EE 459/500 - HDL Based Digital Design with Programmable Logic

Lecture 2
 Digital Design Fundamentals

Read before class:

- Chapter 1 from textbook (first half)
- Textbook used in your introductory digital logic design course

Digital Design Fundamentals

- Combinational circuit basics
- Boolean algebra
- Operators, basic logic gates
- Complex gates
- Logic minimization
- Sequential circuit basics
- Latches and flip-flops
- Finite state machines
- Design and implementation

Part 1

- Combinational circuit basics

Boolean Algebra

- Unity operators $A+0=A$

$$
A \cdot 1=A
$$

- Complement

$$
\begin{aligned}
A+\bar{A} & =1 \\
A \cdot \bar{A} & =0
\end{aligned}
$$

- Commutativity

$$
\begin{aligned}
A+B & =B+A \\
A \cdot B & =B \cdot A
\end{aligned}
$$

- Associativity

$$
\begin{aligned}
A+(B+C) & =(A+B)+C \\
A \cdot(B C) & =(A B) \cdot C
\end{aligned}
$$

- Distributive Law $A \cdot(B+C)=A B+A C$

$$
A+B C=(A+B) \cdot(A+C)
$$

Boolean Algebra

- Duality $f(A, B, 1,0, \cdot,+=\overline{f(\bar{A}, \bar{B}, 0,1,+)}$

$$
\begin{array}{rlrl}
A+1 & =4 & A \cdot A & =A \\
1+4 & =1 & 0 \cdot A & =0 \\
A+1 B & =4 & A \cdot(A+B) & =A \\
A+\overline{4} B & =4+3 & A \cdot(\bar{A}+B) & =A \cdot B
\end{array}
$$

- DeMorgan's Theorem

$$
\begin{aligned}
\bar{A}+\overline{3} & =\overline{4} \bar{B} \\
\bar{A} \cdot \bar{B} & =\overline{4}+\overline{3}
\end{aligned}
$$

Operators, Basic Logic Gates

- AND	A	B	A•B	NAND$f(A, B)=\overline{4} \cdot \bar{B}=\overline{4 \bigcap B}$	A	B	A•B
	0	0	0		0	0	1
$f(A, B)=A \cdot B=A \bigcap B$	0	1	0		0	1	1
$\mathrm{A}-\square$	1	0	0		1	0	1
	1	1	1		1	1	0

A	B	$\mathrm{A}+\mathrm{B}$
0	0	0
0	1	1
1	0	1
1	1	1

$\sim \mathrm{NOR}$
$f(A, B)=\overline{A+B}=\bar{A} \cup B$

$\mathrm{~B} \longrightarrow-\overline{\mathrm{A}+\mathrm{B}}$ | A | B | $\overline{\mathrm{A}+\mathrm{B}}$ |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

- NOT

$$
C=\operatorname{VOT}(A)=4^{\prime}=\overline{4}
$$

Operators, Basic Logic Gates

- Exclusive OR (XOR)/Exclusive NOR (XNOR)
$X \oplus Y=X \bar{Y}+\bar{X} Y$

$\overline{X \oplus Y}=X Y+\bar{X} \bar{Y}$

- Uses for the XOR and XNOR gate include:
- Adders/subtractors/multipliers
- Counters/incrementers/decrementers
- Parity generators/checkers
- The XOR function may be implemented

X	Y	$X \oplus$
0	0	0
0	1	1
1	0	1
1	1	0

- directly as an electronic circuit (truly a basic gate)
- interconnecting other gate types (used as a convenient representation; can be seen as a complex gate)

Complex Logic Gates

- SOP or POS structures with and without an output inverter.
- SOP: $F=\bar{A} \bar{B} C+\bar{A} B \bar{C}+A \bar{B} \bar{C}+A \bar{B} C+A B \bar{C}$
- POS: $\quad F=(A+B+C) \cdot(A+\bar{B}+\bar{C}) \cdot(\bar{A}+\bar{B}+\bar{C})$
- Naming:
- A - AND, O - OR, I - Inverter
- Numbers of inputs on first-level "gates" or directly to second-level "gates" - AOI 221

- These gate types are used because:
- The number of transistors needed is fewer than required by connecting together primitive gates
- Potentially, the circuit delay is smaller, increasing the circuit operating speed

Complex Logic Gates

- Common forms of two-level complex logic gates:
- and-or-invert (AOI)
- or-and-invert (OAI)

and-or-invert	sum of products	AOI-21 $=[\mathrm{AB}+\mathrm{C}]^{\prime}$	$2+1=3$ inputs
		$\mathrm{AOI}-231=[\mathrm{AB}+\mathrm{CDE}+\mathrm{F}]^{\prime}$	$2+3+1=6$ inputs
or-and-invert	product of sums	OAI-21 $=[(\mathrm{A}+\mathrm{B})(\mathrm{C})]^{\prime}$	$2+1=3$ inputs
		OAI-231 $=$ $[(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D}+\mathrm{E})(\mathrm{F})]^{\prime}$	$2+3+1=6$ inputs

Odd/Even Function

- The XOR function of ≥ 3 variables is called an odd function or modulo 2 sum (Mod 2 sum)

$$
X \oplus Y \oplus \mathcal{Z}=\bar{X} \bar{Y} Z+\bar{X} Y \bar{Z}+X \bar{Y} \bar{Z}+X Y Z
$$

$\mathrm{X} \oplus 0=\mathrm{X}$	$\mathrm{X} \oplus 1=\overline{\mathrm{X}}$
$\mathrm{X} \oplus \mathrm{X}=0$	$\mathrm{X} \oplus \overline{\mathrm{X}}=1$
$\mathrm{X} \oplus \mathrm{Y}=\mathrm{Y} \oplus \mathrm{X}$	
$(\mathrm{X} \oplus \mathrm{Y}) \oplus \mathrm{Z}=\mathrm{X} \oplus(\mathrm{Y} \oplus \mathrm{Z})$	$=\mathrm{X} \oplus \mathrm{Y} \oplus \mathrm{Z}$

- The XNOR function of >3 variables is the even function

Parity Generators and Checkers

\(\left.$$
\begin{array}{l}\mathrm{n} \text {-bit } \\
\text { data }\end{array}
$$ \rightarrow \underset{$$
\begin{array}{c}\text { Parity } \\
\text { Generator }\end{array}
$$}{n+1} \begin{array}{c}Noisy

transmission\end{array}\right) \rightarrow\)| Parity |
| :---: |
| checker |

- Example: $\mathrm{n}=3$
- Generate a parity code word of length 4 with odd parity generator
- Check the parity code word of length 4 with odd parity checker:
- $P=X \oplus Y \oplus Z, E=X \oplus Y \oplus Z \oplus P$
- If Y changes during transmission (between generator and checker), then $\mathrm{E}=1$ indicates an error.

Buffer

- A buffer is a gate with the function $F=X$

- In terms of Boolean function, a buffer is the same as a connection!
- So why use it?
- A buffer is an electronic amplifier used to improve circuit voltage levels and increase the speed of circuit operation.

Hi-Impedance Outputs

- Logic gates introduced thus far
- have 1 and 0 output values
- cannot have their outputs connected together
- transmit signals on connections in only one direction
- Three-state logic adds a third logic value: HiImpedance (Hi-Z)
- The presence of a $\mathrm{Hi}-\mathrm{Z}$ state makes a gate output as described above behave quite differently:
- "1 and 0 " \rightarrow " 1,0 , and $\mathrm{Hi}-\mathrm{Z}$ "
- "cannot" \rightarrow "can"
- "only one" \rightarrow "two"

Hi-Impedance Outputs (Contd.)

- The Hi-Z value behaves as an open circuit - looking back into the circuit, the output appears to be disconnected
- Hi-Z may appear on the output of any gate, but we restrict to gates:
- a 3-state buffer
- a transmission gate

Each of which has one data input and one control input

The 3-State Buffer

- For $\mathrm{EN}=0$, the OUT is $\mathrm{Hi}-\mathrm{Z}$ regardless of the value on IN

Symbol

- For EN = 1, the OUT follows the input value

Truth Table | EN | IN | OUT |
| :---: | :---: | :---: |
| | 0 | X |
| Hi-Z | | |
| | 1 | 0 |
| 1 | 1 | 1 |

Transmission Gates

- The transmission gate is an electronic switch for connecting and disconnecting two points in a circuit
- $C=1, Y=X(X=0$ or 1$)$
- $\mathrm{C}=0, \mathrm{Y}=\mathrm{Hi}-\mathrm{Z}$

(a)

(c)

(d)
- Since X and Y as input and output are interchangeable, and signals can pass in both directions

Logic Minimization

- Minimizing SOP representation to MSP
- Using Karnaugh Map (K-Map)

$$
F=\bar{A} \bar{B} C+\bar{A} B \bar{C}+A \bar{B} \bar{C}+A \bar{B} C+A B \bar{C}
$$

$C^{A B}$	00	01	11	10
0	0	1	1	
1	1	0	0	1
	$F=B \bar{C}+A \bar{B}+\bar{B} C$			

K-Map Example

$C D$	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

$$
\begin{aligned}
F & =\Sigma m(0,2,3,5,6,7,8,10,11)+\sum d(14,15) \\
& =C+B^{\prime} D^{\prime}+A^{\prime} B D
\end{aligned}
$$

(a) Location of minterms
(b) Looping terms

Logic Minimization

- Minimizing POS representation to MPS
- Using K-Map

$$
F=(A+B+C) \cdot(A+\bar{B}+\bar{C})(\bar{A}+\bar{B}+\bar{C})
$$

$\therefore A B$	00	01	11	10
0	0	1	1	1
1	1	0	0	1

$$
F=(A+B+C) \cdot(\bar{B}+\bar{C})
$$

Part 2

- Sequential circuit basics

D-Latch (transparent D-latch)

G	D	Q	Q^{+}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

"Latch" is an important concept: input is controlled by a gate input G ; when G stays low, the state of the device holds (latches) previous value; when G is high, Q follows D

D Flip-Flop (DFF)

- Rising edge triggered D Flip-Flop
- Timing parameters:
- Setup time $t_{\text {su: }}$: input must be stable before the clock edge
- Hold time t_{h} : input must stay stable after the clock edge
- Clock to $Q t_{c-q}$: maximum time for output to be stable after the clock edge

JK Flip-Flop (JKFF)

- Clocked JK flip-flop
- All state changes occur following the falling edge of the clock, CK, input. This is indicated by the "bubble" at the CK input
- Exercize: Use K-Map to derive equation of Q $^{+}$

J	K	Q	Q^{+}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Summary

- Boolean algebra essential for digital circuits
- Logic minimization K-Map based
- Be aware of difference in operation between latch and flip-flop

