
1

EE 459/500 – HDL Based Digital

Design with Programmable Logic

Lecture 9

Field Programmable Gate Arrays

(FPGAs)

Read before class:

Chapter 3 from textbook

Overview

 FPGA Devices

• ASIC vs. FPGA

• FPGA architecture

 CLB, RAM

 IO, Interconnects

 FPGA Design Flow

• Synthesis

• Place

• Route

2

trend toward

higher levels

of integration

Evolution of implementation technologies

 Logic gates (1950s-60s)

 Regular structures for two-level logic (1960s-70s)

• muxes and decoders, PLAs

 Programmable sum-of-products arrays (1970s-80s)

• PLDs, complex PLDs

 Programmable gate arrays (1980s-90s)

• densities high enough to permit entirely new

class of application, e.g., prototyping, emulation,

acceleration

ASIC vs. FPGA

• designs must be sent

 for expensive and time

 consuming fabrication

 in semiconductor foundry

• bought off the shelf

 and reconfigured by

 designers themselves

ASIC

Application Specific

Integrated Circuit

FPGA

Field Programmable

Gate Array

• designed all the way

 from behavioral description

 to physical layout

• no physical layout design;

 design ends with

 a bitstream used

 to configure a device

3

Which way to go?

Off-the-shelf

Low development cost

Short time to market

Reconfigurability

High performance

ASICs FPGAs

Low power

Low cost in

high volumes

 Custom ICs sometimes designed to replace large amount of glue

logic:

• Reduced system complexity and manufacturing cost, improved performance.

• However, custom ICs are very expensive to develop, and delay introduction of

product to market (time to market) because of increased design time.

 Note: need to worry about two kinds of costs:

1. cost of development, sometimes called non-recurring engineering (NRE)

2. cost of manufacture

• A tradeoff usually exists between NRE cost and manufacturing costs

total
costs

number of units manufactured (volume)

NRE

A

B

Why FPGAs?

4

 Custom IC approach viable for products that are …

• very high volume (where NRE could be amortized),

• not time-to-market sensitive.

 FPGAs introduced as an alternative to custom ICs for

implementing glue logic:

• improved density relative to discrete SSI/MSI components (within around 10x

of custom ICs)

• with the aid of computer aided design (CAD) tools circuits could be

implemented in a short amount of time (no physical layout process, no mask

making, no IC manufacturing), relative to ASICs.

 lowers NREs

 shortens TTM

 Because of Moore’s law the density (gates/area) of FPGAs

continued to grow through the 80’s and 90’s to the point where

major data processing functions can be implemented on a single

FPGA.

Why FPGAs?

Applications of FPGAs

 Implementation of random logic

• easier changes at system-level (one device is modified)

• can eliminate need for full-custom chips

 Prototyping

• ensemble of gate arrays used to emulate a circuit to be manufactured

• get more/better/faster debugging done than possible with simulation

 Reconfigurable hardware

• one hardware block used to implement more than one function

• functions must be mutually-exclusive in time

• can greatly reduce cost while enhancing flexibility

• RAM-based only option

 Special-purpose computation engines

• hardware dedicated to solving one problem (or class of problems)

• accelerators attached to general-purpose computers

5

Major FPGA Vendors

SRAM-based FPGAs

 Xilinx, Inc.

 Altera Corp.

 Atmel

 Lattice Semiconductor

Flash & antifuse FPGAs

 Actel Corp.

 Quick Logic Corp.

Share about 90% of the market

Xilinx FPGA Families

 Old families

• XC3000, XC4000, XC5200

• Old 0.5µm, 0.35µm and 0.25µm technology. Not recommended for modern
designs.

 High-performance families

• Virtex (220 nm)

• Virtex-E, Virtex-EM (180 nm)

• Virtex-II, Virtex-II PRO (130 nm)

• Virtex-4 (90 nm)

• Virtex-5 (65 nm)

• Virtex-6

 Low Cost Family

• Spartan/XL – derived from XC4000

• Spartan-II – derived from Virtex

• Spartan-IIE – derived from Virtex-E

• Spartan-3 (90 nm)

• Spartan-3E (90 nm) – logic optimized

• Spartan-3A (90 nm) – I/O optimized

• Spartan-3AN (90 nm) – non-volatile

• Spartan-3A DSP (90 nm) – DSP optimized

• Spartan-6

6

Altera FPGA Families

• High & Medium Density FPGAs

 Stratix™ II, Stratix, APEX™ II, APEX

20K, & FLEX® 10K

• Low-Cost FPGAs

 Cyclone™ & ACEX® 1K

• FPGAs with Clock Data Recovery

 Stratix GX & Mercury™

• CPLDs

 MAX® 7000 & MAX 3000

• Embedded Processor Solutions

 Nios™, Excalibur™

• Configuration Devices

 EPC

Overview

 FPGA Devices

• ASIC vs. FPGA

• FPGA architecture

 CLB, RAM

 IO, Interconnects

 FPGA Design Flow

• Synthesis

• Place

• Route

7

B
lo

ck
 R

A
M

s

B
lo

ck
 R

A
M

s

Configurable

Logic

Blocks (CLBs)

I/O

Blocks

Block

RAMs

What is an FPGA?

What is an FPGA?

Programmable

interconnect

Programmable

logic blocks

8

CLB CLB

CLB CLB

Logic cell

Slice

Logic cell

Logic cell

Slice

Logic cell

Logic cell

Slice

Logic cell

Logic cell

Slice

Logic cell

Configurable logic block (CLB)

Example of Xilinx CLB

16-bit SR

flip-flop

clock

mux

y

q
e

a

b

c

d

16x1 RAM

4-input

LUT

clock enable

set/reset

Simplified view of a Xilinx Logic Cell

9

Idealized Configurable Logic Block (CLB)

 4-input look-up table (LUT)

• implements combinational logic functions

 Register

• optionally stores output of LUT

4-LUT FF
1

0

latch
Logic Block set by configuration

bit-stream

4-input "look up table"

OUTPUTINPUTS

How could you build a generic Boolean

logic circuit? Memories as LUTs

 1-bit memory to

hold boolean

value

 Address is vector

of boolean input

values

 Contents encode

a boolean function

 Read out logical

value (col) for

associated row

memory

N-bit

address

word

2N words

10

LUT as general logic gate

 An n-lut as a direct implementation

of a function truth-table.

 Each latch location holds the value

of the function corresponding to one

input combination.

0000 F(0,0,0,0)
0001 F(0,0,0,1)
0010 F(0,0,1,0)
0011 F(0,0,1,1)
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

INPUTS

store in 1st latch

store in 2nd latch

Example: 4-lut

Example: 2-lut

ORANDINPUTS

11 1 1
10 0 1
01 0 1
00 0 0

Can be used to implement any

function of 2 inputs.

How many of these are there?

How many functions of n inputs?

• Look-Up Tables are

primary elements for

logic

implementation

• Each LUT can

implement any

function of

4 inputs

x1 x2 x3 x4

y

x1 x2

y

LUT

x1
x2
x3
x4

y

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

0
1
0
0
0
1
0
1
0
1
0
0
1
1
0
0

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0

x1 x2 x3 x4

y

x1 x2 x3 x4

y

x1 x2

y

x1 x2

y

LUT

x1
x2
x3
x4

y

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

0
1
0
0
0
1
0
1
0
1
0
0
1
1
0
0

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

0
1
0
0
0
1
0
1
0
1
0
0
1
1
0
0

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0

LUT as general logic gate

11

LUT LUT

X5 X4 X3 X2 X1 Y

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 0

0 0 0 1 1 0

0 0 1 0 0 1

0 0 1 0 1 1

0 0 1 1 0 0

0 0 1 1 1 0

0 1 0 0 0 1

0 1 0 0 1 0

0 1 0 1 0 0

0 1 0 1 1 1

0 1 1 0 0 1

0 1 1 0 1 1

0 1 1 1 0 1

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 0 1 0

1 0 0 1 0 0

1 0 0 1 1 0

1 0 1 0 0 0

1 0 1 0 1 0

1 0 1 1 0 0

1 0 1 1 1 1

1 1 0 0 0 0

1 1 0 0 1 1

1 1 0 1 0 0

1 1 0 1 1 1

1 1 1 0 0 0

1 1 1 0 1 1

1 1 1 1 0 0

1 1 1 1 1 0

LUT LUT

OUT

5-Input functions implemented using two LUTs

multiplexer demultiplexer 4x4 switch

control control

Recall: Multiplexer/Demultiplexer

 Multiplexer: route one of many inputs to a single

output

 Demultiplexer: route single input to one of many

outputs

12

 2:1 mux: Z = A' I0 + A I1

 4:1 mux: Z = A' B' I0 + A' B I1 + A B' I2 + A B I3

 8:1 mux: Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +

 AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7

I0
I1
I2
I3
I4
I5
I6
I7

A B C

8:1
mux

Z I0
I1
I2
I3

A B

4:1
mux

Z I0
I1

A

2:1
mux Z

Multiplexers/Selectors: to implement logic

C A B

0

1

2

3

4

5

6

7

1

0

1

0

0

0

1

1

S2

8:1 MUX

S1 S0

F

Multiplexers as LUTs

 2n:1 multiplexer implements any function of n variables

• With the variables used as control inputs and

• Data inputs tied to 0 or 1

• In essence, a look-up table

 Example:

• F(A,B,C) = m0 + m2 + m6 + m7

 = A'B'C' + A'BC' + ABC' + ABC

 = A'B'(C') + A'B(C') + AB'(0) + AB(1)

13

A B C F

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

C'

C'

0

1 A B

S1 S0

F
0

1

2

3

4:1 MUX

C'

C'

0

1

F

C A B

0

1

2

3

4

5

6

7

1

0

1

0

0

0

1

1

S2

8:1 MUX

S1 S0

Multiplexers as LUTs (cont’d)

 2n-1:1 mux can implement any function of n variables
• With n-1 variables used as control inputs and

• Data inputs tied to the last variable or its complement

 Example:
• F(A,B,C) = m0 + m2 + m6 + m7

 = A'B'C' + A'BC' + ABC' + ABC

 = A'B'(C') + A'B(C') + AB'(0) + AB(1)

control signals B and C simultaneously choose
one of I0, I1, I2, I3 and one of I4, I5, I6, I7

control signal A chooses which of the
upper or lower mux's output to gate to Z

alternative
implementation

C

Z

A B

4:1
mux

2:1
mux

2:1
mux

2:1
mux

2:1
mux

I4
I5

I2
I3

I0
I1

I6
I7

8:1
mux

Cascading Multiplexers

 Large multiplexers implemented by cascading smaller

ones

Z

I0
I1
I2
I3

A

I4
I5
I6
I7

B C

4:1
mux

4:1
mux

2:1
mux

8:1
mux

14

4-LUT Implementation

 n-bit LUT is implemented as a 2n x

1 memory:

• Inputs choose one of 2n memory

locations.

• Memory locations (latches) are

normally loaded with values from user’s

configuration bit stream.

• Inputs to mux control are the CLB

inputs.

 Result is a general purpose “logic

gate”.

• n-LUT can implement any function of n

inputs!

latch

latch

latch

latch

16 x 1

mux
16

INPUTS

OUTPUT

Latches programmed as part
of configuration bit-stream

Example: Xilinx Virtex-E Floorplan

Block RAM

• 4096 bits each

• every 12 CLB columns

Input/Output Blocks

• combinational,

latch, and flipflop

output

• sampled inputs

Configurable Logic Blocks

• 4-input function gens

• buffers

• flipflop

15

Virtex-E Configurable Logic Block (CLB)

CLB = 4 logic cells (LC) in two slices

LC: 4-input function generator, carry logic, storage element

80 x 120 CLB array on 2000E

16x1 synchronous RAM FF or latch

Details of Virtex-E Slice – implements any two 4-input

functions

4-input

function

3-input

function;

registered

16

6-input

function

from other

slice

Details of Virtex-E Slice – any two 6-input function

RAM16X1S

O

D

WE

WCLK

A0

A1

A2

A3

RAM32X1S

O

D
WE

WCLK
A0

A1
A2
A3
A4

RAM16X2S

O1

D0

WE

WCLK
A0

A1

A2

A3

D1

O0

=

=

LUT

LUT or

LUT

RAM16X1D

SPO

D

WE

WCLK

A0

A1

A2

A3

DPRA0 DPO

DPRA1

DPRA2

DPRA3

or

Distributed RAM

 CLB LUT configurable as
Distributed RAM
• A single LUT equals 16x1

RAM

• Two LUTs Implement Single
and Dual-Port RAMs

• Cascade LUTs to increase
RAM size

 Synchronous write

 Synchronous/Asynchronou
s read
• Accompanying flip-flops used

for synchronous read

17

D Q

CE

D Q

CE

D Q

CE

D Q

CE

LUT

IN
CE

CLK

DEPTH[3:0]

OUT LUT =

Shift Register

 Each LUT can be
configured as shift register
• Serial in, serial out

 Dynamically addressable
delay up to 16 cycles

 For programmable
pipeline

 Cascade for greater cycle
delays

 Use CLB flip-flops to add
depth

COUT

D Q

CK

S

R
EC

D Q

CK

R
EC

O

G4
G3
G2
G1

Look-Up

Table
Carry

&

Control

Logic

O

YB

Y

F4
F3
F2
F1

XB

X

Look-Up

Table

F5IN

BY

SR

S

Carry

&

Control

Logic

CIN
CLK
CE

SLICE

Carry & Control Logic

18

 Each CLB contains separate
logic and routing for the fast
generation of sum & carry
signals
• Increases efficiency and

performance of adders,
subtractors, accumulators,
comparators, and counters

 Carry logic is independent of
normal logic and routing
resources

Fast Carry Logic

LSB

MSB

C
ar

ry
 L

o
g

ic

R
o

u
ti

n
g

Accessing Carry Logic

 All major synthesis tools can infer carry logic for

arithmetic functions

• Addition (SUM <= A + B)

• Subtraction (DIFF <= A - B)

• Comparators (if A < B then…)

• Counters (count <= count +1)

19

Overview

 FPGA Devices

• ASIC vs. FPGA

• FPGA architecture

 CLB, RAM

 IO, Interconnects

 FPGA Design Flow

• Synthesis

• Place

• Route

Basic I/O Block (IOB) Structure

D

EC

Q

SR

D

EC

Q

SR

D

EC

Q

SR

Three-State
Control

Output Path

Input Path

Three-State

Output

Clock

Set/Reset

Direct Input

Registered
Input

FF Enable

FF Enable

FF Enable

20

IOB Functionality

 IOB provides interface between the package pins

and CLBs

 Each IOB can work as uni- or bi-directional I/O

 Outputs can be forced into High Impedance

 Inputs and outputs can be registered

• advised for high-performance I/O

 Inputs can be delayed

Example: Virtex-E IOB detail

21

Interconnects: Routing

 Logic blocks embedded in a ‘sea’ of

connection resources

 CLB = logic block

IOB = I/O buffer

PSM = programmable

 switch matrix

 Interconnections critical

• Transmission gates on paths

 Flexibility

 Connect any LB to any other

 but

Much slower than connections

within a logic block

Much slower than long lines on an

ASIC

Every one of these

connection points

is a transmission gate

This switch matrix is

a mass of transmission

gates too!

PSM: Programmable
Switch Matrix (for
making connections
between interconnects of
different channels). The
structure shown only
allows i-to-i connections

Horizontal

routing

(interconnect)

channel

Vertical

routing

channels

Diamond

switch

Programmable switch matrix

22

FF

1

1 0

0

0

Diamond switch

Example: SRAM-type FPGA Interconnection

PSM

Cell Connection

Matrix (CCM)

23

Configuring an FPGA

 Millions of SRAM cells holding LUTs and Interconnect Routing info

 Volatile Memory. Loses configuration when board power is turned off.

 Keep Bit Pattern describing the SRAM cells in non-Volatile Memory e.g.

ROM or Digital Camera card

 Configuration takes ~ secs

Configuration data in

Configuration data out

= I/O pin/pad

= SRAM cell

SRAM

JTAG Testing

JTAG Port

Programming

Bit File

Overview

 FPGA Devices

• ASIC vs. FPGA

• FPGA architecture

 CLB, RAM

 IO, Interconnects

 FPGA Design Flow

• Synthesis

• Place

• Route

24

FPGA Generic Design Flow

 Design Entry:

• Create your design files using:

 schematic editor or

 hardware description language (VHDL, Verilog)

 Design implementation on FPGA:

• Partition, place, and route to create bit-stream file

 Design verification:

• Use Simulator to check function.

• Load onto FPGA device (cable connects PC to development board)

• Check operation at full speed in real environment

Library IEEE;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity RC5_core is

 port(

 clock, reset, encr_decr: in std_logic;

 data_input: in std_logic_vector(31 downto 0);

 data_output: out std_logic_vector(31 downto 0);

 out_full: in std_logic;

 key_input: in std_logic_vector(31 downto 0);

 key_read: out std_logic;

);

end AES_core;

VHDL description (Your Source Files)

Functional simulation

Post-synthesis simulation
Synthesis

Implementation

Configuration

Timing simulation

On chip testing

25

architecture MLU_DATAFLOW of MLU is

signal A1:STD_LOGIC;

signal B1:STD_LOGIC;

signal Y1:STD_LOGIC;

signal MUX_0, MUX_1, MUX_2, MUX_3: STD_LOGIC;

begin

 A1<=A when (NEG_A='0') else

 not A;

 B1<=B when (NEG_B='0') else

 not B;

 Y<=Y1 when (NEG_Y='0') else

 not Y1;

 MUX_0<=A1 and B1;

 MUX_1<=A1 or B1;

 MUX_2<=A1 xor B1;

 MUX_3<=A1 xnor B1;

 with (L1 & L0) select

 Y1<=MUX_0 when "00",

 MUX_1 when "01",

 MUX_2 when "10",

 MUX_3 when others;

end MLU_DATAFLOW;

VHDL description Circuit netlist

Logic Synthesis

Implementation

 After synthesis the entire implementation

process is performed by FPGA vendor tools

26

Translation

Translation

UCF

NGD

EDIF NCF

Native Generic Database file

Constraint Editor

User Constraint File

Native

Constraint

File

Electronic Design

Interchange Format

Circuit netlist Timing Constraints

Synthesis

Pin Assignment

top_level_design

CLOCK

CONTROL(0)

CONTROL(2)

CONTROL(1)

RESET

SEGMENTS(0)

SEGMENTS(1)

SEGMENTS(2)

SEGMENTS(3)

SEGMENTS(4)

SEGMENTS(5)

SEGMENTS(6)

H3

K2
G5

K3
H1
K4

G4

H5

H6

H2

P10

B10 FPGA

27

Circuit netlist

Mapping

LUT2

LUT3

LUT4

LUT5

LUT1
FF1

FF2

LUT0

28

Placement
CLB SLICES

FPGA

Routing

Programmable Connections

FPGA

29

Configuration

 Once a design is implemented, you must create a

file that the FPGA can understand

• This file is called a bitstream: a BIT file (.bit extension)

 The BIT file can be downloaded directly to the

FPGA, or can be converted into a PROM file

which stores the programming information

Map report

Design Summary

Number of errors: 0

Number of warnings: 0

Logic Utilization:

 Number of Slice Flip Flops: 30 out of 26,624 1%

 Number of 4 input LUTs: 38 out of 26,624 1%

Logic Distribution:

 Number of occupied Slices: 33 out of 13,312 1%

 Number of Slices containing only related logic: 33 out of 33 100%

 Number of Slices containing unrelated logic: 0 out of 33 0%

 *See NOTES below for an explanation of the effects of unrelated logic

Total Number 4 input LUTs: 62 out of 26,624 1%

 Number used as logic: 38

 Number used as a route-thru: 24

 Number of bonded IOBs: 10 out of 221 4%

 IOB Flip Flops: 7

 Number of GCLKs: 1 out of 8 12%

30

Place & route report

Asterisk (*) preceding a constraint indicates it was not met.

 This may be due to a setup or hold violation.

--

 Constraint | Requested | Actual | Logic | Absolute |Number of

 | | | Levels | Slack |errors

--

* TS_CLOCK = PERIOD TIMEGRP "CLOCK" 5 ns | 5.000ns | 5.140ns | 4 | -0.140ns | 5

 HIGH 50% | | | | |

--

 TS_gen1Hz_Clock1Hz = PERIOD TIMEGRP "gen1 | 5.000ns | 4.137ns | 2 | 0.863ns | 0

 "gen1Hz_Clock1Hz" 5 ns HIGH 50% | | | | |

--

Post layout timing report

Clock to Setup on destination clock CLOCK

---------------+---------+---------+---------+---------+

 | Src:Rise| Src:Fall| Src:Rise| Src:Fall|

Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|

---------------+---------+---------+---------+---------+

CLOCK | 5.140| | | |

---------------+---------+---------+---------+---------+

Timing summary:

Timing errors: 9 Score: 543

Constraints cover 574 paths, 0 nets, and 187 connections

Design statistics:

 Minimum period: 5.140ns (Maximum frequency: 194.553MHz)

31

Summary

 FPGAs are more and more prevalent!

 They offer a flexible platform for increasingly

complex systems

 Design automation tools take care of the entire

design process from VHDL configuration

bitstream file

Appendix A: other FPGA architectures

Virtex-II

Virtex™-II
architecture’s core
voltage
operates at 1.5V

Virtex™-II
architecture’s core
voltage
operates at 1.5V

I/O Blocks (IOBs) I/O Blocks (IOBs)

Configurable

Logic Blocks

(CLBs)

Configurable

Logic Blocks

(CLBs)

Clock Management

(DCMs, BUFGMUXes)

Clock Management

(DCMs, BUFGMUXes)

Block SelectRAM™

resource

Block SelectRAM™

resource

Dedicated

multipliers

Dedicated

multipliers

Programmable

interconnect

Programmable

interconnect

32

Slices and CLBs

 Each Virtex-II CLB

contains four slices

• Local routing provides

feedback between slices

in the same CLB, and it

provides routing to

neighboring CLBs

• A switch matrix provides

access to general routing

resources

CIN

Switch

Matrix

BUFT

BUF T

COUT COUT

Slice S0

Slice S1

Local Routing

Slice S2

Slice S3

CIN

SHIFT

Dedicated Multiplier Blocks

 18-bit twos complement signed operation

 Optimized to implement Multiply and Accumulate

functions

 Multipliers are physically located next to block

SelectRAM™ memory

 18 x 18
 Multiplier
 18 x 18

 Multiplier
Output
(36 bits)

Data_A
(18 bits)

Data_B
(18 bits)

4 x 4 signed

8 x 8 signed

12 x 12 signed

18 x 18 signed

33

Virtex-4 Architecture

1 Gbps SelectIO™
ChipSync™ Source synch,

XCITE Active Termination

Smart RAM
New block RAM/FIFO

Xesium Clocking

Technology
500 MHz

PowerPC™ 405

with APU Interface
450 MHz, 680 DMIPS

Tri-Mode

Ethernet MAC
10/100/1000 Mbps

RocketIO™

Multi-Gigabit

Transceivers
622 Mbps–10.3 Gbps

XtremeDSP™

Technology Slices

256 18x18 GMACs

Advanced CLBs
200K Logic Cells

Choose the Platform that Best Fits the

Application!

ResourceResource

14K14K––200K LCs200K LCs

Logic

Memory

DCMs

DSP Slices

SelectIO

RocketIO

PowerPC

Ethernet MAC

LXLX FXFX SXSX

0.90.9––6 Mb6 Mb

44––1212

3232––9696

240240––960960

23K23K––55K LCs55K LCs

2.32.3––5.7 Mb5.7 Mb

44––88

128128––512512

320320––640640

12K12K––140K LCs140K LCs

0.60.6––10 Mb10 Mb

44––2020

3232––192192

240240––896896

00––24 Channels24 Channels

1 or 2 Cores1 or 2 Cores

2 or 4 Cores2 or 4 Cores

N/A

N/A

N/A

N/A

N/A

N/A

34

