White Paper: Xilinx FPGAs

2 XILINX®

WP271 (v1.0) May 22, 2008

Saving Costs with the SRL16E

By: Ken Chapman

Although the SRL16E 16-bit shift register sounds like
an additional component, it is an alternate operating
mode for the Look-Up Tables in which they become
16-bit shift registers. While a synthesis package will
automatically apply the SRL16E in some situations,
substantial =~ benefits can be realized by
understanding the potential of the SRL16E and
deliberately applying it to your designs.

This white paper provides examples to help your
understanding of the capabilities and use of the
SRL16E to improve the performance and lower the
cost of your designs by as much as an order of
magnitude.

© 2008 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property
of their respective owners.

WP271 (v1.0) May 22, 2008 www.xilinx.com 1

http://www.xilinx.com

x XILINX® Modes of Operation

Modes of Operation

The SRL16E was introduced in the Virtex® FPGA architecture and is included in all
variants of the Spartan®-3 family. It is an alternate operating mode of a Look-Up Table
in which it becomes a 16-bit shift register as shown in Figure 1. The added capability
this configuration provides can lead to dramatic improvements in performance and
cost savings to your design. However, the operation of this mode is not obvious, and
an understanding of the underlying structure of an SRL16E is necessary to maximize
the benefits available from this configuration. The information and examples
contained in this White Paper will help you gain this understanding.

SLICEM

[111
I
|

5]
[9)
I

|
\Y

Look-up Table / Look-up Table

used as a gate used in SRL16E mode

CE
I D Q—
A0
Al
A2
A3

>

WP271_01_041608

Figure 1: A SLICEM Look-Up Table Used as a Gate or Shift Register

Look-Up Table as an AND Gate

Figure 2 shows a Look-Up Table configured as a 4-input AND gate. The select lines on
the 16 to 1 multiplexer are used as input signals I3, 12, I1, and 10. The multiplexer
output O will serve as the AND gate output. The data value for each multiplexer input
are the 16 configuration bits which are set via the configuration bit-stream. Only when
all four multiplexer select lines I[3:0] are logic one is the configuration cell containing
logic one selected. In any other case, the multiplexer will select a cell containing a logic
zero.

The INIT parameter is a description of the bit pattern stored in the configuration cells.
This hexadecimal value representing the bit pattern 1000 0000 0000 0000

(8000 hexadecimal) can be applied manually to a Look-Up Table primitive (LUT4
component), or is more normally generated automatically by an HDL synthesis
package.

2 www.xilinx.com WP271 (v1.0) May 22, 2008

http://www.xilinx.com

Basic SRL16E Applications X XILINX"®

INIT = 8000
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

|

(0]

WP271_02_050108

Figure 2: Look-Up Table Used as a 4-input AND gate

Look-Up Table in SRL16E Mode

When the Look-Up Table is used in SRL16E mode, the basic structure is similar, but
now the 16 configuration cells are organized as a shift register connected to the
multiplexer as shown in Figure 3. The 4 select line inputs to the multiplexer are labeled
A3, A2, A1, and A0, and their ability to select one of the 16 inputs remains the same. In
this mode, the multiplexer inputs can still be initialized via the configuration bit-
stream (using an INIT value), but the contents can also be modified by shifting in new
data on the D input.

CE

CE E ICE E ICE ICE CE CE CE ICE CE CE CE ICE CE ICE
D D Q) D Q) D Q) D Q| D Q) D Q) D Q) D Q| D Q) D Q) D Q) D Q) D Q) D Q| D Q) D Q)

Clk

= = = = = = = = = = = = = = =

A3

A2§
Al 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111/
A0

Q

WP271_03_041608

Figure 3: Look-Up Table in SRL16E Mode

The output is labeled Q to reflect that the selected value is a Q output from one of the
shift register flip-flops. Note that the shift register output delay is determined by
which flip-flop output is selected by the A[3:0] inputs, and can be from 1 to 16 clock
cycles. This selection is also independent of the clock and clock enable inputs.

Basic SRL16E Applications

The use of the SRL16E can facilitate space-efficient designs and improved
performance by increasing the potential device gate count. Each SLICEM contains 34
flip-flops [2 x (16+1)], which greatly increases the gate count of the device. The 50,000-
gate XC3S50A Spartan-3A FPGA contains 704 slices, half of which (352 slices) are
SLICEM and could implement 11968 bits of shift register. This is the equivalent to
about 72000 ASIC gates (without even considering the 54kbit of block RAM).

WP271 (v1.0) May 22, 2008

www.Xxilinx.com 3

http://www.xilinx.com

x XILINX® Basic SRL16E Applications

Simple Shift Register

The most basic use of the SRL16E is as a shift register or digital delay. For example, a
10 clock cycle delay requires 10 flip-flops connected as shown in Figure 4.

Delay 10

WP271_04_031108

Figure 4: 10-bit Shift Register

One way to implement this function is to connect ten of the individual flip-flops
available on each slice. Since two flip-flops are available on each slice, this would
occupy 5 slices of the Xilinx Spartan-3 generation FPGA architecture. However, a more
efficient implementation can be created using one of the two SRL16Es available on a
single SLICEM.

The 10 clock cycle delay is available at the output of the tenth flip-flop. A3, A2, A1, and
AOQ can be tied to Vcc and GND as shown in Figure 5 to a value of 1001 which will
select the output of the tenth flip-flop (note that the addressing of the flip-flop outputs
start at 0000, so the tenth flip-flop has address 1001). In this example, the shift register
is permanently enabled; hence, the CE input is also tied High to Vcc.

Vce

CE CE CE CE CE CE CE CE CE CE CE CE CE CE CE
D D Q D Q) D Q) D Q) D Q D Q) D Q] D Q) D Q D Q D Q D Q D Q] D Q) D Q D Q
Clk > > > > > > > > > > > > > > > >
Vee
| A3
A2 \
A1 _\0000 0001 0010 0011 0100 0101 0110 0111 (1000 1001 1010 1011 1100 1101 1110 1111
A0\
= A[3:0] = 1001

Delay 10

WP271_05_041708
Figure 5: 10-bit Shift Register Using the SRL16E

It is obvious the 16 flip-flops and 16:1 multiplexer comprising a SRL16E permit it to
support a delay from 1 to 16 clock cycles. Less obvious is that high performance is
easier to achieve in a system design. Since all the flip-flops are fixed in the silicon, the
connections between them are short and predictable. The lower utilization of the
device reduces power consumption and also enables other logic to be placed in closer
proximity. Although Vcc and GND signals must be routed to the SRL16E, these static
signals will have no impact on timing or power consumption.

4 www.xilinx.com WP271 (v1.0) May 22, 2008

http://www.xilinx.com

Basic SRL16E Applications X XILINX"®

Design Considerations

Use of the SRL16E in a delay configuration is relatively simple. Being aware of when it
can be used is vital in ensuring maximum utilization of a device. This is particularly
true when using an HDL synthesis tool. Believe it or not, you may already have used
this powerful feature because most synthesis tools will automatically insert SRL16E
into your design to replace multi-stage delays. The issue is that failure to use the
SRL16E either manually or automatically will have a large impact on the area of silicon
occupied. The following points are worth considering when designing with any tool.

No Reset

Although the SRL16E supports a clock enable (CE) for each of the 16 flip-flops, it does
not provide a reset. When you design using schematics, you must deliberately select
the SRL16E in order to use this mode. When you design using HDL where the SRL16E
mode is automatically selected, you must be careful not to imply a reset on elements
forming a shift register delay. Note that all flip-flops including those in each SRL16E
are reset by the configuration process and hence start in a known condition. HDL
coding styles and templates often include a reset to achieve this same condition in an
ASIC and remove unknown states from a simulation. Removing these unnecessary
resets from code can allow many more flip-flops to be automatically consolidated into
the SRL16E. As a result, designs can shrink by more than 10 percent, often enabling a
smaller device at reduced cost (see WP272).

Simulation Confusion

Simulation of delays should be simple. However, it appears to confuse everyone at
some stage and therefore a small explanation is worthwhile. In this example the delay
is 6 clock cycles which would relate to the A[3:0] input being forced to '0101'= 5. The
confusion can occur because the data appears after just 5 clock cycles (Figure 6).

| 6 cycle delay |

Clk

o/ N/ O\

'Data appears at the output
Ifollowing the 5th clock cycle
[

| Data captured on the
rising edge of Clk

|
I | Data for the next level
|

Il
| T
Delay 1 Delay2 | Delay3 | Delay4 | Delay5 | Delay6 f logic is available on
| ‘ ‘ : : : | the 6th clock cycle
WP271_06_050808
Figure 6: 6 Cycle Delay
WP271 (v1.0) May 22, 2008 www.xilinx.com 5

http://www.xilinx.com
http://www.xilinx.com/support/documentation/white_papers/wp272.pdf

x XILINX® Basic SRL16E Applications

Delay Examples

Consider some applications in which shift register delay can be used, or indeed occurs
by default.

Pipeline Compensation

For high performance designs, Xilinx FPGAs provide excellent results when fully
pipelined. Unlike an ASIC, the flip-flops in each slice are already provided and
waiting to be used. Although the pipeline registers are essentially free, a pipelined
system may have additional cost resulting from pipeline compensation in other paths.
Figure 7 shows the addition of 9 values of 16-bits. It can be seen that the 9th input has
tobe delayed by 3 cycles to compensate for the addition tree of the other 8 inputs. This
compensation delay requires 48 flip-flops (3x16) which would occupy 24 slices. The
SRL16Es reduce this to just 16 Look-Up Tables in 8 slices.

A[15:0] —

B[15:0] —

Combined adder
and register in slice

C[15:0] —

D[15:0] —

===

E[15:0] —

F[15:0] —

+ + Sum[19:0]

G[15:0] —

H[15:0] —

I[15:0]

SRL16E implementation

V
\

WP271_07_031208

Figure 7: Using SRL16E for Pipelining

6 www.xilinx.com WP271 (v1.0) May 22, 2008

http://www.xilinx.com

Basic SRL16E Applications X XILINX"®

Pseudo Random Noise Generator

A pseudo-random noise generator (PN) is based on a Linear Feedback Shift Register
(LFSR) counter technique.

There are two styles of implementation, but both make use of simple shift register
delay. The PN generator is responsible for producing a pseudo-random signal that
produces logic zero and logic one levels. Note that a pseudo-random number
generator is the same structure, but would observe all bits of the shift register as a
parallel word. This would not enable the SRL16E to be used other than to provide a
single flip-flop.

2 SRL16E Look-Up Tables replace16 flip-flops.
Net result: Logic needing 8 slices is implemented using only one SLICEM.

L i i i i PN

SRL16E SRL16E

WP271_08_041708

Figure 8: Using SRL16E for Linear Feedback Shift Registers

In some applications the realization that the SRL16E can provide such efficient shift
register delays can be utilized to greatly simplify designs. This is explored more in the
“Pulse Generation and Clock Division” topic.

Serial Frame Synchronizer

This is a common application seen in telecommunications and networks. Data is
passed serially between units (for example at 2.048 Mbps) and is formatted into
frames or packets. In order to synchronize to these packets, a start and end code is
included. Although the start code should be unique, it is possible that the data itself
may contain the same pattern. To reduce the probability of incorrect synchronization,
the end of frame code can be used to further qualify the data. Only when the start code
and end code occur at the correct times is the data accepted. Using a state machine
approach to solve this design problem, the start code pattern is identified and then the
data stream is stored in a buffer. Data bits are counted, and at the expected count, it
would then check for the end of frame code. If this code does not occur when expected,
or if a start code occurs beforehand, then the buffer is overwritten with new data. This
approach still has the possibility of losing data.

The ideal solution is to hold an entire frame in a shift register and test for the start and
end patterns at every bit position. Figure 9 shows this approach implemented as a 512-
bit frame detector. One frame consists of a serial stream containing a 16-bit start code,
480 bits of data, and a 16-bit end code. As each new bit is shifted in to the Serial In
input, data in the shift register advances by one position. The 16-bit AND gates
connected to the flip-flop outputs at the front and the back of the 512-bit shift registers
will detect the simultaneous occurrence of the start and end codes and provide a Sync
pulse to indicate the data contained in the middle 480 flip-flops is valid. If the flip-flop
pair contained in each slice was used to build this 480-bit shift register, it would
occupy 240 slices and would be considered expensive. A more efficient approach will

WP271 (v1.0) May 22, 2008

www.Xxilinx.com 7

http://www.xilinx.com

& XIuNxe

Intermediate SRL16E Applications

result by using the 16 flip-flops available in the SRL16E mode. This will reduce the 480
bit shift register to 30 SRL16Es in 15 slices. In this way the entire synchronizer can be
realized in just 31 slices, resulting in an equivalent gate count of over 3000 achieved in
less than 5 percent of the Spartan-3A XC3S50A (50,000 gate device).

512 bits per frame
A

" 16 bit end code 480 bit data 16 bit start code |

Serial In - L & -
\

J.LLLI.LI.thI.LI.I.I.L SRL16E SRL16E... ... SRL16E
AND gate detects AND gate detects
END code pattern START code pattern Sync

WP271_09_031008

Figure 9: Using SRL16Es as a Serial Frame Synchronizer

Intermediate SRL16E Applications

The next SRL16E applications require additional thought about the alternative ways in
which a problem can be solved. It is often possible to find a solution to a problem
using shift register delay. Although HDL tools will automatically convert simple
delays into SRL16E primitives, they are not able to change the structure of the design.
As the engineer, you are able to discover these fresh approaches. The following two
examples illustrate some realistic cases of such structures.

Running Average Using an Adder Tree

The running average (or more accurately the running sum) of a set of samples is a
simple FIR filter having a smoothing or low-pass response. In Figure 10, the output is
the sum of the last 8 samples held in a shift register. If we assume 16-bit wide input
word, then we need 8 x 16-bits = 128 flip-flops to form the shift registers plus an adder
tree made of 4 x 17-bits + 2 x 18-bits + 1 x 19-bits = 123 bits. Hence, this implementation
requires 128 flip-flops for shift registers, 123 bits of addition, and would require 126
slices to implement.

www.xilinx.com WP271 (v1.0) May 22, 2008

http://www.xilinx.com

Intermediate SRL16E Applications X XILINX®

Input Samples

=R

+

Average

WP271_10_031808
Figure 10: Running Average Using Non-Pipelined Adder Tree

Assuming that the non-pipelined adder tree shown in Figure 10 can provide the
necessary performance, the adders and registers can be mapped into the same slices,
reducing the size to 64 slices. This substantially reduces space requirements. However,
using knowledge of SRL16E, and the characteristics of a running average function, we
can go much further.

Running Average Using an Accumulator

In order to reduce complexity, observe that for this running average function a sample
entering the shift register contributes to the result for 8 clock cycles. Although a
sample always contributes the same value to the result, it is doing so via different
paths through the addition tree each cycle.

Figure 11 shows an alternative solution that uses this fact by adding the new sample to
an accumulator that remembers the sample’s contribution. After 8 clock cycles, we
then subtract the delayed sample from the accumulator. Not only does this reduce the
adder tree to a simple subtractor and accumulator, but it also puts the shift register
into the form of a simple delay line which is easily absorbed into SRL16E primitives.
For this example, the 16-bit input samples still require 8 x 16 flip-flops for the shift
register, but now fit into just 8 slices. The subtractor is 17-bits and the final
accumulator is 19-bits (requiring a further 18 slices). The total size is 26 slices, a 60
percent reduction in size when compared to the original implementation. Also note
that as the length of the running average is increased, the savings are significantly
greater.

WP271 (v1.0) May 22, 2008 www.xilinx.com 9

http://www.xilinx.com

x XILINX® Intermediate SRL16E Applications

SRL16E Implementation I_

Input Samples —s - + — Average

WP271_11_031808

Figure 11: Running Average Using Accumulator

Pulse Generation and Clock Division

Unless there are special reasons not to do so, the use of a single clock source
(distributed via one of the global clock networks) should be used for all elements of a
design. Clock enable pulses should then be used to enable system subsections to
operate at a lower rate. In Figure 12, the enable pulses are used to enable a counter.
Clearly, the pulse must occur at regular intervals and have a duration of one clock
cycle.

o L LT L L L L L L L L L
Enable 4/_:\ / | \
X

|

|
Count 28 D< 29
I

30

WP271_12_031808

Figure 12: Pulse Generation

Figure 13 shows a practical example of an RS-232 receiver module which receives
serial data at 9600 bits per second. Typical of most RS-232 interfaces, this unit uses a
timing reference which is 16 times the bit rate. In line with good design practice, this
macro takes this reference as a clock enable pulse.

10 www.xilinx.com WP271 (v1.0) May 22, 2008

http://www.xilinx.com

Intermediate SRL16E Applications X XILINX®

RS232 Receiver

Pulse Generator Data Ot [7:0]
i ata Ou :
40 Mhz Clk/ 260 serial In
> 16x Baud
> Data Present

WP271_13_031808

Figure 13: Pulse Generation for RS-232

Pulses at 16 x 9600 bits per second (153,600 kHz) are not an exact integer division of 40
MHz. However a division by 260 is equivalent to 16 x 9615 which is adequate for RS-
232. This means that a pulse must be active for one cycle in every 260. One way to
achieve this is by using a 9-bit counter with an AND gate to detect a count value 259.
The output of the AND gate provides the pulse and synchronously resets the counter
(Figure 14). This solution requires 6 slices of logic.

——g
D54
d) Clock / 260
d—/
——g
———g

9 bit AND
Clock ~ 8(1) gate

9 bit counter

WP271_14_041708
Figure 14: Counter-Based Pulse Generator

A counter can be viewed as a simple state machine. In this case, the 9 bits provide a
possible 512 states of which the first 260 are actually used. Each state leads to the next
until reaching the 259th state, when it returns to zero. An equivalent one-hot state
machine is one in which a different shift register flip-flop is used to represent each
state. The active state is at logic one; all other states are logic zero.

A one-hot state machine made by combining multiple SRL16Es is very practical.
Figure 15 shows that 16 SRL16E primitives and 4 flip-flops can provide the 260 states
required. This solution is larger than the counter-based pulse generator, but the
simplicity of this technique makes it practical.

WP271 (v1.0) May 22, 2008

www.Xxilinx.com 11

http://www.xilinx.com

& XIuNxe

Intermediate SRL16E Applications

SRL16E SRL1 6E"i ...SRL16E

L =
H One bit active —
in loop
4 flip-flops in one

J
% SRL16E CLB
16 x SRL16E = 256 flip-flops

WP271_15_031808

Figure 15: Using SRL16E for One-hot Counter

Multi-stage Dividers

Although the one-hot state machine approach is ideal for smaller division factors, at
some point the number of flip-flops required becomes impractical. A solution to this is
to use multiple stages to divide and conquer.

The division by 260 can be broken into 2 stages (Figure 16). The first stage divides the
clock by 26 and provides enable pulses to the second stage. The second stage divides
the enable pulses by 10.

Pulse Generator Pulse Generator
Clk /26 En

Clk > >

en/10}— Clk / 260

WP271_16_031808

Figure 16: Dividing Pulse Generator into Two Stages

The first stage requires a 26-state looped delay around which a single hot bit is clocked
to produce the enable pulse. This can be created with 26 flip-flops contained in just
two SRL16E primitives in a single slice (Figure 17). This is a more efficient
implementation than the equivalent function created using a 5-bit counter and
decoder which requires 3 slices.

12

www.xilinx.com WP271 (v1.0) May 22, 2008

http://www.xilinx.com

Intermediate SRL16E Applications X XILINX®

One Slice
A

SRL16E SRL16E

Clk /26

Y Y
Delay = 16 Delay =10

WP271_17_031808

Figure 17: Two Stage Divide by 260

The second stage differs from the first stage since it must divide the clock enable
pulses from the first stage, rather than the clock directly (Figure 18). For this reason,

the clock enable input is driven.

Clk/26 D b al— Clk/260

Pulse

- INIT = 0001

Clk

WP271_18_050108

Figure 18: Using SRL16E for Second Stage of Pulse Generator

Since the SRL16E is only enabled once every 26 clock cycles, the output pulse is active
High for 26 clock cycles (Figure 19). To generate a single cycle clock enable pulse, this
long pulse is gated with the input enable. The flip-flop ensures high performance, as
such an enable pulse may have a high fan-out.

WP271 (v1.0) May 22, 2008 www.xilinx.com 13

http://www.xilinx.com

x XILINX® Intermediate SRL16E Applications

I 26 Cycles !

] L7 LML
[[

__ /N /N
Clk /26 | 2 ¢ |
|)) 1

T (

Pulse '/ N_
[[
[

Clk / 260 2 ¢ u/_\—

|

WP271_19_041808

Figure 19: Timing of the Divide By 260 Implementation

Forcing the Hot State

Because this kind of pulse generator works by recycling the hot (logic one) state, the
hot state must be present in the delay loop at the start of operation. There are two ways
to achieve this.

Using INIT

One method is to set the hexadecimal INIT value on the SRL16E Look-Up Table
(Figure 20). If necessary, the position of the hot bit can be determined during the start-
up sequence. Note that the hot bit must be defined before the delay tapping point. If
INIT is set to 0001, one loop of the delay is required before the first pulse is seen at the
output.

Delay Setting{

>
\S)

INIT = 0001

WP271_20_031808

Figure 20: Initializing Hot State using the INIT Value

14 www.xilinx.com WP271 (v1.0) May 22, 2008

http://www.xilinx.com

Intermediate SRL16E Applications X XILINX®

Using a Flip-flop

Although the INIT parameter provides total control, this may not be easy to achieve
via synthesis unless component instantiation is used. In this case, the default
INIT=0000 can be used and the hot bit injected using a flip-flop (Figure 21). This flip-
flop can be initialized with logic one by declaring (or inferring) an asynchronous
preset. Obviously, the delay formed in the SRL16E is now one less. The flip-flop has
the advantages of increasing the maximum delay available by one and improving the
clock-to-output performance of the pulse generator.

PRE
D Q D Q
— A0
Delay Setting{ — ﬁ; >
—A3
—
INIT = 0000

WP271_21_041808

Figure 21: Initializing Hot State using a Flip-Flop

Pattern Generation

Since the SRL16E can be pre-initialized with any INIT value, it can be used to produce
a repeatable pattern. In Figure 22, a clock signal is generated that is 400 times less than
the input clock. In this example, the object is to produce an output waveform having
approximately a 50 percent duty cycle. The solution uses a divide by 16 stage which
enables a divide by 25 stage. Note how the INIT values set the pattern of the output
waveform.

WP271 (v1.0) May 22, 2008

www.Xxilinx.com 15

http://www.xilinx.com

x XILINX® Intermediate SRL16E Applications

<
Q
o

Tt

Total loop delay = 25
{ Loop back ;

Enable16

Vee I Vce |
CE CE T CE
| Loop N Clk_Out
D Q D Q D Q 1>
—] A0 A0 A0
Delay 16 2; Delay 9 2; Delay 16 ﬁ;
——A3 A3 A3
—> > >
SRL16E = SRL16E SRL16E
INIT = 0001-L Patiern INIT = 01FF INIT = FO00
contains
single logic 1
Clk_In ngle gt
Combined INIT values describe a pattern
Logic 0 for 12 periods, logic 1 for 13 periods
Clk_In

|e——13 Periods 12 Periods |

seere UL L UL L L L

L

Clk_Out

WP271_22_040108

Figure 22: Using Init Values to Define a Pattern

Very High Performance Clock Division

The example shown in Figure 22 can be implemented in 2 slices. Because all logic in a
single slice shares a common clock, there are no clock skew issues between the
elements; thus, the input clock does not need to be provided from the global clock
resource. The close proximity of the elements also yields very high performance (in
excess of 350 MHz). Such a circuit may be useful in dividing a high speed clock before
use of a global clock resource in order to minimize the power dissipation. In general, a
single clock and enable pulse is preferable.

Complex State Machines
We have seen that the simple clock division or pulse generator is a form of one-hot
state machine. This technique can be expanded to form more complex state machines.
The use of shift registers to delay control pulses is an effective implementation method
that can be easier to design than you might think.

RS-232 Receiver
In this example, a simple RS-232 receiver is considered. Figure 23 shows a serial data
word provided at a rate of 9600 bits per second with a single start bit (active Low) and
single stop bit (active High). Although the serial data arrives asynchronously, the basic
timing of the data is implied from the bit rate.

16 www.xilinx.com WP271 (v1.0) May 22, 2008

http://www.xilinx.com

Intermediate SRL16E Applications X XILINX®

A reference time signal is provided at 16 x bit rate. The falling edge of the start bit is
used to trigger a state machine which uses the timing reference to approximately
locate the mid-position of each data bit.

Sé?t” do | d1/ d2 | d3 | d4 | d5 | d6 | d7 |Stop

i Start
Bit do di)

\
RR RN R RN R R RN RN RN RN A NN RRRR RN RN AR
\ A . A .)

Y
8 16 16

WP271_23_031808

Figure 23: RS-232 Serial Data Waveform

Figure 23 shows that the state machine must first count 8 timing reference periods to
locate the mid-position of the start bit, and then count every 16 timing reference
periods to locate the midpoint of each data bit and the stop bit. Once the stop bit has
been sampled, the state machine must return to the idle condition in which it locates
the next falling edge of a start bit.

Although this example does not show all the details required by a UART state
machine, it does illustrate the main functionality and the way in which the SRL16E
primitives are used. Figure 24 shows a 24 state one-hot state machine with each state
represented by the flip-flops contained within two SRL16E elements. All states are
Low until a High pulse is injected when a High to Low transition occurs at the RS-232
input. While not shown in this example, a full implementation must prevent multiple
hot states from being generated on subsequent data transitions.

The first SRL16E delays this pulse until the midpoint of the start bit, and then injects
the hot state into the second SRL16E. This will circulate every 16 bit rate-enabled
periods to locate the midpoint of each data bit. At the end of the data transmission, the
hot state is prevented from re-entering the SRL16E, and the state machine returns to
being inactive. A complete RS-232 receiver for this specification can be made in 8
slices.

WP271 (v1.0) May 22, 2008 www.xilinx.com 17

http://www.xilinx.com

x XILINX® Advanced SRL16E Applications

* All elements enabled at 16x bit rate rate

- Start
w—ce SRL16E *—{cE SRL16E
R L
RS232 b a o o[TTT]TH L Data
> SN———
|—> |V |V Delay = 8 |_> Dela;l'= 16 Eﬁambrflee
Stop Bit Position
Clk ! . ! P

WP271_25_050808

Figure 24: RS-232 Receiver Logic

Advanced SRL16E Applications

In the next examples, we will move away from using the SRL16E to implement a fixed
delay. Instead, the multiplexer select lines will be dynamically addressed.

FIR Filter

The most important fact regarding this mode of operation is that the shift register and
the multiplexer are totally independent. The shift register takes data from the D input
under the control of the clock (CLK) and clock enable (CE) signals. The output at Q
depends only on the A[3:0] inputs. Although it is tempting to believe that a pin called
Q is associated with a synchronous clocked output, it must be understood that the
multiplexer operation is completely combinatorial and has nothing to do with the
clock. The use of the label Q indicates the multiplexer is selecting one of the 16 shift
register flip-flop outputs.

For a synchronous output, the associated flip-flop within the slice can be used. Good
design practice requires this flip-flop to use the same clock as the SRL16E.

Set of SRL16E elements to support data bus width

Shift Enable CE SRL16E
Data[n:0] |
I I T T
A[3:0] /
> Clk \ Q
Scan Data
Counter ba >
L__{ Reset —+ § Sum of Products
—1 Al3:0]] g
ROM ——
D Q
ou S Scan Coefficient
A[3:0] —
WP271_26_041808

Figure 25: FIR Filter Logic

18 www.xilinx.com WP271 (v1.0) May 22, 2008

http://www.xilinx.com

Advanced SRL16E Applications X XILINX®

FIFO

In this example the SRL16E elements form the taps of the FIR filter. A new sample
causes all previous samples to move along the shift register and the oldest sample will
be discarded. To calculate the filter output a single multiply and accumulate unit is
used over 16 clock cycles.

With the data held static in the shift register (CE is Low), a counter addresses the
multiplexer within the SRL16E to select each tap in turn and apply the contents to the
multiplier. The same address is used to select the appropriate coefficient from a ROM.
In the complete implementation the accumulator would be reset at the beginning of
each calculation.

o] LTI L LT LML L L

Shift Enable _ / \
o X XXX X X X XX X X e X
soar o K K X X Sn XS XSnaXSnaX_ X X X X

WP271_27_031808

Figure 26: FIR Filter Timing

A FIFO is normally based on a dual port memory (for simultaneous write and read
operations), a pair of address counters (for write and read pointers) and control logic
to detect full or empty conditions. The SRL16E can be used to form a FIFO as shown in
Figure 27 through Figure 30. This implementation has the advantage of greatly
simplified counters and control logic and twice the density of dual port RAM.

WP271 (v1.0) May 22, 2008

www.Xxilinx.com 19

http://www.xilinx.com

& XIuNxe

Advanced SRL16E Applications

Operation

1. This example begins when 5 data words have been written to the FIFO. The counter is at
value 4 to select the 5th tapping point and hence the oldest data is available at the output.

CE
5th InZaGNl3rd InfilRi) 1st In

Counter [[T T T T T T T T T 1

0100{ \ /

Read 0 — ‘

Data Out (1st Inis available)
Clock not shown for clarity

Figure 27: SRL16E After Writing Five Words

Write 0

WP271_28_050108

2. Data WRITE. A new data write causes all data in the shift register to advance by one
position. Note the counter has been incremented and so the multiplexer is still selecting the
oldest data to be presented to the output.

[Data inggR 6t In 4th InHan In

Write 1 Counter
0101 {3 \
Read 0 ——
Data Out (1st Inis still available)
Clock not shown for clarity

Figure 28: SRL16E After Writing a 6th Data Sample

1stIn

/

WP271_29_050108

3. Data READ. Reading data does not affect the contents of the shift register. Note the counter
has been decremented so the multiplexer is now selecting the next oldest data to be
presented at the output.

6th In [SGNly 4th In2nd [}

e (2nd Inis available)
Clock not shown for clarity

Figure 29: SRL16E After Data Read

1stIn

Write 0 Counter
01 oo{ %
Read 1 —

WP271_30_050108

4. Simultaneous data WRITE and data READ. The shift register has advanced by one position
but the counter remains at the same value. As a result, the next oldest data moves into the
selected position. The previously read data is still contained in the shift register but is no
longer needed and will eventually be lost completely.

CE
Gth In4lh In2nd [if 1st In

3rd Inis available
Clock not shown for clarity Data Out | {)

Figure 30: SRL16E After Simultaneous Data Write and Data Read

Write 1 Counter
01 oo{%
Read 1 —

WP271_30_050108

20

www.xilinx.com WP271 (v1.0) May 22, 2008

http://www.xilinx.com

Complete RS-232 Receiver X XILINX®

Complete RS-232 Receiver

Figure 31 illustrates a complete RS-232 receiver with baud rate generator and FIFO
data buffer. This example combines several of the previous examples to show the
potential use of the SRL16E primitive in a variety of modes.

(Serialto) (FIFO Buffer
Parallel
Serial Input = [T | | T
Y
(UART Control Ll 2 |V
riuuﬂﬂmuuﬂmmmn}—L _______________
N J N —— J
Four Slices \ Four Slices
Word Control - (FIFO Control
N J Counter
Four Slices
(16x9600 bps Pulse Generator)
Divide by 26
. N J
Four Slices
40 MHz / 26
ncludes Reference
SRL16E D Qr—153 kHz Clock
-

J
Two Slices

Figure 31: Complete RS-232 Receiver

Note that this example uses 18 slices to provide 207 flip-flops which yields a density of

69 gates per slice (based on just 6 gates per flip-flop). 13 Look-Up Tables are used in
SRL16E mode, and 21 are used in standard logic mode.

Summary

The SRL16E is an alternative configuration of the Xilinx Look-Up Table, changing it
from a 4-input Look-Up Table to a 16-bit shift register. The SRL16E configuration takes
advantage of the inputs provided in order to use the Look-Up Table as RAM, which
are supported in the SLICEM elements of the Spartan-3 Generation FPGAs. Although
this configuration may often be used automatically, careful consideration in the design
description can allow full access to this very efficient feature.

WP271 (v1.0) May 22, 2008 www.xilinx.com 21

http://www.xilinx.com

& XIuNxe

References

References

For more information, see UG331, Chapter 7, Using Look-Up Tables as Shift Registers
(SRL16):
(http:/ /www.xilinx.com/support/documentation/user_guides/ug331.pdf).

Revision History

The following table shows the revision history for this document:

Date Version Description of Revisions

05/22/08 1.0 Initial Xilinx release. Originally published as a TechXclusive.

Notice of Disclaimer

The information disclosed to you hereunder (the “Information”) is provided “AS-IS” with no warranty of
any kind, express or implied. Xilinx does not assume any liability arising from your use of the
Information. You are responsible for obtaining any rights you may require for your use of this
Information. Xilinx reserves the right to make changes, at any time, to the Information without notice and
at its sole discretion. Xilinx assumes no obligation to correct any errors contained in the Information or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information. XILINX
MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING
THE INFORMATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

22

www.xilinx.com WP271 (v1.0) May 22, 2008

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf

	Saving Costs with the SRL16E
	Modes of Operation
	Look-Up Table as an AND Gate
	Look-Up Table in SRL16E Mode

	Basic SRL16E Applications
	Simple Shift Register
	Design Considerations
	Delay Examples

	Intermediate SRL16E Applications
	Running Average Using an Adder Tree
	Running Average Using an Accumulator
	Pulse Generation and Clock Division
	Multi-stage Dividers
	Pattern Generation
	Complex State Machines

	Advanced SRL16E Applications
	FIR Filter
	FIFO

	Complete RS-232 Receiver
	Summary

	References
	Revision History
	Notice of Disclaimer

