
1

EE 459/500 – HDL Based Digital

Design with Programmable Logic

Lecture 8

Packages and Libraries

Read before class:

Chapter 2 from textbook

Overview

 Packages

 Libraries

 Testbenches

 Writing VHDL code for synthesis

2

VHDL Structural Elements

 Entity: description of interface consisting of the port list.

• The primary hardware abstraction in VHDL, analogous to a symbol in a
block diagram.

 Architecture: description of the function of the corresponding module.

 Process: allows for a sequential execution of the assignments

 Configuration: used for simulation purposes.

 Package: hold the definition of commonly used data types, constants
and subprograms.

 Library: the logical name of a collection of compiled VHDL units
(object code).

• Mapped by the simulation or synthesis tools.

Packages Declaration

 Collection of definitions of constants, data
types, components, and subprograms.

 A package serves as a central repository
for frequently used utilities, such as
component declarations.

 The declarations may then be reused by
any VHDL model by simply accessing the
package.

 use WORK.PROJECT_PACK.all;

• The architecture accesses the component

declarations in the package “PROJECT_PACK"

located in the library WORK via the use clause.

• Use clause placed just before the architecture

body statement.

3

Example

package EXAMPLE_PACK is

 type SUMMER is (JUN, JUL, AUG);

 component D_FLIP_FLOP

 port (D, CK : in BIT;

 Q, QBAR : out BIT);

 end component;

 constant PIN2PIN_DELAY : TIME := 125ns;

 function INT2BIT_VEC (INT_VALUE : INTEGER)

 return BIT_VECTOR;

end EXAMPLE_PACK

library DESIGN_LIB; -- library clause

use DESIGN_LIB.EXAMPLE_PACK.all; -- use clause

entity EXAM is ...

Package Body

 Package body is used to store the definitions of
functions and procedures that were declared in
the corresponding package declaration.

 A package body is always associated with a
package declaration.

 Example:
 package body EXAMPLE_PACK is

 function INT2BIT_VEC (INT_VALUE: INTEGER)

 return BIT_VECTOR is

 begin

 -- behavior of function described here

 end INT2BIT_VEC;

 end EXAMPLE_PACK;

4

Example of Package

package LOGIC_OPS is -- package

-- Declare logic operators

component AND2_OP

 port (A, B : in BIT;

 Z : out BIT);

end component;

component OR3_OP

 port (A, B, C : in BIT;

 Z : out BIT);

end component;

 component NOT_OP

 port (A : in BIT;

 A_BAR : out BIT);

 end component;

end LOGIC_OPS;

Example of Package Usage

-- entity declaration
entity MAJORITY is
 port (A_IN, B_IN, C_IN : in BIT;
 Z_OUT : out BIT);
end MAJORITY;

-- architecture description
-- uses components from package LOGIC_OPS in library WORK
use WORK.LOGIC_OPS.all;

architecture STRUCTURE of MAJORITY is
 signal INT1, INT2, INT3 : BIT;
begin
 A1: AND2_OP port map (A_IN, B_IN, INT1);
 A2: AND2_OP port map (A_IN, C_IN, INT2);
 A3: AND2_OP port map (B_IN, C_IN, INT3);
 O1: OR3_OP port map (INT1, INT2, INT3, Z_OUT);
end STRUCTURE;

5

Overview

 Packages

 Libraries

 Testbenches

 Writing VHDL code for synthesis

Library

6

Library

 There are two reserved library names always available to
designers.

– WORK: Predefined library

– STD: The STD contains two packages: STANDARD

provides declaration for predefined types (real, integers,
Boolean, etc). TEXTIO contains useful subprograms that
enables to perform ASCII file manipulations
• library STD; -- declares STD to be a library

• use STD.STANDARD.all; -- use all declarations in package

 -- STANDARD, such as BIT, located

 -- within the library STD

 A library clause declares WORK to be a library.

 library WORK; -- WORK is predefined library

Library

 User-defined libraries: LOGIC_LIB

– Assume the LOGIC_OPS package is located in the
LOGIC_LIB library instead of WORK library.

library LOGIC_LIB;
use LOGIC_LIB.LOGIC_OPS.all;
architecture STRUCTURE of MAJORITY is
-- use components in package LOGIC_OPS of library

LOGIC_LIB

7

Overview

 Packages

 Libraries

 Testbenches

 Writing VHDL code for synthesis

Testbench

 Used to verify the specified functionality of a
design
• Provides the stimuli (test vectors) for the Unit Under

Test (UUT), analyzes the UUT’s response or stores
the values in a file.

• Simulation tools visualize signals by means of a
waveform which the designer compares with the
expected response. Debug if does not match.

 Does not need to be synthesizable

 No ports to the outside, self-contained

8

Testbench

Testbench

 Simple testbench responses can be analyzed

by waveform inspection

 Sophisticated testbenches may require more

complicated verification techniques

• Can take >50% of project resources

• Do not underestimate the value/importance of

testbenches!

9

entity TB_TEST is

end TB_TEST;

architecture BEH of TB_TEST is

 -- component declaration of UUT

 -- internal signal definition

begin

 -- component instantiation of UUT

 -- clock and stimuli generation

 wait for 100 ns;

 A <= 0;

 CLK <= 1;

 …

end BEH;

configuration CFG1 of TB_TEST is

 for BEH;

 -- customized configuration

 end for;

end CFG_TB_TEST;

Structure of a VHDL Testbench

 Declaration of the Unit
Under Test (UUT)

 Connection of the UUT with
testbench signals

 Stimuli and clock generation
(behavioral modeling)

 Response analysis

 A configuration is used to
pick the desired components
for simulation

• May be a customized
configuration for testbench
simulation

library ieee;

use ieee.std_logic_1164.all;

entity ADDER is

 port (A,B : in bit;

 CARRY,SUM : out bit);

end ADDER;

architecture RTL of ADDER is

begin

 ADD: process (A,B)

 begin

 SUM <= A xor B;

 CARRY <= A and B;

 end process ADD;

end RTL;

entity TB_ADDER IS -- empty entity is defined

end TB_ADDER; -- no need for interface

architecture TEST of TB_ADDER is

 component ADDER

 port (A, B: in bit;

 CARRY, SUM: out bit);

 end component;

 signal A_I, B_I, CARRY_I, SUM_I : bit;

begin

 UUT: ADDER port map(A_I, B_I, CARRY_I, SUM_I);

 STIMULUS: process

 begin

 A_I <= 0 ; B_I <= 0 ; wait for 10 ns;

 A_I <= 1 ; B_I <= 1 ; wait for 10 ns;

 A_I <= 1 ; B_I <= 0 ; wait for 10 ns;

 A_I <= 1 ; B_I <= 1 ; wait for 10 ns;
 wait;

 -- and so on ...

 end process STIMULUS;

end TEST;

configuration CFG_TB_ADDER of TB_ADDER is

 for TEST

 end for;

end CFG_TB_ADDER;

Example: Simple Testbench

10

Configuration

 A VHDL description may consist of many design entities,

each with several architectures, and organized into a

design hierarchy. The configuration does the job of

specifying the exact set of entities and architectures used in

a particular simulation or synthesis run.

 A configuration does two things:

1) A configuration specifies the design entity used in place of each

component instance (i.e., it plugs the chip into the chip socket and

then the socket-chip assembly into the PCB).

2) A configuration specifies the architecture to be used for each

design entity (i.e., which die).

Configuration

 A configuration statement is used to bind a component

instance to an entity-architecture pair. A configuration can

be considered as a parts list for a design. It describes

which behavior to use for each entity, much like a parts list

describes which part to use for each part in the design.

 Component configuration can be performed outside the

architecture body which instantiates a certain component.

 A configuration declaration is a design unit which can be

compiled separately.

 The particular architecture body has not to be recompiled

when the binding is changed.

 See detailed discussion in Appendix B.

11

Example

use WORK.all;

architecture PARITY_STRUCTURAL of PARITY is

 component XOR_GATE --component declaration

 port(X,Y: in BIT; Z: out BIT);

 end component;

 component INV --component declaration

 port(X: in BIT; Z: out BIT);

 end component;

 signal T1, T2, T3: BIT;

begin

 XOR1: XOR_GATE port map (V(0), V(1), T1);

 XOR2: XOR_GATE port map (V(2), V(3), T2);

 XOR3: XOR_GATE port map (T1, T2, T3);

 INV1: INV port map (T3, EVEN);

end PARITY_STRUCTURAL;

use WORK.all;

configuration CONFIG_1 of PARITY is

 for PARITY_STRUCTURAL

 for XOR1,XOR2:XOR_GATE use

 entity XOR_GATE(ARCH_XOR_1);

 end for;

 for XOR3:XOR_GATE use

 entity XOR_GATE(ARCH_XOR_2);

 end for;

 for INV1:INV use

 entity INV(ARCH_INV_1);

 end for;

 end for;

end CONFIG_1;

Overview

 Packages

 Libraries

 Testbenches

 Writing VHDL code for synthesis

12

How to write good VHDL code with Synthesis

in mind?

 Constraints

• Speed

• Area

• Power

 Macrocells

• Adder

• Comparator

• Bus interface

 Optimizations

• Boolean: mathematical

• Gate: technological

• The optimization phase requires quite a lot of iterations
before the software reports its final result.

Synthesis Process in Practice

 In most cases synthesis has to be carried out several

times in order to achieve an optimal synthesis result

13

Write code for Synthesis: Guidelines

 Consider the effects of different coding styles on the

inferred hardware structures

• If Then Else vs. Case vs. ...

 Appropriate design partitioning

• Critical paths should not be distributed to several synthesis
blocks

• Automatic synthesis performs best at module sizes of several
1000 gates

• Different optimization constraints used for separate blocks

 High speed parts can be synthesized with very stringent
timing constraints

 Non-critical parts should consume the least amount of
resources (area) possible.

Combinational Process

 In simulation, a process is activated

when an event occurs on one of its

signals from the sensitivity list.

 Sensitivity list is usually ignored

during synthesis .

 Equivalent behavior of simulation

model and hardware: sensitivity list

must contain all signals that are read

by the process.

-- Example: multiplexer

process (A, B, SEL)

begin

 if (SEL = '1') then

 OUT <= A;

 else

 OUT <= B;

 end if;

end process

If the signal SEL was missing in the process sensitivity list,
synthesis would create exactly the same result, namely a
multiplexer, but simulation will show a completely different
behavior!

14

Incomplete Assignment

 What is the value of Z, if SEL =
`0`?

• The old value of Z will be
maintained in the simulation, that
means no change will be carried
out on Z.

 What hardware would be
generated during synthesis?
• The synthesis tools creates a

latch, in which the SEL signal is
connected as the clock input. It is
an element very difficult to test in
the synchronous design, and
therefore it should not be used.

Library IEEE;

use IEEE.Std_Logic_1164.all;

entity INCOMP_IF is

 port (A, SEL: in std_logic;

 Z: out std_logic);

end INCOMP_IF;

architecture RTL of INCOMP_IF is

begin

 process (A, SEL)

 begin

 if SEL = ‘1’ then

 Z <= A;

 end if;

 end process;

end RTL;

Rules for Synthesizing Combinational Logic

 Complete sensitivity list

• RTL behavior has to be identical with hardware

realization

• An incomplete sensitivity list can cause warnings or

errors

 No incomplete IF-statements are allowed

• Because they result in transparent latches

15

Combinational Logic

 Do not create combinational feedback loops!

• A feedback loop triggers itself all the time.

• X is increased to its maximum value. So simulation

quits at time 0 ns with an error message because X

exceeds its range.

architecture EXAMPLE of FEEDBACK is

 signal B,X : integer range 0 to 99;

begin

 process (X, B)

 begin

 X <= X + B;

 end process;

 . . .

end EXAMPLE;

Coding Style Influence

 Direct Implementation

Manual resource sharing is recommended

as it leads to a better starting point for the

synthesis process.

Adder is shared!

process (SEL,A,B)

begin

 if SEL = `1` then

 Z <= A + B;

 else

 Z <= A + C;

 end if;

end process;

process (SEL,A,B)

variable TMP : bit;

begin

 if SEL = `1` then

 TMP := B;

 else

 TMP := C;

 end if;

 Z <= A + TMP;

end process;

Manual resource sharing

16

 In one description the longest path goes via five, in the other

description via three addition components - some optimization tools

automatically change the description according to the given

constraints.

OUT1 <= IN1+IN2+IN3+IN4+IN5+IN6 OUT2 <= (IN1+IN2)+(IN3+IN4)+(IN5+IN6)

An operation can be described very efficiently for synthesis:

Source Code Optimization

Summary

 Packages and libraries are useful for code re-

use

 Testbenches are crucial in the initial phase of

VHDL code writing and design debug via

simulation

 Arriving to a good VHDL coding style (for

synthesis!) requires practice, practice,

practice = experience. Start with

understanding and honoring the provided

guidelines.

17

Appendix A: Assignment with Array Types

 Elements are assigned according to their position, not

their number

 The direction of arrays should always be defined the

same way

architecture EXAMPLE of ARRAYS is

 signal Z_BUS : bit_vector (3 downto 0);

 signal C_BUS : bit_vector (0 to 3);

begin

 Z_BUS <= C_BUS;

end EXAMPLE;

Slices of Arrays

 Slices select elements of arrays

architecture EXAMPLE of SLICES is

 signal BYTE : bit_vector (7 downto 0);

 signal A_BUS, Z_BUS : bit_vector (3 downto 0);

 signal A_BIT : bit;

begin

 BYTE (5 downto 2) <= A_BUS;

 BYTE (5 downto 0) <= A_BUS; -- wrong

 Z_BUS (1 downto 0) <= `0` & A_BIT;

 Z_BUS <= BYTE (6 downto 3);

 Z_BUS (0 to 1) <= `0` & B_BIT; -- wrong

 A_BIT <= A_BUS (0);

end EXAMPLE;

The direction of the "slice" and of the "array"
must match!

18

Aggregates

 Aggregates bundle signals together, may be used on both
sides of an assignment

 keyword 'others' selects all remaining elements

 Some aggregate constructs may not be supported by your
synthesis tool

architecture EXAMPLE of AGGREGATES is

 signal BYTE : bit_vector (7 downto 0);

 signal Z_BUS : bit_vector (3 downto 0);

 signal A_BIT, B_BIT, C_BIT, D_BIT : bit;

begin

 Z_BUS <= (A_BIT, B_BIT, C_BIT, D_BIT) ;

 (A_BIT, B_BIT, C_BIT, D_BIT) <= bit_vector'(""1011"");
 (A_BIT, B_BIT, C_BIT, D_BIT) <= BYTE(3 downto 0);

 BYTE <= (7 => ‘1’, 5 downto 1 => ‘1’, 6 => B_BIT, others => ‘0‘);

end EXAMPLE;

Appendix B: More on Configuration

 Analogy with a PCB:

 Design entity (chip package) consists of both an

entity declaration (chip pins) and architecture

body (chip die)

 Configurations:

 Select one architecture from many architectures of one

design entity for instantiation (i.e., specify which die

goes in the package of the chip that will be plugged into

the PCB)

 Choose from amongst different design entities for

instantiation (essentially specifying which chip to plug

into the socket)

19

Components and port maps
library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity MUX2 is

 port (SEL, A, B: in STD_LOGIC;

 F : out STD_LOGIC);

end;

architecture STRUCTURE of MUX2 is

component INV

 port (A: in STD_LOGIC;

 F: out STD_LOGIC);

end component;

component AOI

 port (A, B, C, D: in STD_LOGIC;

 F : out STD_LOGIC);

end component;

signal SELB: STD_LOGIC;

begin

 G1: INV port map (SEL, SELB);

 G2: AOI port map (SEL, A, SELB, B, F);

end;

Instantiating components in VHDL

is like plugging chips into a PCB:

component declaration = chip socket

Port mapping

entity declaration = chip pins

architecture declaration = chip die

Configuration

use WORK.all;

configuration MUX2_default_CFG of MUX2 is

 for STRUCTURE

 -- Components inside STRUCTURE configured by default

 -- let's say v2 architecture for AOI

 end for;

end MUX2_default_CFG;

use WORK.all;

configuration MUX2_specified_CFG of MUX2 is

 for STRUCTURE

 for G2 : AOI

 use entity work.AOI(v1);

 -- architecture v1 specified for AOI design entity

 end for;

 end for;

end MUX2_specified_CFG;

 Default configuration of MUX2

Specified configuration of MUX2

20

 Default binding configuration:
• The chip socket (component declaration) carries a chip (design

entity) of the same name (e.g.,, AOI). The chip is inserted into the

socket courtesy of a component instantiation and a configuration

declaration. If configuration is omitted or if we use a default

configuration, the socket and chip must have the same name.

 Specified configuration:
• If we want to choose a particular die (architecture) for our chip, we

must specify the architecture in the configuration.

 Late-binding configuration:
• Suppose we want to create a general-purpose socket and at some

later time, we want to specify which chip will be plugged into the

socket. To do this requires a late-binding configuration declaration.

Configuration

Configuration

use WORK.all;

configuration AND4_CFG of MUX2 is

 for STRUCTURE

 for G2 : AOI

 use entity work.AND4(quick_fix);

 -- architecture quick_fix of AND4 specified for AOI component

 end for;

 end for;

end AND4_CFG;

 Late-binding configuration of MUX2

