 1loop
deadloop:
b deadloop
.end

31

What information does the disassembled file provide?

all:
arm-none-eabi-as -mcpu=cortex-m3 -mthumb examplel.s -o examplel.o
arm-none-eabi-1ld -Ttext 0x0 -o examplel.out examplel.o
arm-none-eabi-objcopy -Obinary examplel.out examplel.bin
arm-none-eabi-objdump -S examplel.out > examplel.lst
.equ STACK_TOP, ©x20000800 examplel.out: file format elf32-littlearm
.text
.syntax unified
.thumb Disassembly of section .text:
.global _start
.type start, %function 00000000 <_start>:
o: 20000800 .word 0x20000800
_start: 4: 00000009 .word 0x00000009
.word STACK_TOP, start
start: 00000008 <start>:
movs ro, #10 8: 200a movs ro, #10
movs rl, #0 a: 2100 movs rl, #0
loop:
adds ri, re 0000000c <loop>:
subs ro, #1 c: 1809 adds rl, rl, ro
bne loop e: 3801 subs ro, #1
deadloop: 10: difc bne.n c <loop>
b deadloop
.end 00000012 <deadloop>:

12: e7fe b.n 12 <deadloop>

Elements of an assembly program?

.equ

.text
.synt
.thum
.glob

.type

_start:
.word

start:
movs
movs
loop:
adds
subs
bne
deadloop:
b
.end

STACK_TOP, ©x20000800

ax unified
b
al _start

start, %function
STACK_TOP, start
ro, #10
rl, #o
rl, ro
ro, #1
loop

deadloop

/* Equates symbol to value */

/* Tells AS to assemble region */
/* Means language is ARM UAL */

/* Means ARM ISA is Thumb */

/* .global exposes symbol */

/* _start label is the beginning */
/* ...of the program region */

/* Specifies start is a function */
/* start label is reset handler */

/* Inserts word 0x20000800 */
/* Inserts word (start) */

32

How does a mixed C/Assembly program
get turned into a executable program image?

C files (.c)
Binary program
file (.bin)
1d
(linker)
Assembly Object Executable
files (.s) files (.0) image f11e<ii:1 Q&
. (,o
)
gcc °
—> (compile E>
as + link) %
(assembler) J%
%
Nl
Memory
layout
L Disassembled
Library object Linker Code (+1s1)

files (.0) script (.1d)

Nested Vector Interrupt Controller (NVIC)

* A programmable device that sits between the CM3 core
and the microcontroller

* CM3 uses a prioritized vectored interrupt model — the
vector table is defined to reside starting at memory
location 0

* First 16 entries in this table are defined for all Cortex-M3
implementations while the remainder, up to 240, are
implementation specific

* NVIC supports dynamic redefinition of priorities with up
to 256 priority levels

* Two entries in the vector table are especially important:
— address 0 contains the address of the initial stack pointer

— address 4 contains the address of the “reset handler” to be
executed at boot time

33

Nested Vector Interrupt Controller (NVIC)

* Provides key system control registers including the
System Timer (SysTick) that provides a regular timer
interrupt

* Provision for a built-in timer across the Cortex-M3
family has the significant advantage of making
operating system code highly portable — all operating
systems need at least one core timer for time-slicing

* Registers used to control the NVIC are defined to reside
at address OXxEOOOEOOO and are defined by the Cortex-
M3 specification

* These registers are accessed with the system bus

Outline

* ARM Cortex-M3 processor
e NXP LPC17xx microcontroller unit (MCU)

34

Basic Processor Based System

Address bus, data bus,
and bus control signals

Cortex-M3 processor vs.
CM3-based Microcontroller Units

OO00000000000000 0000000700
d Cortex-M3 Chip
O
g Cortex-M3 L. Debug Dev?l%;;\ﬂed by |
g Core | System |
O — — [}

i

0 [Internal Bus | B
= a]
O |
E Peripherals Memory i Developed by
u ul chip
g P manufacturers
O]
g Clock and P
= l{e] b
d Reset o
O m]

o000 0O00 0000 0O00o0OOOn

Cortex-M3

While there is significant overlap between the families and
their peripherals, there are also important differences
In the lab of this course we focus on the NXP’s LPC17xx family

Actel &g AIMEL

POWER MATTERS ®

) BZERVST

e oo

CYPRESS

PERFORM

ber

i3 TEXAS
INSTRUMENTS

LPC17xx
LPC17xx (of NXP) is an ARM Cortex-M3 based microcontroller

The Cortex-M3 is also the basis for microcontrollers from other
manufacturers including Tl, ST, Toshiba, Atmel, etc.

LPC1768 operates at up to a 100 MHz CPU frequency
Sophisticated clock system

Peripherals include:

— up to 512 kB of flash memory, up to 64 kB of data memory
— Ethernet MAC

— a USB interface that can be configured as either Host, Device, or OTG
— 8 channel general purpose DMA controller

— 4 UARTs, 2 CAN channels, 2 SSP controllers, SPI interface

— 3 12Cinterfaces, 2-input plus 2-output 12S interface

— 8 channel 12-bit ADC, 10-bit DAC, motor control PWM

— Quadrature Encoder interface, 4 general purpose timers,
— 6-output general purpose PWM

— ultra-low power RTC with separate battery supply

— up to 70 general purpose I/0 pins

36

_—
F

AR
=

o
i
5 | TesiDebug inferizce Clock Ganerst
g Ckew | PowerConbl
& | ARM Cortex-M3 nd 4 Srcwncut Delect,
= Contro and e
— T =T . yztarn funch
Z5 |zg |z
R
Fimzn Fiasn
]
High Speed GRID Muttilayer AHE Matrix .—.
b S
ROM
BKE
FHE D ARE T
APE briogs] brioge|
AFH alave group 0 APS slave group 1

SSP0
UARTE 0 &1 UARTE2 & 3
CAN1&2
PCO&1

SPI0 Repetitive Intermupt
Timer

Timers 0 & 1

Timers2 4 3
\Waichdog Timer
Extemnal Intemupts

DA
rol

Pin Connect Block
Motor Control PWM

i

GPIO Interrupt Ctl
Quadrature Encoder]

i

=

 oxcillsto Real Time Clock

Note: shaded peripheral biocks
support General Purposs DMA

|

20 bytes of backup
registers

RTC Power Domaln

LPC1768

LPC1768 microcontrollers are based on the Cortex-M3
processor with a set of peripherals distributed across three
buses — Advanced High-performance Bus (AHB) and its two
Advanced Peripheral Bus (APB) sub-buses APB1 and APB?2.
These peripherals:

— are controlled by the CM3 core with load and store instructions
that access memory mapped registers

— can “interrupt” the core to request attention through peripheral
specific interrupt requests routed through the NVIC

Data transfers between peripherals and memory can be
automated using DMA
Labs will cover among others:

— basic peripheral configuration (e.g., lab1 illustrates GPIO
General Purpose I/0 peripherals)

— how interrupts can be used to build effective software

— how to use DMA to improve performance and allow processing
to proceed in parallel with data transfer

37

LPC1768

* Peripherals are “memory-mapped”

— core interacts with the peripheral hardware by reading and writing peripheral
“registers” using load and store instructions

* The various peripheral registers are documented in the user and reference
manuals

— documentation include bit-level definitions of the various registers and info on
how interpret those bits

— actual physical addresses are also found in the reference manuals

* Examples of base addresses for several peripherals (see page 14 of the
LPC17xx user manual):
0x40010000 UART1
0x40020000 SPI
0x40028000 GPIO interrupts
0x40034000 ADC

* Noreal need for a programmer to look up all these values as they are
defined in the library file Ipc17xx.h as:
LPC_UART1_BASE
LPC_SPI_BASE
LPC_GPIOINT BASE
LPC_ADC_BASE

LPC1768

* Typically, each peripheral has:
» control registers to configure the peripheral

* status registers to determine the current
peripheral status

» data registers to read data from and write
data to the peripheral

38

LPC1768

* In addition to providing the addresses of the

peripherals, Ipc17xx.h also provides C language level
structures that can be used to access each peripheral.

* For example, the SPI and GPIO ports are defined by the

following register structures:

typedef struct

{

IO uint32_t SPCR;

I uint32_t SPSR;

I0 uint32_t SPDR;

IO uint32_t SPCCR;

uint32_t RESERVEDO [3] ;

__IO uint32_t SPINT;

} LPC_SPI_TypeDef;

LPC1768

typedef struct union { union {
{ __IO uint32_t FIOPIN; O uint32 t FIOCLR;
union { struct { struct {
__I0 uint32_t FIODIR; __I0 uintlé_t FIOPINL; O wuintl6é t FIOCLRL;
struct { __IO uintlé_t FIOPINH; "0 uintl6 t FIOCLRH;
__IO uintlé_t FIODIRL; }i Yo -
_ IO uintlé_t FIODIRH; struct { struct {
Y _ IO uint8_t FIOPINO; O uint8 t FIOCLRO;
struct { __ IO uint8_t FIOPIN1; "0 uint8 t FIOCLRI;
__IO uint8_t FIODIRO; __IO uint8_t FIOPIN2; "0 uint8 t FIOCLR2;
__IO uint8_t FIODIRL; __IO uint8_t FIOPIN3; "0 uint8 t FIOCLR3;
__I0 uint8_t FIODIR2; }i Yo -
__I0 uint8_t FIODIR3; }i ;
Y union { } LPC_GPIO_TypeDef;
}i __I0 uint32_t FIOSET;
uint32_t RESERVEDO[3]; struct {
union { __ IO uintlé_t FIOSETL;
_ IO uint32_t FIOMASK; _ IO uintlé_t FIOSETH;
struct { };
_ IO uintlé_t FIOMASKL; struct {
IO uintl6_t FIOMASKH; __IO0 uint8_t FIOSETO;
}; _ IO uint8 t FIOSET1;
struct { _ IO uint8_t FIOSET2;
_ IO uint8_t FIOMASKO; __IO uint8_t FIOSET3;
_ IO uint8 t FIOMASKI; };
_ IO uint8_t FIOMASK2; Y

IO uint8_t FIOMASK3;

39

LPC1768

* The register addresses of the various ports are defined in
the library (see lpc17xx.h):

#define LPC_APBO BASE (0x40000000UL)

#define LPC_UART1_BASE (LPC_APBO_BASE + 0x10000)
#define LPC_SPI_BASE (LPC_APBO_BASE + 0x20000)
#define LPC_GPIOINT BASE (LPC_APBO_BASE + 0x28080)
#define LPC_ADC_BASE (LPC_APBO_BASE + 0x34000)
#define LPC_GPIOl ((LPC_GPIO TypeDef *) LPC_GPIOl_BASE)

* For example, to turn on LED P1.29 on the development
board, the following code can be used:

LPC_GPIO1l->FIOSET = 1 << 29;

Memory

* On-chip flash memory system
— Up to 512 kB of on-chip flash memory

— Flash memory accelerator maximizes performance for
use with the two fast AHB-Lite buses

— Can be used for both code and data storage
* On-chip Static RAM
— Up to 64 kB of on-chip static RAM memory

— Up to 32 kB of SRAM, accessible by the CPU and all
three DMA controllers are on a higher-speed bus

— Devices with more than 32 kB SRAM have two
additional 16 kB SRAM blocks

40

LPC17xx system memory map

524010 0900 APE peripherals vos LPC1768 memory space
0x400F copo [31] __system control TUIFFFF FrER
0x400C 0000 _ 30-18 'ess;w IxE010 0000 AHE peripherals
04008 €000 |~ - =z pys— 2
0x4008 8g00 |14 motor control PWM private peripheral bus 0xE000 0000 T ik =
m p— 3 USB controller
0x4008 4000 z reserved z
0x400E 0000 | 12 | repetitive interupt fimer] '1x5020 0000 2 reserved
0x4004 B000 L
reserved z 0
e prvr— z % teo0 0000 Ethernet contraller
0x4004 0000 |2 1zc2 [penipheral bit band akas addressing [o oo 000
0x4000 cooo [UART2 i = resarved LA
0x4000 2000 |0 UART2 ! — APBO peripherals
5 Timer 3 APB1 peripherats 0x4008 0000
0x4000 4000 |2 APE0 peripherals P 3124 reserved
0x4000 0000 |4 Timer 2 168 e (x£000 1000 p o
- z reserved z 2 2
0x4008 cooo |3 DAC T T 0x2400 0000 22- 18 reserved
0x4006 2000 |2 S5P0 [AHE SRAM bit band alias sddressing) oAz
P — 0x2200 0000
0x4008 0000) Z od P AN
= rEsen 12004 0000 17
p— 15 CAN common
0x2008 CO0O 15 CAN AF registers
- A -
= reserved = Ix2008 4000 14 CAN AF RAM
05Ga | AHESRAM Zblocksof 13k8) | oo oo ™ 200
= reserved Ze1EFF 2000 12 S5
8 kB boot ROM n connect
T interrupts,
= resenved Z2x1000 3000 ey e——
32 kB local static RAM] C # backup registers
tcode/D-code 0x1000 0000 . =
memory space oo
1 1 ; 2
reserved . T
0x0000 0400 + 256 words
5 reserved
512 kB on-chip flash 4
ool L™ P 00000 0000
- 3 UARTD
2 TIMER1
1 TIMERD
0 woT

0x5020 0000

0x5000 CO0O
0x5000 800D

0x5000 4000

05000 D000

0x4008 0000
0x4006 0000
0x4005 CO00
0x4004 ©000
0x4004 3000
0x4004 4000
0x4004 0000
0x4002 CO00

0x4003 3000
0x4002 4000
0x4003 0000
0x4002 000
0x4002 3000
0x4002 4000
04002 0000

Ox4001
0x4001
Ox4001

0x400

<000

0x4000 ©000
04000 3000
0x4000 4000
0x4000 0000

References & Credits

e Joseph Jiu, The Definitive guide to the ARM

Cortext-M3, 2007
e LPC17xx microcontroller user manua

e Cortex-M3 Processor Technical Reference

Manual
* Lab manual (G. Brown, Indiana)
e EECS 373, UMich

41

http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://www.nxp.com/documents/user_manual/UM10360.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://www.cs.indiana.edu/~geobrown/book.pdf
http://www.cs.indiana.edu/~geobrown/book.pdf
http://www.eecs.umich.edu/courses/eecs373/refs.html
http://www.eecs.umich.edu/courses/eecs373/refs.html

