
1

EE 459/500 – HDL Based Digital

Design with Programmable Logic

Lecture 3

Digital Design Fundamentals

Read before class:

 Chapter 1 (second half). First part of Chapter 2.

 Textbook used in your introductory digital logic design course

1

D Flip-Flop (DFF)

 Rising edge triggered D Flip-Flop

 Timing parameters:

• Setup time tsu: input must be stable before

the clock edge

• Hold time th: input must stay stable after

the clock edge

• Clock to Q tc-q: maximum time for output to

be stable after the clock edge

2

2

Finite-State Machines (FSMs)

 Finite State Machines are clocked sequential circuits

 After a clock edge, the system assumes a new state

that depends on where it was before the edge (old

state) and the inputs just before the edge

Combina-

tional Logic

Inputs Outputs

 State

 Next

State

Storage

Elements

D Q

CLK

3

State Machines

 Mealy Machine

• Outputs are dependent on current state and inputs

• Outputs change asynchronously with inputs

 Logic

 Memory

C
u
rr

e
n
t

S
ta

te

N
e
x
t S

ta
te

 Inputs Outputs

4

3

State Machines

 Moore Machine

• Outputs are dependent only on current state

• Outputs are fixed during clock cycle

 Logic

 Memory

Logic

C
u
rr

e
n
t

S
ta

te

N
e
x
t S

ta
te

 Inputs

Outputs

5

State Graphs (state diagrams)

 Symbolic abstract, graphic representation of behavior

 Consists of:

• Nodes – A node represents a unique state; has unique symbolic name

• Arcs – An arc represents a transition from one state to another; labeled

with condition that will cause the transition

 Output values also specified:

• Under the condition expression of transition arcs – for Mealy machines

whose output depend on input and state

• Inside the state bubble – for Moore machines whose output depend on

state only

6

4

State Machine Design

 Make sure

• all states are represented

• all possible inputs are taken into account for state

transitions

• there is an exit out of each state

• there are no conflicts in state transitions

 Encodings:

• Binary

• One-Hot

• …

7

State Encoding

 Each state Si is represented by a binary

pattern Pi, where i is an arbitrary index.

 A mapping from the state index i to Pi is the

state encoding function E.

 Binary (sequential) encoding: E(i) = i; i =

1,2,…,n

 One-hot encoding: E(i) = 2i; i = 0,1,…,n-1

 Others: grey, johnson, hamming-2, etc.

8

5

Finite State Machine: Generic Example

 There are automated procedures to build

(synthesize) the logic for finite state machines

 One way of describing a FSM, in terms of transitions

on each clock edge

00 10

01 11/1

X=0

X=1

X=1/1
X=0

X=0
X=1

X=1

X=0

Comb

logic

 D0 Q0

D1 Q1

X Y

CLK

Mealy machine design example1: Sequence

detector (detect sequence “101”)

State graph
State transition table

Transition table with encoded states

State

encoding

10

6

Mealy machine design example1:

Sequence detector

Hardware

implementation

with two DFFs

11

Moore machine design example1:

Sequence detector

State graph

State transition table

Transition table with encoded states

State

encoding

12

7

 Exercise:

• Build K-Maps and find equations of Z, (D1,D2) or

(J1,K1,J2,K2) when:

 DFFs are used

 JKFFs are used

• Draw the circuit diagrams in both cases

Moore machine design example1:

Sequence detector

13

Part 3

 Logic Design and Implementation Technology

• Design concepts and design automation

• Design space: parameters and tradeoffs

• Design procedure (design flow)

 Major design steps: specification, formulation,

optimization, technology mapping, and verification

14

8

Design Automation

 Design automation: the process (activities) of

developing/architecting and implementing EDA tools

 Electronic design automation (EDA) is a category of software tools

for designing electronic systems such as printed circuit boards and

integrated circuits (ICs). The tools work together in a design flow

that chip designers use to design and analyze entire chips

 Use of EDA tools effectively automate the design process (much of

it done manually in the old days)

 EDA companies: Cadence, Synopsis/Magma, Mentor Graphics,

etc.

15

Design Flow (Design Methodology)

 A design automation tool or

tool-suite follows the design

steps of a given design flow

(design methodology)

 Example of typical Design

Flow (covers both VLSI and

FPGA):
Logic synthesis

Front end

Physical synthesis

Back end
16

9

A) Combinational Circuits

 A block diagram of combinational logic circuit:

n switching functions, each mapping the 2m input

combinations to an output, such that the current output

depends only on the current input values

m Boolean Inputs n Boolean Outputs

Combinatorial

Logic

Circuit

17

Concept: Hierarchical Design

 To control the complexity of the function mapping

inputs to outputs:

• Decompose the function into smaller pieces – blocks

 ALU, Multiplier and Accumulator, etc

• Decompose each block’s function into smaller blocks,

repeating as necessary until all blocks are small

enough

 Adder  Gates

• Any block not decomposed is called a primitive block

• The collection of all blocks including the decomposed

ones is a hierarchy

18

10

Example: Hierarchy for Parity Tree

B O

X 0
X 1
X 2
X 3
X 4
X 5
X 6
X 7
X 8

Z O

9-Input

odd

function

(a) Symbol for circuit

3-Input

odd

function

A 0

A 1

A 2

B O

3-Input

odd

function

A 0

A 1

A 2

B O

3-Input

odd

function

A 0

A 1

A 2

B O

3-Input

odd

function

A 0

A 1

A 2

X 0

X 1

X 2

X 3

X 4

X 5

X 6

X 7

X 8

Z O

(b) Circuit as interconnected 3-input odd

 function blocks

B O

A 0

A 1

A 2

(c) 3-input odd function circuit as

 interconnected exclusive-OR

 blocks

(d) Exclusive-OR block as interconnected

 NANDs

Design requires:

4 X 2 X 4 = 32

2-input NAND gates

Top Level: 9 inputs, one output

2nd Level: Four 3-bit odd parity

trees in two levels

3rd Level: Two 2-bit exclusive-OR

functions

Primitives:

Four 2-input NAND gate

19

(Technology) Parameters

 Specific characteristic parameters for gate implementation

technologies:

• Fan-in – the number of inputs available on a gate

• Fan-out – the number of standard loads driven by a gate output

• Logic Levels – the signal value ranges for 1 and 0 on the inputs

and 1 and 0 on the outputs

• Noise Margin – the maximum external noise voltage

superimposed on a normal input value that will not cause an

undesirable change in the circuit output

• Propagation Delay – The time required for a change in the value of

a signal to propagate from an input to an output

• Cost for a gate - a measure of the contribution by the gate to the

“cost” of the integrated circuit

• Power Dissipation – the amount of power drawn from the power

supply and consumed by the gate

20

11

Fan-out & Delay

 Fan-out can be defined in terms of a standard load (SL)
• 1 standard load equals the load contributed by the input of 1

inverter.

 Maximum fan-out is the number of standard loads the
gate can drive without exceeding its specified maximum
transition time

 Gate’s propagation delay depends on the fan-out
loading at the gate’s output

 Example:
• Equation to estimate propagation delay tpd for a NAND gate

with 4 inputs is:

 tpd = 0.07 + 0.021 SL ns

• SL: the number of standard loads the gate is driving, i.e., its fan-
out in standard loads

21

Cost

 In an IC:

 If the actual chip layout area occupied by the gate is

known, it is a far more accurate measure

Cost of a gate Chip area of the gate #/size of transistors Gate input count

wiring area

+

12

 Gate Input Cost

 Gate input costs - the #of inputs to the gates

corresponding exactly to the given equations. (G - inverters

not counted, GN - inverters counted)

 For SOP and POS equations, it can be found by the sum

of:

• all literal appearance – literal cost

• the number of terms excluding terms consisting only of a single

literal, (G)

 Example:

• F = BD + A C + A G=11,GN=14

• F = BD + A C + A + AB G= ,GN=

• F = (A +)(A + D)(B + C +)(+ + D) G= ,GN=

• Which solution is best?

D B C
B B D C

B D B C

23

 Cost Criteria (contd.)

 L: counts the AND inputs and the single literal OR input

 G: adds the remaining OR gate inputs

 GN: adds the inverter inputs

A

B
C

F

F = A + B C + B C

L = 5

G = L + 2 = 7

GN = G + 2 = 9

24

13

Design Trade-Offs

 Cost - performance tradeoffs

 Gate-level example:

 Tradeoffs can be accomplished at much higher
design level in the hierarchy

 Constraints on cost and performance have a major
role in making tradeoffs

 G
SL=20

Tpd=0.45ns, Cost=2.0

H

Cost=1.5 Tpd=0.33ns, Cost=2.0+1.5=3.5

 G

SL=20

H

25

Design Procedure: Logic Synthesis

1. Specification

• Write a specification for the
circuit

2. Formulation

• Derive a truth table or initial
Boolean equations that define
the relationships between the
inputs and outputs

3. Optimization

• Apply 2-level and multiple-level
optimization

• Draw a logic diagram or provide
a netlist for the resulting circuit
using ANDs, ORs, and inverters

4. Technology Mapping

• Map the logic diagram or netlist
to the implementation
technology selected

5. Verification

• Verify the correctness of the
final design

Automated

Logic synthesis (front

end). Discussed today

Physical synthesis (back

end). Discussed later
26

14

Design Example

1. Specification

 BCD to Excess-3 code converter: Transforms BCD code

for the decimal digits to Excess-3 code

• BCD code words for digits 0-9: 4-bit patterns 0000 to 1001,

respectively

• Excess-3 code words for digits 0-9: 4-bit patterns consisting of 3

(binary 0011) added to each BCD code word

 Note: because we assume inputs and outputs are

provided and implemented in parallel, our circuit can be

designed as a simple combinational circuit. If, instead

inputs are available in series, then we must design a

sequential circuit instead (like described on page 19 in

textbook)!

27

Design Example (Contd.)

2. Formulation
• Conversion of 4-bit codes can be easily formulated

by a truth table

• BCD Variables:

 A,B,C,D

• Excess-3 Variables:

 W,X,Y,Z

• BCD Don’t Cares

- 1010 to 1111

Input BCD

A B C D

Output Excess-3

WXYZ

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 0 1 1

28

15

Design Example (Contd.)

3. Optimization
a. 2-level using

K-maps

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1

1 1

1

X X X

X X

X

1

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1

1 1

1

X X X

X X

X

1

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1 1

1

1

X X X

X X

X

1

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1 1

1

X X X

X X

X

1

1

w

z y

x

 BB CC DD BB

 CC DD

 DD

W = A + BC + BDW = A + BC + BD

X = C + D + BX = C + D + B

Y = CD + Y = CD +

Z = Z =

29

Design Example (Contd.)

3. Optimization (Contd.)
b. Multiple-level using transformations

W = A + BC + BD
X = C + D + B
Y = CD +
Z = G = 7 + 10 + 6 + 0 = 23

• Perform extraction, finding factor:

 T1 = C + D
W = A + BT1
X = T1 + B
Y = CD +
Z = G = 2 + 4 + 7 + 6 + 0 = 19

• An additional extraction using a Boolean transformation: (
= C + D =)

 W = A + BT1
X = T1 + B
Y = CD +
Z = G = 2 + 1 + 4 + 5 + 4 + 0 = 16

 BB CC DD BB

 CC DD

 DD

 BB CC DD

 CC DD

 DD

CC DD

 TT11

 BB TT11

 DD
 TT11

30

16

Design Example (Contd.)

4. Technology Mapping

• Mapping with a library containing inverters and 2-

input NAND, 2-input NOR, and 2-2 AOI gates

A

B

C

D

W

X

Y

Z

A

B

C
D

W

X

Y

Z

 31

Concept: Cell Libraries

 A collection of cells using a particular
implementation technology

 Cell characterization - a detailed specification of a
cell - often based on actual cell design and
fabrication and measured values
• Function: Schematic or logic diagram

• Parameters: Area, Input loading, Delays

• One or more cell templates for technology mapping

• One or more hardware description language models

• If automatic layout is to be used:
 Physical layout of the cell circuit

 A floorplan layout providing the location of inputs, outputs,
power and ground connections on the cell

32

17

Example Cell Library

Cell
Name

Cell
Schematic

Normalized
Area

Typical
Input
Load

Typical
Input-to-
Output
Delay

Basic
Function

Templates

Inverter 1.00 1.00

0.04
+ 0.012 SL

2NAND 1.25 1.00
0.05

+ 0.014 SL

2NOR 1.25 1.00
0.06

+ 0.018 SL

2-2 AOI 2.25 0.95
0.07

+ 0.019 SL

functions parameters templates

33

Mapping to NAND gates

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

 Assumptions:

• Cell library contains an inverter and n-

input NAND gates, n = 2, 3, …

 NAND Mapping algorithms

1. Replace ANDs and ORs:

2. Repeat the following pair of actions

until there is at most one inverter

between:
 A circuit input or driving NAND gate

output

 The attached NAND gate inputs

• Pushing inverters through circuit fan-out

points

• Canceling inverter pairs

18

NAND Mapping Example

35

Input BCD

A B C D

Output Excess - 3

WXYZ

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0

 Verification Example: Manual Analysis

 Find the circuit truth table from the equations and compare

to specification truth table:

The tables match! 36

19

Verification Example: Simulation

 Enter BCD-to-Excess-3 Code Converter Circuit Schematic

AOI symbol

not available

37

Verification Example: Simulation

 Enter waveform that applies all possible input combinations

• Are all BCD input combinations present?

 Run the simulation of the circuit for 120 ns

 Do simulation output match the original truth table?

 INPUTS

A B C D

0 50 ns 100 ns

OUTPUTS

W X Y

Z

20

B) Sequential Circuits (FSMs)

 Next state and output

determination: specification

00 10

01 11/1

X=0

X=1

X=1/1
X=0

X=0 X=1

X=1

X=0

Q1 Q0 X D1 D0 Y

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 1

1 1 0 0 1 1

1 1 1 1 0 1

D1=XQ0+Q1’Q0+X’Q1Q0

D0=XQ1’+X’Q1Q0

Y=XQ1+Q1Q0

Comb

logic

 D0 Q0

D1 Q1

X Y

CLK

Exercise

 For the “BCD to Excess-3” Mealy machine

design example on page 9 of the textbook,

identify and discuss each of the design steps:

specification, formulation, optimization,

technology mapping, and verification

 If some of these steps is missing, then

investigate and propose how to do it

40

21

Summary

 Most of real digital systems are sequential

circuits

 Design process follows a set of typical steps of

given design flow (design methodology)

 EDA tools automate most of the design steps

• However, user has a lot of flexibility to manually

interfere or tune “tool knobs” to drive the design

process towards achieving certain design

goals/costs

41

