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EE 459/500 – HDL Based Digital 

Design with Programmable Logic 

  

Lecture 9  

Field Programmable Gate Arrays 

(FPGAs) 

Read before class:  

Chapter 3 from textbook  

Overview 

 FPGA Devices 

• ASIC vs. FPGA 

• FPGA architecture  

 CLB, RAM 

 IO, Interconnects 

 FPGA Design Flow 

• Synthesis 

• Place  

• Route 
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trend toward  

higher levels  

of integration 

Evolution of implementation technologies 

 Logic gates (1950s-60s) 

 Regular structures for two-level logic (1960s-70s) 

• muxes and decoders, PLAs 

 Programmable sum-of-products arrays (1970s-80s) 

• PLDs, complex PLDs 

 Programmable gate arrays (1980s-90s) 

• densities high enough to permit entirely new 

class of application, e.g., prototyping, emulation, 

acceleration 

ASIC vs. FPGA 

• designs must be sent 

  for expensive and time 

  consuming fabrication 

  in semiconductor foundry 

• bought off the shelf 

  and reconfigured by 

  designers themselves 

ASIC 

Application Specific 

Integrated Circuit 

FPGA 

Field Programmable 

Gate Array 

• designed all the way 

  from behavioral description 

  to physical layout 

• no physical layout design; 

  design ends with 

  a bitstream used 

  to configure a device 
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Which way to go? 

Off-the-shelf 

Low development cost 

Short time to market 

Reconfigurability 

High performance 

ASICs FPGAs 

Low power 

Low cost in 

high volumes 

 Custom ICs sometimes designed to replace large amount of glue 

logic: 

• Reduced system complexity and manufacturing cost, improved performance. 

• However, custom ICs are very expensive to develop, and delay introduction of 

product to market (time to market) because of increased design time.  

 Note: need to worry about two kinds of costs: 

1. cost of development, sometimes called non-recurring engineering (NRE) 

2. cost of manufacture 

• A tradeoff usually exists between NRE cost and manufacturing costs 

total
costs

number of units manufactured (volume)

NRE

A

B

Why FPGAs? 
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 Custom IC approach viable for products that are … 

• very high volume (where NRE could be amortized),  

• not time-to-market sensitive. 

 FPGAs introduced as an alternative to custom ICs for 

implementing glue logic: 

• improved density relative to discrete SSI/MSI components (within around 10x 

of custom ICs) 

• with the aid of computer aided design (CAD) tools circuits could be 

implemented in a short amount of time (no physical layout process, no mask 

making, no IC manufacturing), relative to ASICs. 

 lowers NREs 

 shortens TTM 

 Because of Moore’s law the density (gates/area) of FPGAs 

continued to grow through the 80’s and 90’s to the point where 

major data processing functions can be implemented on a single 

FPGA. 

Why FPGAs? 

Applications of FPGAs 

 Implementation of random logic 

• easier changes at system-level (one device is modified) 

• can eliminate need for full-custom chips 

 Prototyping 

• ensemble of gate arrays used to emulate a circuit to be manufactured 

• get more/better/faster debugging done than possible with simulation 

 Reconfigurable hardware 

• one hardware block used to implement more than one function 

• functions must be  mutually-exclusive in time 

• can greatly reduce cost while enhancing flexibility 

• RAM-based only option 

 Special-purpose computation engines 

• hardware dedicated to solving one problem (or class of problems) 

• accelerators attached to general-purpose computers 
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Major FPGA Vendors 

SRAM-based FPGAs 

 Xilinx, Inc. 

 Altera Corp. 

 Atmel 

 Lattice Semiconductor 

 

Flash & antifuse FPGAs 

 Actel Corp. 

 Quick Logic Corp. 

Share about 90% of the market 

Xilinx FPGA Families 

 Old families 

• XC3000, XC4000, XC5200 

• Old 0.5µm, 0.35µm and 0.25µm technology. Not recommended for modern 
designs. 

 High-performance families 

• Virtex (220 nm) 

• Virtex-E, Virtex-EM (180 nm) 

• Virtex-II, Virtex-II PRO (130 nm) 

• Virtex-4 (90 nm) 

• Virtex-5 (65 nm) 

• Virtex-6 

 Low Cost Family 

• Spartan/XL – derived from XC4000 

• Spartan-II – derived from Virtex 

• Spartan-IIE – derived from Virtex-E 

• Spartan-3 (90 nm) 

• Spartan-3E (90 nm) – logic optimized 

• Spartan-3A (90 nm) – I/O optimized 

• Spartan-3AN (90 nm) – non-volatile 

• Spartan-3A DSP (90 nm) – DSP optimized 

• Spartan-6 
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Altera FPGA Families 

• High & Medium Density FPGAs 

 Stratix™ II, Stratix, APEX™ II, APEX 

20K, & FLEX® 10K  

• Low-Cost FPGAs 

 Cyclone™ & ACEX® 1K 

• FPGAs with Clock Data Recovery 

 Stratix GX & Mercury™ 

• CPLDs 

 MAX® 7000 & MAX 3000 

• Embedded Processor Solutions 

 Nios™, Excalibur™ 

• Configuration Devices 

 EPC 

Overview 

 FPGA Devices 

• ASIC vs. FPGA 

• FPGA architecture  

 CLB, RAM 

 IO, Interconnects 

 FPGA Design Flow 

• Synthesis 

• Place  

• Route 
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Configurable 

Logic 

Blocks (CLBs) 

I/O 

Blocks 

Block 

RAMs 

What is an FPGA? 

What is an FPGA? 

Programmable

interconnect

Programmable

logic blocks
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CLB CLB

CLB CLB

Logic cell

Slice

Logic cell

Logic cell

Slice

Logic cell

Logic cell

Slice

Logic cell

Logic cell

Slice

Logic cell

Configurable logic block (CLB)

Example of Xilinx CLB 

16-bit SR

flip-flop

clock

mux

y

q
e

a

b

c

d

16x1 RAM

4-input 

LUT

clock enable

set/reset

Simplified view of a Xilinx Logic Cell 
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Idealized Configurable Logic Block (CLB) 

 4-input look-up table (LUT) 

• implements combinational logic functions 

 Register 

• optionally stores output of LUT 

4-LUT FF
1

0

latch
Logic Block set by configuration 

bit-stream

4-input "look up table"

OUTPUTINPUTS

How could you build a generic Boolean 

logic circuit? Memories as LUTs 

 1-bit memory to 

hold boolean 

value 

 Address is vector 

of boolean input 

values 

 Contents encode 

a boolean function 

 Read out logical 

value (col) for 

associated row 

memory 

N-bit 

address 

word 

2N words 
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LUT as general logic gate 

 An n-lut as a direct implementation 

of a function truth-table. 

 Each latch location holds the value 

of the function corresponding to one 

input combination. 

0000    F(0,0,0,0)
0001    F(0,0,0,1)
0010    F(0,0,1,0)
0011    F(0,0,1,1)
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

INPUTS

store in 1st latch

store in 2nd latch

Example: 4-lut 

Example: 2-lut 

ORANDINPUTS

11     1     1
10     0     1
01     0     1
00     0     0

Can be used to implement any 

function of 2 inputs. 

How many of these  are there? 

How many functions of n inputs?   

• Look-Up Tables are 

primary elements for 

logic 

implementation 

• Each LUT can 

implement any 

function of  

4 inputs 

x1 x2 x3 x4

y

x1 x2

y

LUT

x1
x2
x3
x4

y

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

0
1
0
0
0
1
0
1
0
1
0
0
1
1
0
0

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0

x1 x2 x3 x4

y

x1 x2 x3 x4

y

x1 x2

y

x1 x2

y

LUT

x1
x2
x3
x4

y

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

0
1
0
0
0
1
0
1
0
1
0
0
1
1
0
0

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

0
1
0
0
0
1
0
1
0
1
0
0
1
1
0
0

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0

LUT as general logic gate 
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LUT LUT 

X5 X4 X3 X2 X1 Y

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 0

0 0 0 1 1 0

0 0 1 0 0 1

0 0 1 0 1 1

0 0 1 1 0 0

0 0 1 1 1 0

0 1 0 0 0 1

0 1 0 0 1 0

0 1 0 1 0 0

0 1 0 1 1 1

0 1 1 0 0 1

0 1 1 0 1 1

0 1 1 1 0 1

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 0 1 0

1 0 0 1 0 0

1 0 0 1 1 0

1 0 1 0 0 0

1 0 1 0 1 0

1 0 1 1 0 0

1 0 1 1 1 1

1 1 0 0 0 0

1 1 0 0 1 1

1 1 0 1 0 0

1 1 0 1 1 1

1 1 1 0 0 0

1 1 1 0 1 1

1 1 1 1 0 0

1 1 1 1 1 0

LUT LUT 

OUT 

5-Input functions implemented using two LUTs 

multiplexer demultiplexer 4x4 switch 

control control 

Recall: Multiplexer/Demultiplexer 

 Multiplexer: route one of many inputs to a single 

output 

 Demultiplexer: route single input to one of many 

outputs 
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 2:1 mux: Z = A' I0 + A I1 

 4:1 mux: Z = A' B' I0 + A' B I1 + A B' I2 + A B I3 

 8:1 mux: Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +    

                        AB'C'I4 + AB'CI5  + ABC'I6  + ABCI7 

I0 
I1 
I2 
I3 
I4 
I5 
I6 
I7 

A  B  C 

8:1 
mux 

Z I0 
I1 
I2 
I3 

A  B 

4:1 
mux 

Z I0 
I1 

A 

2:1 
mux Z 

Multiplexers/Selectors: to implement logic 

C A B 

0 

1 

2 

3 

4 

5 

6 

7 

1 

0 

1 

0 

0 

0 

1 

1 

S2 

8:1 MUX 

S1 S0 

F 

Multiplexers as LUTs 

 2n:1 multiplexer implements any function of n variables 

• With the variables used as control inputs and 

• Data inputs tied to 0 or 1 

• In essence, a look-up table 

 Example: 

• F(A,B,C) = m0 + m2 + m6 + m7 

               = A'B'C' + A'BC' + ABC' + ABC 

               = A'B'(C') + A'B(C') + AB'(0) + AB(1) 
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A B C F 

0 0 0 1 

0 0 1 0 

0 1 0 1 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 

C' 

 

C' 

 

0 

 

1 A B 

S1 S0 

F 
0 

1 

2 

3 

4:1 MUX 

C' 

C' 

0 

1 

F 

C A B 

0 

1 

2 

3 

4 

5 

6 

7 

1 

0 

1 

0 

0 

0 

1 

1 

S2 

8:1 MUX 

S1 S0 

Multiplexers as LUTs (cont’d) 

 2n-1:1 mux can implement any function of n variables 
• With n-1 variables used as control inputs and 

• Data inputs tied to the last variable or its complement 

 Example: 
• F(A,B,C) = m0 + m2 + m6 + m7 

               = A'B'C' + A'BC' + ABC' + ABC 

               = A'B'(C') + A'B(C') + AB'(0) + AB(1) 

control signals B and C simultaneously choose  
one of I0, I1, I2, I3 and one of I4, I5, I6, I7 
 
control signal A chooses which of the 
upper or lower mux's output to gate to Z 

alternative 
implementation 

C 

Z 

A  B 

4:1 
mux 

2:1 
mux 

2:1 
mux 

2:1 
mux 

2:1 
mux 

I4 
I5 

I2 
I3 

I0 
I1 

I6 
I7 

8:1 
mux 

Cascading Multiplexers 

 Large multiplexers implemented by cascading smaller 

ones 

Z 

I0 
I1 
I2 
I3 

A 

I4 
I5 
I6 
I7 

B  C 

4:1 
mux 

4:1 
mux 

2:1 
mux 

8:1 
mux 
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4-LUT Implementation 

 n-bit LUT is implemented as a 2n x 

1 memory: 

• Inputs choose one of 2n memory 

locations. 

• Memory locations (latches) are 

normally loaded with values from user’s 

configuration bit stream. 

• Inputs to mux control are the CLB 

inputs. 

 Result is a general purpose “logic 

gate”.   

• n-LUT can implement any function of n 

inputs! 

latch

latch

latch

latch

16 x 1

mux
16

INPUTS

OUTPUT

Latches programmed as part
of configuration bit-stream

Example: Xilinx Virtex-E Floorplan 

Block RAM 

• 4096 bits each 

• every 12 CLB columns 

Input/Output Blocks 

• combinational, 

latch, and flipflop 

output 

• sampled inputs 

Configurable Logic Blocks 

• 4-input function gens 

• buffers 

• flipflop 
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Virtex-E Configurable Logic Block (CLB) 

CLB = 4 logic cells (LC) in two slices 

LC: 4-input function generator, carry logic, storage element 

80 x 120 CLB array on 2000E 

16x1 synchronous RAM FF or latch 

Details of Virtex-E Slice – implements any two 4-input 

functions 

4-input 

function 

3-input 

function; 

registered 
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6-input 

function 

from other 

slice 

Details of Virtex-E Slice – any two 6-input function 

RAM16X1S 

O 

D 

WE 

WCLK 

A0 

A1 

A2 

A3 

RAM32X1S 

O 

D 
WE 

WCLK 
A0 

A1 
A2 
A3 
A4 

RAM16X2S 

O1 

D0 

WE 

WCLK 
A0 

A1 

A2 

A3 

D1 

O0 

= 

= 

LUT 

LUT or 

LUT 

RAM16X1D 

SPO 

D 

WE 

WCLK 

A0 

A1 

A2 

A3 

DPRA0 DPO 

DPRA1 

DPRA2 

DPRA3 

or 

Distributed RAM 

 CLB LUT configurable as 
Distributed RAM 
• A single LUT equals 16x1 

RAM 

• Two LUTs Implement Single 
and Dual-Port RAMs 

• Cascade LUTs to increase 
RAM size 

 Synchronous write 

 Synchronous/Asynchronou
s read 
• Accompanying flip-flops used 

for synchronous read 
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D Q 

CE 

D Q 

CE 

D Q 

CE 

D Q 

CE 

LUT 

IN 
CE 

CLK 

DEPTH[3:0] 

OUT LUT = 

Shift Register 

 Each LUT can be 
configured as shift register 
• Serial in, serial out 

 Dynamically addressable 
delay up to 16 cycles 

 For programmable 
pipeline 

 Cascade for greater cycle 
delays 

 Use CLB  flip-flops to add 
depth 

COUT 

D Q 

CK 

S 

R 
EC 

D Q 

CK 

R 
EC 

O 

G4 
G3 
G2 
G1 

Look-Up 

Table 
Carry 

& 

Control 

Logic 

O 

YB 

Y 

F4 
F3 
F2 
F1 

XB 

X 

Look-Up 

Table 

F5IN 

BY 

SR 

S 

Carry 

& 

Control 

Logic 

CIN 
CLK 
CE 

SLICE 

Carry & Control Logic 



18 

 Each CLB contains separate 
logic and routing for the fast 
generation of sum & carry 
signals 
• Increases efficiency and 

performance of adders, 
subtractors, accumulators, 
comparators, and counters 

 Carry logic is independent of 
normal logic and routing 
resources 

Fast Carry Logic 

LSB 

MSB 

C
ar

ry
 L

o
g

ic
 

R
o

u
ti

n
g

 
Accessing Carry Logic 

 All major synthesis tools can infer carry logic for 

arithmetic functions 

• Addition (SUM <= A + B) 

• Subtraction (DIFF <= A - B) 

• Comparators (if A < B then…) 

• Counters (count <= count +1) 
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Overview 

 FPGA Devices 

• ASIC vs. FPGA 

• FPGA architecture  

 CLB, RAM 

 IO, Interconnects 

 FPGA Design Flow 

• Synthesis 

• Place  

• Route 

Basic I/O Block (IOB) Structure 

D 

EC 

Q 

SR 

D 

EC 

Q 

SR 

D 

EC 

Q 

SR 

Three-State 
Control 

Output Path 

Input Path 

Three-State 

Output 

Clock 

Set/Reset 

Direct Input 

Registered 
Input 

FF Enable 

FF Enable 

FF Enable 
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IOB Functionality 

 IOB provides interface between the package pins 

and CLBs 

 Each IOB can work as uni- or bi-directional I/O 

 Outputs can be forced into High Impedance 

 Inputs and outputs can be registered 

• advised for high-performance I/O 

 Inputs can be delayed 

Example: Virtex-E IOB detail 
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Interconnects: Routing 

 Logic blocks embedded in a ‘sea’ of 

connection resources 

 CLB = logic block 

IOB = I/O buffer 

PSM = programmable 

            switch matrix 

 Interconnections critical 

• Transmission gates on paths 

 Flexibility 

 Connect any LB to any other 

 but 

Much slower than connections 

within a logic block 

Much slower than long lines on an 

ASIC 

 

Every one of these 

connection points 

is a transmission gate 

This switch matrix is 

a mass of transmission 

gates too! 

PSM: Programmable 
Switch Matrix (for 
making connections 
between interconnects of 
different channels). The 
structure shown only 
allows i-to-i connections 

Horizontal 

routing 

(interconnect) 

channel 

Vertical 

routing 

channels 

Diamond 

switch 

Programmable switch matrix 
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FF 

1 

1 0 

0 

0 

Diamond switch 

Example: SRAM-type FPGA Interconnection 

PSM 

Cell Connection 

Matrix (CCM) 
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Configuring an FPGA 

 Millions of SRAM cells holding LUTs and Interconnect Routing info 

 Volatile Memory. Loses configuration when board power is turned off. 

 Keep Bit Pattern describing the SRAM cells in non-Volatile Memory e.g. 

ROM or Digital Camera card 

 Configuration takes ~ secs 

Configuration data in

Configuration data out

= I/O pin/pad

= SRAM cell

SRAM

JTAG Testing 

JTAG Port 

Programming 

Bit File 

Overview 

 FPGA Devices 

• ASIC vs. FPGA 

• FPGA architecture  

 CLB, RAM 

 IO, Interconnects 

 FPGA Design Flow 

• Synthesis 

• Place  

• Route 
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FPGA Generic Design Flow 

 Design Entry: 

• Create your design files using: 

 schematic editor or  

 hardware description language (VHDL, Verilog) 

 Design implementation on FPGA: 

• Partition, place, and route to create bit-stream file 

 Design verification: 

• Use Simulator to check function. 

• Load onto FPGA device (cable connects PC to development board) 

• Check operation at full speed in real environment 

Library IEEE; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

 

entity RC5_core is 

           port( 

                 clock, reset, encr_decr: in std_logic; 

                 data_input: in std_logic_vector(31 downto 0); 

                 data_output: out std_logic_vector(31 downto 0); 

                 out_full: in std_logic; 

                 key_input: in std_logic_vector(31 downto 0); 

                 key_read: out std_logic; 

          ); 

end AES_core; 

VHDL description (Your Source Files) 

Functional simulation 

Post-synthesis simulation 
Synthesis 

Implementation 

Configuration 

Timing simulation 

On chip testing 
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architecture MLU_DATAFLOW of MLU is  

  

signal A1:STD_LOGIC; 

signal B1:STD_LOGIC; 

signal Y1:STD_LOGIC; 

signal MUX_0, MUX_1, MUX_2, MUX_3: STD_LOGIC; 

 

begin 

 A1<=A when (NEG_A='0') else 

  not A; 

 B1<=B when (NEG_B='0') else 

  not B; 

 Y<=Y1 when (NEG_Y='0') else 

  not Y1; 

   

 MUX_0<=A1 and B1; 

 MUX_1<=A1 or B1; 

 MUX_2<=A1 xor B1; 

 MUX_3<=A1 xnor B1; 

  

 with (L1 & L0) select 

  Y1<=MUX_0 when "00", 

   MUX_1 when "01", 

   MUX_2 when "10", 

   MUX_3 when others; 

  

end MLU_DATAFLOW; 

VHDL description Circuit netlist 

Logic Synthesis 

Implementation 

 After synthesis the entire implementation 

process is performed by FPGA vendor tools 
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Translation 

Translation 

UCF 

NGD 

EDIF NCF 

Native Generic Database file 

Constraint Editor 

User Constraint File 

Native  

Constraint  

File 

Electronic Design  

Interchange Format 

Circuit netlist Timing Constraints 

Synthesis 

Pin Assignment 

top_level_design 

CLOCK 

CONTROL(0) 

CONTROL(2) 

CONTROL(1) 

RESET 

SEGMENTS(0) 

SEGMENTS(1) 

SEGMENTS(2) 

SEGMENTS(3) 

SEGMENTS(4) 

SEGMENTS(5) 

SEGMENTS(6) 

H3 

K2 
G5 

K3 
H1 
K4 

G4 

H5 

H6 

H2 

P10 

B10 FPGA 
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Circuit netlist 

Mapping 

LUT2 

LUT3 

LUT4 

LUT5 

LUT1 
FF1 

FF2 

LUT0 
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Placement 
CLB SLICES 

FPGA 

Routing 

Programmable Connections 

FPGA 
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Configuration 

 Once a design is implemented, you must create a 

file that the FPGA can understand 

• This file is called a bitstream: a BIT file (.bit extension) 

 

 The BIT file can be downloaded directly to the 

FPGA, or can be converted into a PROM file 

which stores the programming information 

Map report 

Design Summary 

-------------- 

Number of errors:         0 

Number of warnings:    0 

Logic Utilization: 

  Number of Slice Flip Flops:          30 out of  26,624    1% 

  Number of 4 input LUTs:                  38 out of  26,624    1% 

Logic Distribution: 

  Number of occupied Slices:                           33 out of  13,312    1% 

  Number of Slices containing only related logic:      33 out of      33  100% 

  Number of Slices containing unrelated logic:          0 out of      33    0% 

  *See NOTES below for an explanation of the effects of unrelated logic 

Total Number 4 input LUTs:             62 out of  26,624    1% 

  Number used as logic:                     38 

  Number used as a route-thru:          24 

  Number of bonded IOBs:                 10 out of     221    4% 

    IOB Flip Flops:                          7 

  Number of GCLKs:                     1 out of       8   12% 
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Place & route report 

Asterisk (*) preceding a constraint indicates it was not met. 

   This may be due to a setup or hold violation. 

 

------------------------------------------------------------------------------------------------------ 

  Constraint                                | Requested  | Actual     | Logic  | Absolute   |Number of   

                                            |            |            | Levels | Slack      |errors      

------------------------------------------------------------------------------------------------------ 

* TS_CLOCK = PERIOD TIMEGRP "CLOCK" 5 ns    | 5.000ns    | 5.140ns    | 4      | -0.140ns   | 5          

  HIGH 50%                                  |            |            |        |            |            

------------------------------------------------------------------------------------------------------ 

  TS_gen1Hz_Clock1Hz = PERIOD TIMEGRP "gen1 | 5.000ns    | 4.137ns    | 2      | 0.863ns    | 0          

  "gen1Hz_Clock1Hz" 5 ns HIGH 50%           |            |            |        |            |            

------------------------------------------------------------------------------------------------------ 

 

Post layout timing report 

Clock to Setup on destination clock CLOCK 

---------------+---------+---------+---------+---------+ 

               | Src:Rise| Src:Fall| Src:Rise| Src:Fall| 

Source Clock   |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall| 

---------------+---------+---------+---------+---------+ 

CLOCK          |    5.140|         |         |         | 

---------------+---------+---------+---------+---------+ 

 

 

Timing summary: 

--------------- 

 

Timing errors: 9  Score: 543 

 

Constraints cover 574 paths, 0 nets, and 187 connections 

 

Design statistics: 

   Minimum period:   5.140ns (Maximum frequency: 194.553MHz) 
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Summary 

 FPGAs are more and more prevalent! 

 They offer a flexible platform for increasingly 

complex systems 

 Design automation tools take care of the entire 

design process from VHDL  configuration 

bitstream file 

Appendix A: other FPGA architectures 

Virtex-II 

Virtex™-II 
architecture’s core 
voltage  
operates at 1.5V 

Virtex™-II 
architecture’s core 
voltage  
operates at 1.5V 

I/O Blocks (IOBs) I/O Blocks (IOBs) 

Configurable 

Logic Blocks 

(CLBs) 

Configurable 

Logic Blocks 

(CLBs) 

Clock Management 

(DCMs, BUFGMUXes) 

Clock Management 

(DCMs, BUFGMUXes) 

Block SelectRAM™ 

resource 

Block SelectRAM™ 

resource 

Dedicated 

multipliers 

Dedicated 

multipliers 

Programmable 

interconnect 

Programmable 

interconnect 
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Slices and CLBs 

 Each Virtex-II CLB 

contains four slices 

• Local routing provides 

feedback between slices 

in the same CLB, and it 

provides routing to  

neighboring CLBs 

• A switch matrix provides 

access to general routing 

resources 

CIN 

Switch 

Matrix 

BUFT 

BUF T 

COUT COUT 

Slice S0 

Slice S1 

Local Routing 

Slice S2 

Slice S3 

CIN 

SHIFT 

Dedicated Multiplier Blocks 

 18-bit twos complement signed operation 

 Optimized to implement Multiply and Accumulate 

functions 

 Multipliers are physically located next to block 

SelectRAM™ memory 

 18 x 18 
  Multiplier 
 18 x 18 

  Multiplier 
Output  
(36 bits) 

Data_A  
(18 bits) 

Data_B  
(18 bits) 

4 x 4 signed 

8 x 8 signed 

12 x 12 signed 

18 x 18 signed 
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Virtex-4 Architecture 

1 Gbps SelectIO™ 
ChipSync™ Source synch,  

XCITE Active Termination 

Smart RAM  
New block RAM/FIFO 

Xesium Clocking 

Technology 
500 MHz 

PowerPC™ 405 

with APU Interface 
450 MHz, 680 DMIPS 

Tri-Mode 

Ethernet MAC 
10/100/1000 Mbps 

RocketIO™  

Multi-Gigabit 

Transceivers 
622 Mbps–10.3 Gbps 

XtremeDSP™ 

Technology Slices 

256 18x18 GMACs   

Advanced CLBs 
200K Logic Cells 

Choose the Platform that Best Fits the 

Application! 

ResourceResource  

  

14K14K––200K LCs200K LCs  

  
Logic 

 
Memory 

 
DCMs 

 
DSP Slices 

 
SelectIO 

 
RocketIO 

 
PowerPC 

 
Ethernet MAC 

 
 

LXLX  FXFX  SXSX  

  

0.90.9––6 Mb6 Mb  

  
  

44––1212  

  
  

3232––9696  

  
  

240240––960960  

  

  

23K23K––55K LCs55K LCs  

  
  

2.32.3––5.7 Mb5.7 Mb  

  
  

44––88  

  
  

128128––512512  

  
  

320320––640640  

  

  

12K12K––140K LCs140K LCs  

  
  

0.60.6––10 Mb10 Mb  

  
  

44––2020  

  

  

3232––192192  

  
  

240240––896896  

  

  

00––24 Channels24 Channels  

  

  

1 or 2 Cores1 or 2 Cores  

  
  

2 or 4 Cores2 or 4 Cores  

  

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 
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