
1

Lab 6: Memories: External SPI Flash and DDR2
EE-459/500 HDL Based Digital Design with Programmable Logic

Electrical Engineering Department, University at Buffalo

Last update: Cristinel Ababei, 2012

1. Objective

The objective of this lab is to learn how to access memory chips from within your VHDL design. These

memory chips are external to the FPGA, located on the Atlys board. The board has a 16Mbyte x4 SPI Flash

for configuration and data storage and a 128Mbyte DDR2 with 16-bit wide data.

2. Description

The Atlys board uses a 128Mbit Numonyx N25Q12 Serial Flash memory device (16,777,216 bytes - 8 bits

each) for non-volatile storage of FPGA configuration files. The SPI Flash can be programmed with a .bit,

.bin., or .mcs file using the Adept software. Adept Flash programming application allows also allows user

data files to be transferred to/from the Flash at user specified addresses. The Read/Write tools of Adept

allow data to be exchanged between files on the host PC and specified address ranges in Flash.

As general-purpose flash, the SPI serial flash can also be used for any other non-volatile storage that you

might require. One example could be to store MicroBlaze processor application code for bootloading.

In the first part of this lab we’ll create a project to implement the following design description: the circuit

must read one byte (8 bits) from a specified location on the Flash memory chip and use it to drive the 8

LEDs on the Atlys board. A simplified representation of this functionality is shown in the block diagram in

Fig.1.

3. SPI Controller

The communication between Spartan-6 FPGA and the Flash memory chip is done via the so-called Serial

Peripheral Interface (SPI) communication method (see Fig.2). This method was used to connect devices

such as printers, cameras, scanners, etc. to a desktop computer; but it has largely been replaced by USB.

However, SPI can still be a useful communication tool for some applications. SPI runs using a master/slave

Figure 1 Block diagram of system that reads one memory location and displays it on 8 LEDS

2

set-up and can run in full duplex mode (i.e., signals can be transmitted between the master and the slave

simultaneously). There is no standard communication protocol for SPI.

SPI is still used to control some peripheral devices and has some advantages over I2C (another type of

serial data communication). SPI can communicate at much higher data rates than I2C. Furthermore, when

multiple slaves are present, SPI requires no addressing to differentiate between these slaves. SPI has the

additional benefit of requiring only simple wiring, when compared to parallel buses.

To access the Flash memory from within the Spartan-6 FPGA, we implement a finite state machine – an

SPI controller – that is responsible with the SPI communication. The controller implements only a subset of

all the commands that the Flash memory supports. The SPI controller utilized in this lab is a slightly

modified version of the one developed by Johannes Hausensteiner and available at opencores.org [1]. You

should read the spi_ctrl.vhd and study the state diagram (included in Appendix A as well as in the

downloadable archive for this lab) to understand how the SPI controller works. In addition, you will need to

read the datasheet of Numonyx N25Q12 Serial Flash memory device and understand how it works [2]. In

addition, you should search online and read more about SPI [3,4].

4. Aldec-HDL Simulation

To help understanding the SPI controller and the circuit designed to use it for reading one memory location,

we’ll first use Aldec-HDL simulation to investigate the overall system operation.

Following the procedure presented in lab#1, create a new design and add to it the source files

testbench_spi_ctrl.vhd, top_level_spi_ctrl.vhd, and spi_ctrl.vhd. Al these files are included in the

downloadable archive for this lab. Run your simulation for 6 us. Study the provided VHDL files and display

necessary waveforms to understand the operation of the circuit. An example of useful waveforms is shown

in Fig.3.

In your assignment for this lab, you will need to modify these files and verify the correct functionality of

your new design. Using Aldec-HDL first to do your VHDL coding and debugging will save you a lot of

trouble and frustration, which you might otherwise experience if you wanted to go directly for the

implementation of your design on the FPGA with ISE WebPack. In addition, another important thing you

should be aware of is that simulation does not always give you the same results as the hardware

implementation. Most often, things appear to work in simulation but the hardware implementation would

fail – and we need to go back to the simulation stage and continue to debug our designs.

Figure 2 SPI communication method

3

5. ISE WebPack project

By now, you should have a good idea about how the top level circuit works. Create a new ISE project and

add to it the VHDL files top_level_spi.vhd and spi_ctrl.vhd. Again, these files together with other useful

files (such as the .ucf file) are included in the downloadable archive with all the data for this lab.

Do the pin assignment. Your UCF file should have the following contents:

NET "clk_100MHz" LOC = L15;

NET "reset_btn" LOC = F5;

NET "spi_din" LOC = R13;

NET "spi_dout" LOC = T13;

NET "spi_cs" LOC = V3;

NET "spi_clk" LOC = R15;

NET "spi_wp_bar" LOC = T14;

NET "spi_hold_bar" LOC = V14;

NET "leds[0]" LOC = U18;

NET "leds[1]" LOC = M14;

NET "leds[2]" LOC = N14;

NET "leds[3]" LOC = L14;

NET "leds[4]" LOC = M13;

NET "leds[5]" LOC = D4;

NET "leds[6]" LOC = P16;

NET "leds[7]" LOC = N12;

Figure 3 Zoom-in into the Aldec's testbench simulation

4

Run the “Implement Design” step inside ISE WebPack to perform placement and routing and observe the

messages that the tool prints in the Console window. These messages provide useful information about the

resource utilization on the FPGA as well as performance estimates.

Generate the programming .bit file and program the FPGA. Verify the operation of your design. Observe

and comment.

Note that the provided top_level_spi.vhd file reads the content of the Flash memory location at address (or

bias) x”18A230”, which I selected randomly and hard-coded it inside the VHDL code. To verify that what

the design reads from the Flash memory (and displays on the 8 LEDs) is indeed the actual information

stored inside the memory, I use Digilent’s Adept to first read the entire content of the Flash memory and

save it into a temporary binary file. Then, using a hex editor (such as HxD Hex Editor [5]) I see that for

example the information at address x”18A230” is x”80” - shown in Fig.4 - which corresponds to how the

LEDs are turned on/off (only the left most LED is turned on)!

6. Lab assignment

Modify the project to be able to also write into the Flash memory. Your design should be able to write ten

consecutive memory locations starting at an arbitrary address (write numbers 1 through 10) and then read

them back and display them using the 8 LEDs. Each of the numbers should be displayed for one second.

7. Credits and references

[1] Johannes Hausensteiner, SPI Controller in VHDL. http://opencores.org/project,spiflashcontroller

[2] Datasheet Numonyx N25Q12 Serial Flash memory. http://www.alldatasheet.com/datasheet-

pdf/pdf/353314/NUMONYX/N25Q128.html

Figure 4 “Current” content of Flash memory at address 0018A230 is 80

http://opencores.org/project,spiflashcontroller
http://www.alldatasheet.com/datasheet-pdf/pdf/353314/NUMONYX/N25Q128.html
http://www.alldatasheet.com/datasheet-pdf/pdf/353314/NUMONYX/N25Q128.html

5

[3] SPI description. http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf

[4] Google search for Serial Peripheral Interface (SPI).

[5] HxD - Freeware Hex Editor and Disk Editor. http://mh-nexus.de/en/hxd/

Appendix A: SPI controller state diagram – authored by Johannes Hausensteiner and available at

http://opencores.org/project,spiflashcontroller

http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://mh-nexus.de/en/hxd/
http://opencores.org/project,spiflashcontroller

