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EE 459/500 – HDL Based Digital 

Design with Programmable Logic 

  

Lecture 3  

Digital Design Fundamentals 

 

Read before class:  

 Chapter 1 (second half). First part of Chapter 2. 

 Textbook used in your introductory digital logic design course 
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D Flip-Flop (DFF) 

 Rising edge triggered D Flip-Flop 

 Timing parameters: 

• Setup time tsu: input must be stable before 

the clock edge 

• Hold time th: input must stay stable after 

the clock edge 

• Clock to Q tc-q: maximum time for output to 

be stable after the clock edge  
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Finite-State Machines (FSMs) 

 Finite State Machines are clocked sequential circuits 

 

 

 

 

 

 

 

 After a clock edge, the system assumes a new state 

that depends on where it was before the edge (old 

state) and the inputs just before the edge 
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State Machines 

 Mealy Machine 

• Outputs are dependent on current state and inputs 

• Outputs change asynchronously with inputs 

 Logic 
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State Machines 

 Moore Machine 

• Outputs are dependent only on current state 

• Outputs are fixed during clock cycle 
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State Graphs (state diagrams) 

 Symbolic abstract, graphic representation of behavior 

 Consists of: 

• Nodes – A node represents a unique state; has unique symbolic name 

• Arcs – An arc represents a transition from one state to another; labeled 

with condition that will cause the transition 

 Output values also specified: 

• Under the condition expression of transition arcs – for Mealy machines 

whose output depend on input and state  

• Inside the state bubble – for Moore machines whose output depend on 

state only 
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State Machine Design 

 Make sure  

• all states are represented 

• all possible inputs are taken into account for state 

transitions 

• there is an exit out of each state 

• there are no conflicts in state transitions 

 Encodings: 

• Binary  

• One-Hot 

• … 
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State Encoding 

 Each state Si is represented by a binary 

pattern Pi, where i is an arbitrary index. 

 A mapping from the state index i to Pi is the 

state encoding function E. 

 Binary (sequential) encoding: E(i) = i; i = 

1,2,…,n 

 One-hot encoding: E(i) = 2i; i = 0,1,…,n-1 

 Others: grey, johnson, hamming-2, etc. 
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Finite State Machine: Generic Example 

 There are automated procedures to build 

(synthesize)  the logic for finite state machines 

 One way of describing a FSM, in terms of transitions 

on each clock edge 
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Mealy machine design example1: Sequence 

detector (detect sequence “101”) 

State graph 
State transition table 

Transition table with encoded states 

State 

encoding 
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Mealy machine design example1: 

Sequence detector 

 

Hardware  

implementation 

with two DFFs 
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Moore machine design example1: 

Sequence detector 

State graph 

State transition table 

Transition table with encoded states 

State 

encoding 
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 Exercise: 

• Build K-Maps and find equations of Z, (D1,D2) or 

(J1,K1,J2,K2) when: 

 DFFs are used 

 JKFFs are used 

• Draw the circuit diagrams in both cases 

 

Moore machine design example1: 

Sequence detector 
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Part 3 

 Logic Design and Implementation Technology 

• Design concepts and design automation 

• Design space: parameters and tradeoffs 

• Design procedure (design flow) 

 Major design steps: specification, formulation, 

optimization, technology mapping, and verification  
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Design Automation 

 Design automation: the process (activities) of 

developing/architecting and implementing EDA tools 

 Electronic design automation (EDA) is a category of software tools 

for designing electronic systems such as printed circuit boards and 

integrated circuits (ICs). The tools work together in a design flow 

that chip designers use to design and analyze entire chips 

 Use of EDA tools effectively automate the design process (much of 

it done manually in the old days) 

 EDA companies: Cadence, Synopsis/Magma, Mentor Graphics, 

etc.  
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Design Flow (Design Methodology) 

 A design automation tool or 

tool-suite follows the design 

steps of a given design flow 

(design methodology) 

 

 Example of typical Design 

Flow (covers both VLSI and 

FPGA): 
Logic synthesis 

Front end 

Physical synthesis 

Back end  
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A) Combinational Circuits 

 A block diagram of combinational logic circuit: 

 

n switching functions, each mapping the 2m input 

combinations to an output, such that the current output 

depends only on the current input values 
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Concept: Hierarchical Design 

 To control the complexity of the function mapping 

inputs to outputs:  

• Decompose the function into smaller pieces – blocks 

 ALU, Multiplier and Accumulator, etc 

• Decompose each block’s function into smaller blocks, 

repeating as necessary until all blocks are small 

enough 

 Adder  Gates 

• Any block not decomposed is called  a primitive block 

• The collection of all blocks including the decomposed 

ones is a hierarchy 
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Example: Hierarchy for Parity Tree 
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(c) 3-input odd function circuit as 

      interconnected exclusive-OR 

      blocks 

 
 

 

(d) Exclusive-OR block as interconnected 
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Design requires: 

4 X 2 X 4 = 32  

2-input NAND gates 

Top Level:  9 inputs, one output 

2nd Level: Four 3-bit odd parity 

trees in two levels 

3rd Level:  Two 2-bit exclusive-OR 

functions 

Primitives:   

Four 2-input NAND gate 
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(Technology) Parameters 

 Specific characteristic parameters for gate implementation 

technologies:  

• Fan-in  – the number of inputs available on a gate 

• Fan-out – the number of standard loads driven by a gate output 

• Logic Levels – the signal value ranges for 1 and 0 on the inputs 

and 1 and 0 on the outputs 

• Noise Margin – the maximum external noise voltage 

superimposed on a normal input value that will not cause an 

undesirable change in the circuit output 

• Propagation Delay – The time required for a change in the value of 

a signal to propagate from an input to an output 

• Cost for a gate - a measure of the contribution by the gate to the 

“cost” of the integrated circuit 

• Power Dissipation – the amount of power drawn from the power 

supply and consumed by the gate 
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Fan-out & Delay 

 Fan-out can be defined in terms of a standard load (SL) 
• 1 standard load equals the load contributed by the input of 1 

inverter. 

 Maximum fan-out is the number of standard loads the 
gate can drive without exceeding its specified maximum 
transition time 

 Gate’s propagation delay depends on the fan-out 
loading at the gate’s output  

 Example: 
• Equation to estimate propagation delay tpd  for a NAND gate 

with 4 inputs is: 

       tpd = 0.07 + 0.021 SL ns 

• SL: the number of standard loads the gate is driving, i.e., its fan-
out in standard loads 
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Cost 

 In an IC: 

 

 

 

 

 

 If the actual chip layout area occupied by the gate is 

known, it is a far more accurate measure  

Cost of a gate Chip area of the gate #/size of transistors Gate input count 

wiring area 

+  
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 Gate Input Cost 

 Gate input costs  - the #of inputs to the gates 

corresponding exactly to the given equations. (G - inverters 

not counted, GN - inverters counted)  

 For SOP and POS equations, it can be found by the sum 

of: 

• all literal appearance – literal cost 

• the number of terms excluding terms consisting only of a single 

literal, (G)  

 Example: 

• F = BD + A   C + A                                     G=11,GN=14 

• F = BD + A   C + A       + AB                      G=    ,GN=  

• F = (A +   )(A + D)(B + C +    )(    +    + D) G=    ,GN= 

• Which solution is best?  

D  B  C  
B  B  D  C  

B  D  B  C  
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 Cost Criteria (contd.) 

 L: counts the AND inputs and the single literal OR input 

 G: adds the remaining OR gate inputs 

 GN: adds the inverter inputs 
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F = A + B C + B C   
     

  

  

L = 5 

G = L + 2 =  7 

GN = G + 2 = 9 
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Design Trade-Offs 

 Cost - performance tradeoffs 

 

 Gate-level example:  
 

 

 

 

 

 Tradeoffs can be accomplished at much higher 
design level in the hierarchy 

 Constraints on cost and performance have a major 
role in making tradeoffs 

     G 
SL=20 

Tpd=0.45ns, Cost=2.0 

 

  
H 

Cost=1.5 Tpd=0.33ns, Cost=2.0+1.5=3.5 
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SL=20 

 
  

H 

25 

  

Design Procedure: Logic Synthesis 

1. Specification 

• Write a specification for the 
circuit 

2. Formulation 

• Derive a truth table or initial 
Boolean equations that define 
the relationships between the 
inputs and outputs 

3. Optimization 

• Apply 2-level and multiple-level 
optimization 

• Draw a logic diagram or provide 
a netlist for the resulting circuit 
using ANDs, ORs, and inverters 

4. Technology Mapping 

• Map the logic diagram or netlist 
to the implementation 
technology selected 

5. Verification 

• Verify the correctness of the 
final design 

 

Automated 

 

 

Logic synthesis (front 

end). Discussed today 

Physical synthesis (back 

end). Discussed later 
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Design Example 

1. Specification  

     BCD to Excess-3 code converter: Transforms BCD code  

for the decimal digits to Excess-3 code 

• BCD code words for digits 0-9: 4-bit patterns 0000 to 1001, 

respectively 

• Excess-3 code words for digits 0-9: 4-bit patterns consisting of 3 

(binary 0011) added to each BCD code word 

 Note: because we assume inputs and outputs are 

provided and implemented in parallel, our circuit can be 

designed as a simple combinational circuit. If, instead 

inputs are available in series, then we must design a 

sequential circuit instead (like described on page 19 in 

textbook)! 
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Design Example (Contd.) 

2.  Formulation 
• Conversion of 4-bit codes can be easily formulated 

by a truth table 

• BCD Variables: 

  A,B,C,D 

• Excess-3 Variables:  

  W,X,Y,Z 

• BCD Don’t Cares 

- 1010 to 1111 

 

Input BCD 

A B C D 

Output Excess-3 

WXYZ  

0 0 0 0 0 0 1 1 
0 0 0 1 0 1 0 0 
0 0 1 0 0 1 0 1 
0 0 1 1 0 1 1 0 
0 1 0 0 0 1 1 1 
0 1 0 1 1 0 0 0 
0 1 1 0 1 0 0 1 
0 1 1 1 1 0 1 0 
1 0 0 0 1 0 1 1 
1 0 0 1 1 0 1 1 
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Design Example (Contd.) 

3. Optimization 
a. 2-level using 

K-maps 
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 BB   CC   DD   BB  

 CC   DD  

 DD  

W = A + BC + BDW = A + BC + BD  

X =    C +    D + BX =    C +    D + B  

Y = CD + Y = CD +   

Z =  Z =    

  

29 

  

Design Example (Contd.) 

3. Optimization (Contd.) 
b. Multiple-level using transformations 

W = A + BC + BD   
X =    C +    D + B 
Y = CD +  
Z =               G = 7 + 10 + 6 + 0 = 23 

• Perform extraction, finding factor: 

       T1 = C + D 
W = A + BT1  
X =     T1 + B 
Y = CD +  
Z =    G = 2 + 4 + 7 + 6 + 0 = 19 

• An additional extraction using a Boolean transformation:  (       
= C + D =     ) 

        W = A + BT1 
X =     T1 + B  
Y = CD +  
Z =   G = 2 + 1 + 4 + 5 + 4 + 0 = 16 

 BB   CC   DD   BB  

 CC   DD  

 DD  

 BB   CC   DD  

 CC   DD  

 DD  

CC    DD  

  TT11  

 BB   TT11  

 DD  
 TT11  
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Design Example (Contd.) 

4. Technology Mapping  

• Mapping with a library containing  inverters and 2-

input NAND, 2-input NOR, and 2-2 AOI gates  
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Concept: Cell Libraries 

 A collection of cells using a particular 
implementation technology 

 Cell characterization - a detailed specification of a 
cell - often based on actual cell design and 
fabrication and measured values 
• Function: Schematic or logic diagram 

• Parameters: Area, Input loading, Delays 

• One or more cell templates for technology mapping 

• One or more hardware description language models 

• If automatic layout is to be used: 
 Physical layout of the cell circuit 

 A floorplan layout providing the location of  inputs, outputs, 
power and ground connections on the cell 

32 
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Example Cell Library 

Cell 
Name 

Cell 
Schematic 

Normalized 
Area 

Typical 
Input 
Load 

Typical 
Input-to- 
Output 
Delay 

Basic 
Function 

Templates 

       
Inverter 1.00 1.00 

0.04 
+ 0.012 SL 

 
   
 

   
  

2NAND 1.25 1.00 
0.05 

+ 0.014 SL 

 
  
 

    
       

2NOR 1.25 1.00 
0.06 

+ 0.018 SL 

 
 
 
 

 
 

 
 

 
  

        
 

  
  

2-2 AOI 2.25 0.95 
0.07 

+ 0.019 SL 

 

 

 

 

 

 

functions parameters  templates 
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Mapping to NAND gates 

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

 Assumptions: 

• Cell library contains an inverter and n-

input NAND gates, n = 2, 3, … 

 NAND Mapping algorithms 

1. Replace ANDs and ORs: 

2. Repeat the following pair of actions 

until there is at most one inverter 

between: 
 A circuit input or driving NAND gate 

output 

 The attached NAND gate inputs 

• Pushing inverters through circuit fan-out 

points 

• Canceling inverter pairs 
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NAND Mapping Example 
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Input BCD   

A B C D   

Output Excess - 3   

WXYZ    

                         

0 0 0 0   0 0 1 1                         
0 0 0 1   0 1 0 0         
0 0 1 0   0 1 0 1         
0 0 1 1   0 1 1 0         
0 1 0 0   0 1 1 1         
0 1 0 1   1 0 0 0         
0 1 1 0   1 0 0 1         
0 1 1 1   1 0 1 0         
1 0 0 0   1 0 1 1         
1 0 0 1   1 1 0 0     

        
  
     

  
      

  

 Verification Example: Manual Analysis 

 Find the circuit truth table from the equations and compare 

to specification truth table:                   

The tables match! 36 
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Verification Example: Simulation 

 Enter BCD-to-Excess-3 Code Converter Circuit Schematic 

AOI symbol 

not available  
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Verification Example: Simulation 

 Enter waveform that applies all possible input combinations 

• Are all BCD input combinations present?  

 Run the simulation of the circuit for 120 ns 
 

 

 

 

 

 
 

 

 

 

 

 

 

 Do simulation output match the original truth table? 
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B) Sequential Circuits (FSMs) 

 Next state and output 

determination: specification 
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Exercise 

 For the “BCD to Excess-3” Mealy machine 

design example on page 9 of the textbook, 

identify and discuss each of the design steps: 

specification, formulation, optimization, 

technology mapping, and verification 

 If some of these steps is missing, then 

investigate and propose how to do it 
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Summary 

 Most of real digital systems are sequential 

circuits 

 Design process follows a set of typical steps of 

given design flow (design methodology) 

 EDA tools automate most of the design steps 

• However, user has a lot of flexibility to manually 

interfere or tune “tool knobs” to drive the design 

process towards achieving certain design 

goals/costs 
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