EE 459/500 — HDL Based Digital
Design with Programmable Logic

Lecture 3
Digital Design Fundamentals

Read before class:
= Chapter 1 (second half). First part of Chapter 2.

= Textbook used in your introductory digital logic design course

D Flip-Flop (DFF)

= Rising edge triggered D Flip-Flop

Q 0
= Timing parameters: | |
¢ Setup time t,,: input must be stable before
the clock edge DFF
® Hold time t,: input must stay stable after T
the clock edge CLK D

® Clock to Q t ,: maximum time for output to

be stable after the clock edge

b -] |

Finite-State Machines (FSMs)

= Finite State Machines are clocked sequential circuits

Inputs == combina- [~ Outputs
tional Logic

Next
State ‘ |, State
Q Storage D

CLK S Elements

= After a clock edge, the system assumes a new state
that depends on where it was before the edge (old
state) and the inputs just before the edge

State Machines

= Mealy Machine
¢ Outputs are dependent on current state and inputs
® Outputs change asynchronously with inputs

Inputs Outputs

Logic

Current State
9jejs XN

Memory

State Machines

= Moore Machine
¢ Outputs are dependent only on current state
¢ Outputs are fixed during clock cycle

Inputs

4— Logic

o z

2 %

e L
(]

[¢ —

= 5

3 o

Memory

Logic [Outputs

wn

State Graphs (state diagrams)

= Symbolic abstract, graphic representation of behavior
= Consists of:
® Nodes — A node represents a unique state; has unique symbolic name

® Arcs — An arc represents a transition from one state to another; labeled
with condition that will cause the transition

= Qutput values also specified:

® Under the condition expression of transition arcs — for Mealy machines
whose output depend on input and state

® Inside the state bubble — for Moore machines whose output depend on
state only

FIGURE 1-28: State 1
FIGURE 1-20: 5 Graph of the Moore ~ © ‘e 9’ 1
Mealy State Graph 4 v-
L) . ;

Sequence Detector
for Sequence

Detector

State Machine Design

= Make sure
¢ all states are represented

¢ all possible inputs are taken into account for state
transitions

® there is an exit out of each state
® there are no conflicts in state transitions

= Encodings:
¢ Binary
¢ One-Hot

State Encoding

= Each state Si is represented by a binary
pattern Pi, where i is an arbitrary index.

= A mapping from the state index i to Pi is the
state encoding function E.

= Binary (sequential) encoding: E(i) =1i; i =
1,2,...,n

= One-hot encoding: E(i) = 2i;i=0,1,...,n-1

= Others: grey, johnson, hamming-2, etc.

Finite State Machine: Generic Example

= There are automated procedures to build
(synthesize) the logic for finite state machines

= One way of describing a FSM, in terms of transitions
on each clock edge

X, Y,
Comb
logic =D, Q
T D, QIW
CLK —

Mealy machine design example1: Sequence
detector (detect sequence “1017)

Present Next State Present Output
State X=0 XxX=1 X=0 X=1
S, S, S, 0 0
s, s, 5, 0 0
5, S S, 0 1

State transition table
State graph State
— encoding ——
A*B* 4
AB | X=0 X=1| X=0 X=1
00 00 01 0 0
01 10 01 0 0
10 00 01 0 1

Transition table with encoded states

Mealy machine design example1:

Sequence detector

b X b'e
K-Maps for Next AB 0 1 AB 0 1 AB 0 1
Statesans Oltput 00| o 0 oo o |(1) 00| o 0
of Sequence
Detecial 01 m 0 01| o 1 01| o 0
n{lxJ| x 1| x || x 1| x |[x
10| o 0 10| o 1 10| o LJJ
SR 4
A*=X'B B =X Z=XA
A’ A B’ B
CK CK
Hardware A D '~ D
implementation Clock ?

with two DFFs

X—e

Moore machine design example1:

Sequence detector

Present State

S

- o

S
S
S

w N

State graph

Next State
X=0 X=1| Present Output (2)
S, S, 0
S, S, 0
So s, 0
S, s, 1
State transition table
State
encoding
A*BT
AB ‘ X=0 X=1 ‘ Z
00 00 01 0
01 11 01 0
11 00 10 0

10 11

01 1

Transition table with encoded states

Moore machine design example1:
Sequence detector

= Exercise:

¢ Build K-Maps and find equations of Z, (D1,D2) or
(J1,K1,J2,K2) when:
= DFFs are used
= JKFFs are used

¢ Draw the circuit diagrams in both cases

Part 3

= Logic Design and Implementation Technology
¢ Design concepts and design automation
¢ Design space: parameters and tradeoffs

® Design procedure (design flow)

= Major design steps: specification, formulation,
optimization, technology mapping, and verification

Design Automation

= Design automation: the process (activities) of
developing/architecting and implementing EDA tools

= Electronic design automation (EDA) is a category of software tools
for designing electronic systems such as printed circuit boards and
integrated circuits (ICs). The tools work together in a design flow
that chip designers use to design and analyze entire chips

= Use of EDA tools effectively automate the design process (much of
it done manually in the old days)

= EDA companies: Cadence, Synopsis/Magma, Mentor Graphics,
etc. —

Design Flow (Design Methodology)
= A design automation tool or [reonw

v

tOO|-SUIte fO”OWS the deSIgn ‘ Design specifications ‘
steps of a given design flow - l
(deSIgn methodology) Design formulation

3

Design entry
VHDL. Verilog. schematic capture

= Example of typical Design
Flow (covers both VLSI and
FPGA):

v

Logic synthesis

Logic synthesis o

Post synthesis simulation

| |
| |
| |

|

Front end

Mapping, placement, routing

v

Physical synthesis
Back end v

‘ ASIC masks ‘

. o A0
Configured FPGAs

A) Combinational Circuits

= A block diagram of combinational logic circuit:

— —_ s
f}' Combinatorial [——
m Boolean Inputs Logic .n Boolean Outputs
¢ Circuit ¢
[] []
—_— /\ —_

n switching functions, each mapping the 2” input
combinations to an output, such that the current output
depends only on the current input values

Concept: Hierarchical Design

= To control the complexity of the function mapping
inputs to outputs:
® Decompose the function into smaller pieces — blocks
= ALU, Multiplier and Accumulator, etc
® Decompose each block’s function into smaller blocks,
repeating as necessary until all blocks are small
enough
= Adder = Gates
¢ Any block not decomposed is called a primitive block
® The collection of all blocks including the decomposed
ones is a hierarchy

Example: Hierarchy for Parity Tree

L
¥

2 9-Input
2 Input

———JopLevel: 9 inputs, one output

odd Zo
5 function] . .

o i“ Sinput 2nd Level: Four 3-bit odd parity

X, —{A, B, .
o

(a) Symbol for circuit X,— A2 nc,‘w" trees in two levels

X3 AY 3 mput A0 3-mput

Xy— £ odd B, Ay odd po—7,
function function

Xs—A2 » Ay

= J Design requires:

T 4X2X4=32

2-input NAND gates

(b) Circuit as interconnected 3-input odd
function blocks

A . .
Ao% 3rd Level: Two 2-bit exclusive-OR
,
A, nctions
(c) 3-input odd function circuit as
interconnected exclusive-OR
blocks Primitives:
Four 2-input NAND gate

(d) Exclusive-OR block as interconnected
NANDs 19

(Technology) Parameters

= Specific characteristic parameters for gate implementation
technologies:

Fan-in — the number of inputs available on a gate

Fan-out — the number of standard loads driven by a gate output
Logic Levels — the signal value ranges for 1 and 0 on the inputs
and 1 and 0 on the outputs

Noise Margin — the maximum external noise voltage

superimposed on a normal input value that will not cause an
undesirable change in the circuit output

Propagation Delay — The time required for a change in the value of
a signal to propagate from an input to an output

Cost for a gate - a measure of the contribution by the gate to the
“cost” of the integrated circuit

Power Dissipation — the amount of power drawn from the power
supply and consumed by the gate
20

10

Fan-out & Delay

Fan-out can be defined in terms of a standard load (SL)

® 1 standard load equals the load contributed by the input of 1
inverter.

= Maximum fan-out is the number of standard loads the

gate can drive without exceeding its specified maximum

transition time

= Gate’s propagation delay depends on the fan-out
loading at the gate’s output

= Example:
¢ Equation to estimate propagation delay t,y for a NAND gate
with 4 inputs is:
tog = 0.07 + 0.021 SL ns

¢ SL: the number of standard loads the gate is driving, i.e., its fan-
out in standard loads

Cost

= |InanlC:

’ Cost of a gate ‘OC Chip area of the gate ‘OC #/size of transistors ‘ oC ’ Gate input count

+

wiring area

= If the actual chip layout area occupied by the gate is
known, it is a far more accurate measure

11

Gate Input Cost

= Gate input costs - the #of inputs to the gates
corresponding exactly to the given equations. (G - inverters
not counted, GN - inverters counted)
= For SOP and POS equations, it can be found by the sum
of:
¢ all literal appearance — literal cost
® the number of terms excluding terms consisting only of a single

literal, (G)
= Example:
*F=BD+ABC+ACD G=11,GN=14
°* F=BD+ABC+ABD + ABC G= ,GN=

*F=(A+B)A+D)B+C+D)B+C+D)G= ,GN=
® Which solution is best?

Cost Criteria (contd.)

¢ oo oo L=5
F=A+B.C+B.C G=L+2=7
GN=G+2=9

B
C
A

= L: counts the AND inputs and the single literal OR input

= G: adds the remaining OR gate inputs
= GN: adds the inverter inputs

24

12

Design Trade-Offs

Cost - performance tradeoffs

Gate-level example:

=zo E . I SL=20

Tp4=0-45ns, Cost=2.0 Cost=1.5 T_=0.33ns, Cost=2.0+1.5=3.5

Tradeoffs can be accomplished at much higher
design level in the hierarchy

Constraints on cost and performance have a major
role in making tradeoffs

Logic synthesis (front

Specification end). Discussed today Requirements
° Write a specification for the CLLLILLLLLL
circuit I ‘ Design specifications
Formulation I ,l
° Derive a truth table or initial 1
Boolean equations that define I ‘ Design formulation l
the relationships between the I
inputs and outputs i ‘ vy Desien entry I
.. . . Verilog, schematic capture
Optimization | | ===y,
° Apply 2-level and multiple-level 1h Simulation ||
optimization i 1
° Draw a logic diagram or provide I 1 ‘ L osic synthests :
a netlist for the resulting circuit 1 O8iC synfesis

° Map the logic diagram or netlist
to the implementation
technology selected

Verification
° Verify the correctness of the
final design Physical synthesis (back
end). Discussed later

using ANDs, ORs, and inverters v :
. Automat xd
Technology Mapping 1 ‘

FPGA programming unit

_ 26
ASIC masks Configured FPGAs

13

Design Example

Specification
BCD to Excess-3 code converter: Transforms BCD code

for the decimal digits to Excess-3 code

¢ BCD code words for digits 0-9: 4-bit patterns 0000 to 1001,
respectively

® Excess-3 code words for digits 0-9: 4-bit patterns consisting of 3
(binary 0011) added to each BCD code word
Note: because we assume inputs and outputs are
provided and implemented in parallel, our circuit can be
designed as a simple combinational circuit. If, instead
inputs are available in series, then we must design a
sequential circuit instead (like described on page 19 in
textbook)!

Design Example (Contd.)

Formulation

¢ Conversion of 4-bit codes can be easily formulated
by a truth table

°* BCD Variables: Input BCD Output Excess-3
“A8CD pep
® Excess-3 Variables: 0001 0100
W,X,Y,Z 0010 0101
® BCD Don’t Cares 3(1)(1]5 g}}g
-1010 to 1111 0101 1000
0110 1001
0111 1010
1000 1011
1001 1011

28

14

Design Example (Contd.)

3. Optimization C C
Z — YV — —
d. 2-level using B 1 T ! ! :
K-maps 1 1 1 1
xI[x [x| x| B x| x [[x] x
Al X [[x Al x| x
A 9 1 [\l Y 9 | 10
W=A+BC +BD D D
X=BC+BD+BCD c c
Y=CD+CD X Don
2-5 5 i
x[x [x| x| B X X [[X X‘h
A rl_]ﬁ X A Ll 1] x|x
D D '¥»

Design Example (Contd.)

3. Optimization (Contd.)

b. Multiple-level using transformations
W=A+BC+BD

X=BC+BD+B CD

Y=CD+CD

Z=D G=7+10+6+0=23
° Perform extraction, finding factor:

=C+D

W A+BT,

X=BT,+BCD

Y=CD+CD

Z=D G=2+4+7+6+0=19
® An additional extraction using a Boolean transformation: (CD

=C+D=T,)

W=A+BT, _

X=BT;+BT,

Y=CD+T,

Z=D G=2+1+4+5+4+0=16

30

15

Design Example (Contd.)

4. Technology Mapping

® Mapping with a library containing inverters and 2-
input NAND, 2-input NOR, and 2-2 AOI gates

Concept: Cell Libraries

= A collection of cells using a particular
implementation technology

= Cell characterization - a detailed specification of a
cell - often based on actual cell design and
fabrication and measured values

® Function: Schematic or logic diagram

® Parameters: Area, Input loading, Delays

® One or more cell templates for technology mapping
® One or more hardware description language models

¢ If automatic layout is to be used:
= Physical layout of the cell circuit

= A floorplan layout providing the location of inputs, outputs,
power and ground connections on the cell

16

Example Cell Library

functions parameters

\ / \L \ Typical
Typical Input-to-

Cell Cell Normalized Input Output
Name Schematic Area Load Delay

templates

Basic
Function
Templates

0.04

100 100, o o1asL

Inverter

0.05

2ZNAND +0.014 SL

1.25 1.00

o
T

0.06

ZNOR +0.018 SL

1.00

T

D 1.25
0.07
2:2A01 H>F 225 095, o19SL

Db

33

Mapping to NAND gates

Assumptions:

® Cell library contains an inverter and n-
input NAND gates, n=2, 3, ...

NAND Mapping algorithms

Replace ANDs and ORs:

until there is at most one inverter
between:

= Acircuit input or driving NAND gate
output

= The attached NAND gate inputs

® Pushing inverters through circuit fan-o
points

® Canceling inverter pairs

Repeat the following pair of actions

DD
oo

—
E

¥

oo — ———

17

NAND Mapping Example

(<)

(d)

Verification Example: Manual Analysis

= Find the circuit truth table from the equations and compare

to specification truth table:

Input BCD Output Excess-3
ABCD WXYZ
0000 0011
0001 0100
0010 0101
0011 0110
0100 0111
0101 1000
0110 1001
0111 1010
1000 1011
1001 1100

The tables match!

36

18

Verification Example: Simulation

= Enter BCD-to-Excess-3 Code Converter Circuit Schematic

= o
NANDZ
NAND2
} MY
NOR2
B
MNAND2
NANDZ
B— P =2 AOlsymbol
| not available
D
D DII\OIV ANDZ D
| MNORZ
ANDZ 20|
D 37

Verification Example: Simulation

= Enter waveform that applies all possible input combinations
® Are all BCD input combinations present?
= Run the simulation of the circuit for 120 ns

INPUTS

OUTPUTS

L
|
L

1

| —

I

| | | | |
1 | |
| | }

X
Y
z

0 50 ns 100 ns

= Do simulation output match the original truth table?

19

B) Sequential Circuits (FSMs)

= Next state and output

determination: specification Q |Q [X | D] Do ¥
i o [o [o | of of o
r X=0 0 0 1 0 1 0
0 1 0 1 0 0
X=1 X=1 o [1 [t | 1] 1] o
1 0 0 1 0 0
1 0 1 0 0 1
X, Y, 1 |1 o o 1] 1
Comb 1|1 |1 I o] 1
logic 1Dy Qq D,=XQu+Q; Qy+X'Q;Qy
r — Qﬂ D,=XQ;+X'Q,Q
0=XQy 1Qo
ok Y=XQ,+Q,Q,
Exercise

= For the “BCD to Excess-3" Mealy machine
design example on page 9 of the textbook,
identify and discuss each of the design steps:
specification, formulation, optimization,
technology mapping, and verification

= |f some of these steps is missing, then
investigate and propose how to do it

40

20

Summary

= Most of real digital systems are sequential
circuits

= Design process follows a set of typical steps of
given design flow (design methodology)

= EDA tools automate most of the design steps

® However, user has a lot of flexibility to manually
interfere or tune “tool knobs” to drive the design
process towards achieving certain design
goals/costs

41

21

