
WP271 (v1.0) May 22, 2008 www.xilinx.com 1

© 2008 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property
of their respective owners.

-

Although the SRL16E 16-bit shift register sounds like
an additional component, it is an alternate operating
mode for the Look-Up Tables in which they become
16-bit shift registers. While a synthesis package will
automatically apply the SRL16E in some situations,
substantial benefits can be realized by
understanding the potential of the SRL16E and
deliberately applying it to your designs.

This white paper provides examples to help your
understanding of the capabilities and use of the
SRL16E to improve the performance and lower the
cost of your designs by as much as an order of
magnitude.

White Paper: Xilinx FPGAs

WP271 (v1.0) May 22, 2008

Saving Costs with the SRL16E

By: Ken Chapman

R

http://www.xilinx.com

2 www.xilinx.com WP271 (v1.0) May 22, 2008

Modes of Operation
R

Modes of Operation
The SRL16E was introduced in the Virtex® FPGA architecture and is included in all
variants of the Spartan®-3 family. It is an alternate operating mode of a Look-Up Table
in which it becomes a 16-bit shift register as shown in Figure 1. The added capability
this configuration provides can lead to dramatic improvements in performance and
cost savings to your design. However, the operation of this mode is not obvious, and
an understanding of the underlying structure of an SRL16E is necessary to maximize
the benefits available from this configuration. The information and examples
contained in this White Paper will help you gain this understanding.

Look-Up Table as an AND Gate
Figure 2 shows a Look-Up Table configured as a 4-input AND gate. The select lines on
the 16 to 1 multiplexer are used as input signals I3, I2, I1, and I0. The multiplexer
output O will serve as the AND gate output. The data value for each multiplexer input
are the 16 configuration bits which are set via the configuration bit-stream. Only when
all four multiplexer select lines I[3:0] are logic one is the configuration cell containing
logic one selected. In any other case, the multiplexer will select a cell containing a logic
zero.

The INIT parameter is a description of the bit pattern stored in the configuration cells.
This hexadecimal value representing the bit pattern 1000 0000 0000 0000
(8000 hexadecimal) can be applied manually to a Look-Up Table primitive (LUT4
component), or is more normally generated automatically by an HDL synthesis
package.

X-Ref Target - Figure 1

Figure 1: A SLICEM Look-Up Table Used as a Gate or Shift Register

WP271_01_041608

Q
CE

A0
A1
A2
A3

D

D Q

D Q

SLICEM

Look-up Table
used as a gate

Look-up Table
used in SRL16E mode

http://www.xilinx.com

Basic SRL16E Applications

WP271 (v1.0) May 22, 2008 www.xilinx.com 3

R

Look-Up Table in SRL16E Mode
When the Look-Up Table is used in SRL16E mode, the basic structure is similar, but
now the 16 configuration cells are organized as a shift register connected to the
multiplexer as shown in Figure 3. The 4 select line inputs to the multiplexer are labeled
A3, A2, A1, and A0, and their ability to select one of the 16 inputs remains the same. In
this mode, the multiplexer inputs can still be initialized via the configuration bit-
stream (using an INIT value), but the contents can also be modified by shifting in new
data on the D input.

The output is labeled Q to reflect that the selected value is a Q output from one of the
shift register flip-flops. Note that the shift register output delay is determined by
which flip-flop output is selected by the A[3:0] inputs, and can be from 1 to 16 clock
cycles. This selection is also independent of the clock and clock enable inputs.

Basic SRL16E Applications
The use of the SRL16E can facilitate space-efficient designs and improved
performance by increasing the potential device gate count. Each SLICEM contains 34
flip-flops [2 x (16+1)], which greatly increases the gate count of the device. The 50,000-
gate XC3S50A Spartan-3A FPGA contains 704 slices, half of which (352 slices) are
SLICEM and could implement 11968 bits of shift register. This is the equivalent to
about 72000 ASIC gates (without even considering the 54kbit of block RAM).

X-Ref Target - Figure 2

Figure 2: Look-Up Table Used as a 4-input AND gate

WP271_02_050108

INIT = 8000

1010 1100 1101 11100001 0010 0011 0100 0101 0110 01110000 1000 1001 1011 1111

O

I3
I2
I1
I0

1000000000000 0 0 0

X-Ref Target - Figure 3

Figure 3: Look-Up Table in SRL16E Mode

WP271_03_041608

1010 1100 1101 11100001 0010 0011 0100 0101 0110 0111

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

0000 1000 1001 1011 1111

Q

D
Clk

A3
A2
A1
A0

CE

http://www.xilinx.com

4 www.xilinx.com WP271 (v1.0) May 22, 2008

Basic SRL16E Applications
R

Simple Shift Register
The most basic use of the SRL16E is as a shift register or digital delay. For example, a
10 clock cycle delay requires 10 flip-flops connected as shown in Figure 4.

One way to implement this function is to connect ten of the individual flip-flops
available on each slice. Since two flip-flops are available on each slice, this would
occupy 5 slices of the Xilinx Spartan-3 generation FPGA architecture. However, a more
efficient implementation can be created using one of the two SRL16Es available on a
single SLICEM.

The 10 clock cycle delay is available at the output of the tenth flip-flop. A3, A2, A1, and
A0 can be tied to Vcc and GND as shown in Figure 5 to a value of 1001 which will
select the output of the tenth flip-flop (note that the addressing of the flip-flop outputs
start at 0000, so the tenth flip-flop has address 1001). In this example, the shift register
is permanently enabled; hence, the CE input is also tied High to Vcc.

It is obvious the 16 flip-flops and 16:1 multiplexer comprising a SRL16E permit it to
support a delay from 1 to 16 clock cycles. Less obvious is that high performance is
easier to achieve in a system design. Since all the flip-flops are fixed in the silicon, the
connections between them are short and predictable. The lower utilization of the
device reduces power consumption and also enables other logic to be placed in closer
proximity. Although Vcc and GND signals must be routed to the SRL16E, these static
signals will have no impact on timing or power consumption.

X-Ref Target - Figure 4

Figure 4: 10-bit Shift Register

X-Ref Target - Figure 5

Figure 5: 10-bit Shift Register Using the SRL16E

WP271_04_031108

D Q D Q D Q D Q D Q D Q D Q D Q D Q D QD

CLK

Delay 10

WP271_05_041708

1010 1100 1101 11100001 0010 0011 0100 0101 0110 01110000 1000 1001 1011 1111

Delay 10

Vcc

D

Clk

A3
A2
A1
A0

Vcc

A[3:0] = 1001

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

http://www.xilinx.com

Basic SRL16E Applications

WP271 (v1.0) May 22, 2008 www.xilinx.com 5

R

Design Considerations
Use of the SRL16E in a delay configuration is relatively simple. Being aware of when it
can be used is vital in ensuring maximum utilization of a device. This is particularly
true when using an HDL synthesis tool. Believe it or not, you may already have used
this powerful feature because most synthesis tools will automatically insert SRL16E
into your design to replace multi-stage delays. The issue is that failure to use the
SRL16E either manually or automatically will have a large impact on the area of silicon
occupied. The following points are worth considering when designing with any tool.

No Reset
Although the SRL16E supports a clock enable (CE) for each of the 16 flip-flops, it does
not provide a reset. When you design using schematics, you must deliberately select
the SRL16E in order to use this mode. When you design using HDL where the SRL16E
mode is automatically selected, you must be careful not to imply a reset on elements
forming a shift register delay. Note that all flip-flops including those in each SRL16E
are reset by the configuration process and hence start in a known condition. HDL
coding styles and templates often include a reset to achieve this same condition in an
ASIC and remove unknown states from a simulation. Removing these unnecessary
resets from code can allow many more flip-flops to be automatically consolidated into
the SRL16E. As a result, designs can shrink by more than 10 percent, often enabling a
smaller device at reduced cost (see WP272).

Simulation Confusion
Simulation of delays should be simple. However, it appears to confuse everyone at
some stage and therefore a small explanation is worthwhile. In this example the delay
is 6 clock cycles which would relate to the A[3:0] input being forced to '0101'= 5. The
confusion can occur because the data appears after just 5 clock cycles (Figure 6).
X-Ref Target - Figure 6

Figure 6: 6 Cycle Delay

Clk

D

Q

6 cycle delay

Data captured on the
rising edge of Clk

Data for the next level
of logic is available on
the 6th clock cycle

Data appears at the output
following the 5th clock cycle

Delay 1 Delay 2 Delay 3 Delay 4 Delay 5 Delay 6

WP271_06_050808

http://www.xilinx.com
http://www.xilinx.com/support/documentation/white_papers/wp272.pdf

6 www.xilinx.com WP271 (v1.0) May 22, 2008

Basic SRL16E Applications
R

Delay Examples
Consider some applications in which shift register delay can be used, or indeed occurs
by default.

Pipeline Compensation
For high performance designs, Xilinx FPGAs provide excellent results when fully
pipelined. Unlike an ASIC, the flip-flops in each slice are already provided and
waiting to be used. Although the pipeline registers are essentially free, a pipelined
system may have additional cost resulting from pipeline compensation in other paths.
Figure 7 shows the addition of 9 values of 16-bits. It can be seen that the 9th input has
to be delayed by 3 cycles to compensate for the addition tree of the other 8 inputs. This
compensation delay requires 48 flip-flops (3x16) which would occupy 24 slices. The
SRL16Es reduce this to just 16 Look-Up Tables in 8 slices.
X-Ref Target - Figure 7

Figure 7: Using SRL16E for Pipelining

A[15:0]

B[15:0]

+

C[15:0]

D[15:0]

+

E[15:0]

F[15:0]

+

G[15:0]

H[15:0]

+

+

+

+

+

I[15:0]

SRL16E implementation

Sum[19:0]

Combined adder
and register in slice

WP271_07_031208

http://www.xilinx.com

Basic SRL16E Applications

WP271 (v1.0) May 22, 2008 www.xilinx.com 7

R

Pseudo Random Noise Generator
A pseudo-random noise generator (PN) is based on a Linear Feedback Shift Register
(LFSR) counter technique.

There are two styles of implementation, but both make use of simple shift register
delay. The PN generator is responsible for producing a pseudo-random signal that
produces logic zero and logic one levels. Note that a pseudo-random number
generator is the same structure, but would observe all bits of the shift register as a
parallel word. This would not enable the SRL16E to be used other than to provide a
single flip-flop.

In some applications the realization that the SRL16E can provide such efficient shift
register delays can be utilized to greatly simplify designs. This is explored more in the
“Pulse Generation and Clock Division” topic.

Serial Frame Synchronizer
This is a common application seen in telecommunications and networks. Data is
passed serially between units (for example at 2.048 Mbps) and is formatted into
frames or packets. In order to synchronize to these packets, a start and end code is
included. Although the start code should be unique, it is possible that the data itself
may contain the same pattern. To reduce the probability of incorrect synchronization,
the end of frame code can be used to further qualify the data. Only when the start code
and end code occur at the correct times is the data accepted. Using a state machine
approach to solve this design problem, the start code pattern is identified and then the
data stream is stored in a buffer. Data bits are counted, and at the expected count, it
would then check for the end of frame code. If this code does not occur when expected,
or if a start code occurs beforehand, then the buffer is overwritten with new data. This
approach still has the possibility of losing data.

The ideal solution is to hold an entire frame in a shift register and test for the start and
end patterns at every bit position. Figure 9 shows this approach implemented as a 512-
bit frame detector. One frame consists of a serial stream containing a 16-bit start code,
480 bits of data, and a 16-bit end code. As each new bit is shifted in to the Serial In
input, data in the shift register advances by one position. The 16-bit AND gates
connected to the flip-flop outputs at the front and the back of the 512-bit shift registers
will detect the simultaneous occurrence of the start and end codes and provide a Sync
pulse to indicate the data contained in the middle 480 flip-flops is valid. If the flip-flop
pair contained in each slice was used to build this 480-bit shift register, it would
occupy 240 slices and would be considered expensive. A more efficient approach will

X-Ref Target - Figure 8

Figure 8: Using SRL16E for Linear Feedback Shift Registers

QD QD QD QDQDQD QD QD QDQDQD QD QD QDQDQD

SRL16ESRL16E

PN

2 SRL16E Look-Up Tables replace16 flip-flops.
Net result: Logic needing 8 slices is implemented using only one SLICEM.

WP271_08_041708

http://www.xilinx.com

8 www.xilinx.com WP271 (v1.0) May 22, 2008

Intermediate SRL16E Applications
R

result by using the 16 flip-flops available in the SRL16E mode. This will reduce the 480
bit shift register to 30 SRL16Es in 15 slices. In this way the entire synchronizer can be
realized in just 31 slices, resulting in an equivalent gate count of over 3000 achieved in
less than 5 percent of the Spartan-3A XC3S50A (50,000 gate device).

Intermediate SRL16E Applications
The next SRL16E applications require additional thought about the alternative ways in
which a problem can be solved. It is often possible to find a solution to a problem
using shift register delay. Although HDL tools will automatically convert simple
delays into SRL16E primitives, they are not able to change the structure of the design.
As the engineer, you are able to discover these fresh approaches. The following two
examples illustrate some realistic cases of such structures.

Running Average Using an Adder Tree
The running average (or more accurately the running sum) of a set of samples is a
simple FIR filter having a smoothing or low-pass response. In Figure 10, the output is
the sum of the last 8 samples held in a shift register. If we assume 16-bit wide input
word, then we need 8 x 16-bits = 128 flip-flops to form the shift registers plus an adder
tree made of 4 x 17-bits + 2 x 18-bits + 1 x 19-bits = 123 bits. Hence, this implementation
requires 128 flip-flops for shift registers, 123 bits of addition, and would require 126
slices to implement.

X-Ref Target - Figure 9

Figure 9: Using SRL16Es as a Serial Frame Synchronizer

Serial In

Sync

16 bit start code16 bit end code 480 bit data

512 bits per frame

SRL16E SRL16E... ...SRL16E

AND gate detects
START code pattern

AND gate detects
END code pattern

WP271_09_031008

http://www.xilinx.com

Intermediate SRL16E Applications

WP271 (v1.0) May 22, 2008 www.xilinx.com 9

R

Assuming that the non-pipelined adder tree shown in Figure 10 can provide the
necessary performance, the adders and registers can be mapped into the same slices,
reducing the size to 64 slices. This substantially reduces space requirements. However,
using knowledge of SRL16E, and the characteristics of a running average function, we
can go much further.

Running Average Using an Accumulator
In order to reduce complexity, observe that for this running average function a sample
entering the shift register contributes to the result for 8 clock cycles. Although a
sample always contributes the same value to the result, it is doing so via different
paths through the addition tree each cycle.

Figure 11 shows an alternative solution that uses this fact by adding the new sample to
an accumulator that remembers the sample’s contribution. After 8 clock cycles, we
then subtract the delayed sample from the accumulator. Not only does this reduce the
adder tree to a simple subtractor and accumulator, but it also puts the shift register
into the form of a simple delay line which is easily absorbed into SRL16E primitives.
For this example, the 16-bit input samples still require 8 x 16 flip-flops for the shift
register, but now fit into just 8 slices. The subtractor is 17-bits and the final
accumulator is 19-bits (requiring a further 18 slices). The total size is 26 slices, a 60
percent reduction in size when compared to the original implementation. Also note
that as the length of the running average is increased, the savings are significantly
greater.

X-Ref Target - Figure 10

Figure 10: Running Average Using Non-Pipelined Adder Tree

++++

++

+

Average

Input Samples

WP271_10_031808

http://www.xilinx.com

10 www.xilinx.com WP271 (v1.0) May 22, 2008

Intermediate SRL16E Applications
R

Pulse Generation and Clock Division
Unless there are special reasons not to do so, the use of a single clock source
(distributed via one of the global clock networks) should be used for all elements of a
design. Clock enable pulses should then be used to enable system subsections to
operate at a lower rate. In Figure 12, the enable pulses are used to enable a counter.
Clearly, the pulse must occur at regular intervals and have a duration of one clock
cycle.

Figure 13 shows a practical example of an RS-232 receiver module which receives
serial data at 9600 bits per second. Typical of most RS-232 interfaces, this unit uses a
timing reference which is 16 times the bit rate. In line with good design practice, this
macro takes this reference as a clock enable pulse.

X-Ref Target - Figure 11

Figure 11: Running Average Using Accumulator

Average

SRL16E Implementation

+

+

-Input Samples

WP271_11_031808

X-Ref Target - Figure 12

Figure 12: Pulse Generation

Clk

Enable

Count
28 29 30

WP271_12_031808

http://www.xilinx.com

Intermediate SRL16E Applications

WP271 (v1.0) May 22, 2008 www.xilinx.com 11

R

Pulses at 16 x 9600 bits per second (153,600 kHz) are not an exact integer division of 40
MHz. However a division by 260 is equivalent to 16 x 9615 which is adequate for RS-
232. This means that a pulse must be active for one cycle in every 260. One way to
achieve this is by using a 9-bit counter with an AND gate to detect a count value 259.
The output of the AND gate provides the pulse and synchronously resets the counter
(Figure 14). This solution requires 6 slices of logic.

A counter can be viewed as a simple state machine. In this case, the 9 bits provide a
possible 512 states of which the first 260 are actually used. Each state leads to the next
until reaching the 259th state, when it returns to zero. An equivalent one-hot state
machine is one in which a different shift register flip-flop is used to represent each
state. The active state is at logic one; all other states are logic zero.

A one-hot state machine made by combining multiple SRL16Es is very practical.
Figure 15 shows that 16 SRL16E primitives and 4 flip-flops can provide the 260 states
required. This solution is larger than the counter-based pulse generator, but the
simplicity of this technique makes it practical.

X-Ref Target - Figure 13

Figure 13: Pulse Generation for RS-232

X-Ref Target - Figure 14

Figure 14: Counter-Based Pulse Generator

40 Mhz
Data Out [7:0]Serial In

16x Baud

RS232 Receiver

Data Present

Clk / 260

Pulse Generator

WP271_13_031808

Reset

9 bit counter

D8

D0
D1
D2
D3
D4
D5
D6
D7

9 bit AND
gateClock

Clock / 260

WP271_14_041708

http://www.xilinx.com

12 www.xilinx.com WP271 (v1.0) May 22, 2008

Intermediate SRL16E Applications
R

Multi-stage Dividers
Although the one-hot state machine approach is ideal for smaller division factors, at
some point the number of flip-flops required becomes impractical. A solution to this is
to use multiple stages to divide and conquer.

The division by 260 can be broken into 2 stages (Figure 16). The first stage divides the
clock by 26 and provides enable pulses to the second stage. The second stage divides
the enable pulses by 10.

The first stage requires a 26-state looped delay around which a single hot bit is clocked
to produce the enable pulse. This can be created with 26 flip-flops contained in just
two SRL16E primitives in a single slice (Figure 17). This is a more efficient
implementation than the equivalent function created using a 5-bit counter and
decoder which requires 3 slices.

X-Ref Target - Figure 15

Figure 15: Using SRL16E for One-hot Counter

SRL16E SRL16E... ...SRL16E

One bit active
in loop

16 x SRL16E = 256 flip-flops

4 flip-flops in one
SRL16E CLB

WP271_15_031808

X-Ref Target - Figure 16

Figure 16: Dividing Pulse Generator into Two Stages

Clk / 26

Pulse Generator

En / 10

Pulse Generator

En
Clk / 260

Clk

WP271_16_031808

http://www.xilinx.com

Intermediate SRL16E Applications

WP271 (v1.0) May 22, 2008 www.xilinx.com 13

R

The second stage differs from the first stage since it must divide the clock enable
pulses from the first stage, rather than the clock directly (Figure 18). For this reason,
the clock enable input is driven.

Since the SRL16E is only enabled once every 26 clock cycles, the output pulse is active
High for 26 clock cycles (Figure 19). To generate a single cycle clock enable pulse, this
long pulse is gated with the input enable. The flip-flop ensures high performance, as
such an enable pulse may have a high fan-out.

X-Ref Target - Figure 17

Figure 17: Two Stage Divide by 260

X-Ref Target - Figure 18

Figure 18: Using SRL16E for Second Stage of Pulse Generator

SRL16E SRL16E

Delay = 16 Delay = 10

One Slice

Clk / 26

WP271_17_031808

Q

A0
A1
A2
A3

D

INIT = 0001

QD Clk / 260

CE

Clk / 26

Vcc

Clk

Pulse

WP271_18_050108

http://www.xilinx.com

14 www.xilinx.com WP271 (v1.0) May 22, 2008

Intermediate SRL16E Applications
R

Forcing the Hot State
Because this kind of pulse generator works by recycling the hot (logic one) state, the
hot state must be present in the delay loop at the start of operation. There are two ways
to achieve this.

Using INIT

One method is to set the hexadecimal INIT value on the SRL16E Look-Up Table
(Figure 20). If necessary, the position of the hot bit can be determined during the start-
up sequence. Note that the hot bit must be defined before the delay tapping point. If
INIT is set to 0001, one loop of the delay is required before the first pulse is seen at the
output.

X-Ref Target - Figure 19

Figure 19: Timing of the Divide By 260 Implementation

Clk

26 Cycles

Clk / 260

Pulse

Clk / 26

WP271_19_041808

X-Ref Target - Figure 20

Figure 20: Initializing Hot State using the INIT Value

Q

A0
A1
A2
A3

D

INIT = 0001

Delay Setting

WP271_20_031808

http://www.xilinx.com

Intermediate SRL16E Applications

WP271 (v1.0) May 22, 2008 www.xilinx.com 15

R

Using a Flip-flop

Although the INIT parameter provides total control, this may not be easy to achieve
via synthesis unless component instantiation is used. In this case, the default
INIT=0000 can be used and the hot bit injected using a flip-flop (Figure 21). This flip-
flop can be initialized with logic one by declaring (or inferring) an asynchronous
preset. Obviously, the delay formed in the SRL16E is now one less. The flip-flop has
the advantages of increasing the maximum delay available by one and improving the
clock-to-output performance of the pulse generator.

Pattern Generation
Since the SRL16E can be pre-initialized with any INIT value, it can be used to produce
a repeatable pattern. In Figure 22, a clock signal is generated that is 400 times less than
the input clock. In this example, the object is to produce an output waveform having
approximately a 50 percent duty cycle. The solution uses a divide by 16 stage which
enables a divide by 25 stage. Note how the INIT values set the pattern of the output
waveform.

X-Ref Target - Figure 21

Figure 21: Initializing Hot State using a Flip-Flop

Q

A0
A1
A2
A3

D

INIT = 0000

Q

PRE

D

Delay Setting

WP271_21_041808

http://www.xilinx.com

16 www.xilinx.com WP271 (v1.0) May 22, 2008

Intermediate SRL16E Applications
R

Very High Performance Clock Division
The example shown in Figure 22 can be implemented in 2 slices. Because all logic in a
single slice shares a common clock, there are no clock skew issues between the
elements; thus, the input clock does not need to be provided from the global clock
resource. The close proximity of the elements also yields very high performance (in
excess of 350 MHz). Such a circuit may be useful in dividing a high speed clock before
use of a global clock resource in order to minimize the power dissipation. In general, a
single clock and enable pulse is preferable.

Complex State Machines
We have seen that the simple clock division or pulse generator is a form of one-hot
state machine. This technique can be expanded to form more complex state machines.
The use of shift registers to delay control pulses is an effective implementation method
that can be easier to design than you might think.

RS-232 Receiver
In this example, a simple RS-232 receiver is considered. Figure 23 shows a serial data
word provided at a rate of 9600 bits per second with a single start bit (active Low) and
single stop bit (active High). Although the serial data arrives asynchronously, the basic
timing of the data is implied from the bit rate.

X-Ref Target - Figure 22

Figure 22: Using Init Values to Define a Pattern

INIT = 0001

Delay 16

INIT = 01FF INIT = F000

Q

CE

A0
A1
A2
A3

D Q

CE

A0
A1
A2
A3

D Q

CE

A0
A1
A2
A3

D

SRL16E

Vcc

Vcc Vcc

Delay 9 Delay 16

SRL16E SRL16E

Clk_In

Enable16

Clk_Out

Clk_In

Clk_Out

Enable16

Loop

Loop back
Total loop delay = 25

Combined INIT values describe a pattern
Logic 0 for 12 periods, logic 1 for 13 periods

Pattern
contains
single logic 1

13 Periods 12 Periods

WP271_22_040108

http://www.xilinx.com

Intermediate SRL16E Applications

WP271 (v1.0) May 22, 2008 www.xilinx.com 17

R

A reference time signal is provided at 16 x bit rate. The falling edge of the start bit is
used to trigger a state machine which uses the timing reference to approximately
locate the mid-position of each data bit.

Figure 23 shows that the state machine must first count 8 timing reference periods to
locate the mid-position of the start bit, and then count every 16 timing reference
periods to locate the midpoint of each data bit and the stop bit. Once the stop bit has
been sampled, the state machine must return to the idle condition in which it locates
the next falling edge of a start bit.

Although this example does not show all the details required by a UART state
machine, it does illustrate the main functionality and the way in which the SRL16E
primitives are used. Figure 24 shows a 24 state one-hot state machine with each state
represented by the flip-flops contained within two SRL16E elements. All states are
Low until a High pulse is injected when a High to Low transition occurs at the RS-232
input. While not shown in this example, a full implementation must prevent multiple
hot states from being generated on subsequent data transitions.

The first SRL16E delays this pulse until the midpoint of the start bit, and then injects
the hot state into the second SRL16E. This will circulate every 16 bit rate-enabled
periods to locate the midpoint of each data bit. At the end of the data transmission, the
hot state is prevented from re-entering the SRL16E, and the state machine returns to
being inactive. A complete RS-232 receiver for this specification can be made in 8
slices.

X-Ref Target - Figure 23

Figure 23: RS-232 Serial Data Waveform

WP271_23_031808

Start
Bit

d0 d1 d2 d3 d4 d5 d6 d7 Stop

d0 d1Start
Bit

8 16 16

http://www.xilinx.com

18 www.xilinx.com WP271 (v1.0) May 22, 2008

Advanced SRL16E Applications
R

Advanced SRL16E Applications
In the next examples, we will move away from using the SRL16E to implement a fixed
delay. Instead, the multiplexer select lines will be dynamically addressed.

FIR Filter
The most important fact regarding this mode of operation is that the shift register and
the multiplexer are totally independent. The shift register takes data from the D input
under the control of the clock (CLK) and clock enable (CE) signals. The output at Q
depends only on the A[3:0] inputs. Although it is tempting to believe that a pin called
Q is associated with a synchronous clocked output, it must be understood that the
multiplexer operation is completely combinatorial and has nothing to do with the
clock. The use of the label Q indicates the multiplexer is selecting one of the 16 shift
register flip-flop outputs.

For a synchronous output, the associated flip-flop within the slice can be used. Good
design practice requires this flip-flop to use the same clock as the SRL16E.

X-Ref Target - Figure 24

Figure 24: RS-232 Receiver Logic

Q
CE
DQ

CE
D

Delay = 16Delay = 8

RS232
Input

Start

Clk

SRL16E

QD

Stop Bit Position

SRL16E

D Q
Data
Sample
Enable

All elements enabled at 16x bit rate rate*

**
*

WP271_25_050808

CE CE

*

X-Ref Target - Figure 25

Figure 25: FIR Filter Logic

WP271_26_041808

ROM

Q

CE

D

Clk
A[3:0]

SRL16E

A[3:0]

Out QD

A
ccum

ulator

Sum of Products

QD

Data[n:0]

Scan Data

Scan Coefficient

Reset

Counter

A[3:0]

Shift Enable

Set of SRL16E elements to support data bus width

http://www.xilinx.com

Advanced SRL16E Applications

WP271 (v1.0) May 22, 2008 www.xilinx.com 19

R

In this example the SRL16E elements form the taps of the FIR filter. A new sample
causes all previous samples to move along the shift register and the oldest sample will
be discarded. To calculate the filter output a single multiply and accumulate unit is
used over 16 clock cycles.

With the data held static in the shift register (CE is Low), a counter addresses the
multiplexer within the SRL16E to select each tap in turn and apply the contents to the
multiplier. The same address is used to select the appropriate coefficient from a ROM.
In the complete implementation the accumulator would be reset at the beginning of
each calculation.

FIFO
A FIFO is normally based on a dual port memory (for simultaneous write and read
operations), a pair of address counters (for write and read pointers) and control logic
to detect full or empty conditions. The SRL16E can be used to form a FIFO as shown in
Figure 27 through Figure 30. This implementation has the advantage of greatly
simplified counters and control logic and twice the density of dual port RAM.

X-Ref Target - Figure 26

Figure 26: FIR Filter Timing

Clk

Scan Data

Counter

Shift Enable

0 1 2 3 4 5 6 7 8

S S S Sn-3n-2n-1n

WP271_27_031808

http://www.xilinx.com

20 www.xilinx.com WP271 (v1.0) May 22, 2008

Advanced SRL16E Applications
R

Operation
1. This example begins when 5 data words have been written to the FIFO. The counter is at

value 4 to select the 5th tapping point and hence the oldest data is available at the output.

2. Data WRITE. A new data write causes all data in the shift register to advance by one
position. Note the counter has been incremented and so the multiplexer is still selecting the
oldest data to be presented to the output.

3. Data READ. Reading data does not affect the contents of the shift register. Note the counter
has been decremented so the multiplexer is now selecting the next oldest data to be
presented at the output.

4. Simultaneous data WRITE and data READ. The shift register has advanced by one position
but the counter remains at the same value. As a result, the next oldest data moves into the
selected position. The previously read data is still contained in the shift register but is no
longer needed and will eventually be lost completely.

X-Ref Target - Figure 27

Figure 27: SRL16E After Writing Five Words

X-Ref Target - Figure 28

Figure 28: SRL16E After Writing a 6th Data Sample

X-Ref Target - Figure 29

Figure 29: SRL16E After Data Read

X-Ref Target - Figure 30

Figure 30: SRL16E After Simultaneous Data Write and Data Read

WP271_28_050108

2nd In3rd In4th In5th In 1st In

(1st In is available)

Clock not shown for clarity
Data Out

Write 0

Read 0

Counter

0100

CE

WP271_29_050108

(1st In is still available)

Write 1

Read 0

Counter

2nd In3rd In4th In5th In 1st In

0101

6th InData In

Data Out

CE

Clock not shown for clarity

WP271_30_050108

2nd In3rd In4th In5th In 1st In

(2nd In is available)

6th In

Data Out

Write 0

Read 1

Counter

0100

CE

Clock not shown for clarity

WP271_30_050108

2nd In3rd In4th In5th In 1st In

(3rd In is available)

6th In7th In

Data Out
Clock not shown for clarity

Write 1

Read 1

Counter

0100

Data In
CE

http://www.xilinx.com

Complete RS-232 Receiver

WP271 (v1.0) May 22, 2008 www.xilinx.com 21

R

Complete RS-232 Receiver
Figure 31 illustrates a complete RS-232 receiver with baud rate generator and FIFO
data buffer. This example combines several of the previous examples to show the
potential use of the SRL16E primitive in a variety of modes.

Note that this example uses 18 slices to provide 207 flip-flops which yields a density of
69 gates per slice (based on just 6 gates per flip-flop). 13 Look-Up Tables are used in
SRL16E mode, and 21 are used in standard logic mode.

Summary
The SRL16E is an alternative configuration of the Xilinx Look-Up Table, changing it
from a 4-input Look-Up Table to a 16-bit shift register. The SRL16E configuration takes
advantage of the inputs provided in order to use the Look-Up Table as RAM, which
are supported in the SLICEM elements of the Spartan-3 Generation FPGAs. Although
this configuration may often be used automatically, careful consideration in the design
description can allow full access to this very efficient feature.

X-Ref Target - Figure 31

Figure 31: Complete RS-232 Receiver

FIFO Control

Counter

Full / Empty

Four Slices

FIFO Buffer

Four Slices

QD

QD

QD

QD

QD

QD

QD

QD

Serial to
Parallel

Four Slices

UART Control

Serial Input

Four Slices

40 MHz
Reference
Clock

Two Slices

16x9600 bps Pulse Generator

Word Control

Divide by 26

Divide by 10

QD
Includes 3
SRL16E

40 MHz / 26

(40 MHz / 260 = 153.856 kHz)

153 kHz

http://www.xilinx.com

22 www.xilinx.com WP271 (v1.0) May 22, 2008

References
R

References
For more information, see UG331, Chapter 7, Using Look-Up Tables as Shift Registers
(SRL16):
(http://www.xilinx.com/support/documentation/user_guides/ug331.pdf).

Revision History
The following table shows the revision history for this document:

Notice of Disclaimer
The information disclosed to you hereunder (the “Information”) is provided “AS-IS” with no warranty of
any kind, express or implied. Xilinx does not assume any liability arising from your use of the
Information. You are responsible for obtaining any rights you may require for your use of this
Information. Xilinx reserves the right to make changes, at any time, to the Information without notice and
at its sole discretion. Xilinx assumes no obligation to correct any errors contained in the Information or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information. XILINX
MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING
THE INFORMATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

Date Version Description of Revisions

05/22/08 1.0 Initial Xilinx release. Originally published as a TechXclusive.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf

	Saving Costs with the SRL16E
	Modes of Operation
	Look-Up Table as an AND Gate
	Look-Up Table in SRL16E Mode

	Basic SRL16E Applications
	Simple Shift Register
	Design Considerations
	Delay Examples

	Intermediate SRL16E Applications
	Running Average Using an Adder Tree
	Running Average Using an Accumulator
	Pulse Generation and Clock Division
	Multi-stage Dividers
	Pattern Generation
	Complex State Machines

	Advanced SRL16E Applications
	FIR Filter
	FIFO

	Complete RS-232 Receiver
	Summary

	References
	Revision History
	Notice of Disclaimer

