EE 459/500 — HDL Based Digital
Design with Programmable Logic

Lecture 9

Field Programmable Gate Arrays
(FPGAS)

Read before class:
Chapter 3 from textbook

Overview

= FPGA Devices
® ASIC vs. FPGA

® FPGA architecture
= CLB, RAM
= |0, Interconnects

= FPGA Design Flow
¢ Synthesis
® Place
® Route

Evolution of implementation technologies

= Logic gates (1950s-60s)

= Regular structures for two-level logic (1960s-70s)
® muxes and decoders, PLAs

= Programmable sum-of-products arrays (1970s-80s)
® PLDs, complex PLDs

= Programmable gate arrays (1980s-90s)

¢ densities high enough to permit entirely new
class of application, e.g., prototyping, emulation,

trend toward
higher levels
of integration

acceleration \ 4
ASIC vs. FPGA
ASIC FPGA
Application Specific Field Programmable
Integrated Circuit Gate Array
* designed all the way * no physical layout design;
from behavioral description design ends with
to physical layout a bitstream used

* designs must be sent
for expensive and time

to configure a device

* bought off the shelf

consuming fabrication and reconfigured by
in semiconductor foundry designers themselves

Which way to go?

ASICs FPGAs
(h Off-the-shelf
High performance
e < Low development cost
Low power
> < Short time to market
Low cost in
high volumes Reconfigurability

—b—/

Why FPGAs?

= Custom ICs sometimes designed to replace large amount of glue
logic:
® Reduced system complexity and manufacturing cost, improved performance.
® However, custom ICs are very expensive to develop, and delay introduction of
product to market (time to market) because of increased design time.
= Note: need to worry about two kinds of costs:
1. cost of development, sometimes called non-recurring engineering (NRE)
2. cost of manufacture
® Atradeoff usually exists between NRE cost and manufacturing costs

total A -
costs B

number of units manufactured (volume)

Why FPGAs?

Custom IC approach viable for products that are ...
¢ very high volume (where NRE could be amortized),
® not time-to-market sensitive.
FPGAs introduced as an alternative to custom ICs for
implementing glue logic:
® improved density relative to discrete SSI/MSI components (within around 10x
of custom ICs)

* with the aid of computer aided design (CAD) tools circuits could be
implemented in a short amount of time (no physical layout process, no mask
making, no IC manufacturing), relative to ASICs.

= lowers NREs

= shortens TTM
Because of Moore’s law the density (gates/area) of FPGAs
continued to grow through the 80’s and 90’s to the point where
major data processing functions can be implemented on a single
FPGA.

Applications of FPGAs

Implementation of random logic
¢ easier changes at system-level (one device is modified)
® can eliminate need for full-custom chips
Prototyping
® ensemble of gate arrays used to emulate a circuit to be manufactured
¢ get more/better/faster debugging done than possible with simulation
Reconfigurable hardware
® one hardware block used to implement more than one function
¢ functions must be mutually-exclusive in time
® can greatly reduce cost while enhancing flexibility
® RAM-based only option
Special-purpose computation engines
® hardware dedicated to solving one problem (or class of problems)
¢ accelerators attached to general-purpose computers

Major FPGA Vendors

SRAM-based FPGAs

= Xilinx, Inc. Share about 90% of the market

= Altera Corp.
= Atmel
= Lattice Semiconductor

Flash & antifuse FPGAs
= Actel Corp.
= Quick Logic Corp.

Xilinx FPGA Families

Old families
® XC3000, XC4000, XC5200

¢ Old 0.5uym, 0.35um and 0.25um technology. Not recommended for modern

designs.

High-performance families

¢ Virtex (220 nm)

¢ Virtex-E, Virtex-EM (180 nm)

¢ Virtex-Il, Virtex-1l PRO (130 nm)

¢ Virtex-4 (90 nm)

¢ Virtex-5 (65 nm)

® Virtex-6
Low Cost Family

¢ Spartan/XL — derived from XC4000
Spartan-Il — derived from Virtex
Spartan-IIE — derived from Virtex-E
Spartan-3 (90 nm)
Spartan-3E (90 nm) — logic optimized
Spartan-3A (90 nm) — I/O optimized
Spartan-3AN (90 nm) — non-volatile
Spartan-3A DSP (90 nm) — DSP optimized
Spartan-6

‘RTEX'
WV IRTEX 11

SPARTAN
. = SPARTAN:II
¥

ad

Altera FPGA Families

® High & Medium Density FPGAs

= Stratix™ Il, Stratix, APEX™ Il, APEX
20K, & FLEX® 10K

® Low-Cost FPGAs
= Cyclone™ & ACEX® 1K
® FPGAs with Clock Data Recovery
= Stratix GX & Mercury™
¢ CPLDs
= MAX® 7000 & MAX 3000
® Embedded Processor Solutions
= Nios™, Excalibur™
¢ Configuration Devices
= EPC

& Stratix 11

@tgx

Cyclone:‘?.

Overview

= FPGA Devices
® ASIC vs. FPGA

® FPGA architecture
= CLB, RAM
= |0, Interconnects

= FPGA Design Flow
¢ Synthesis
® Place
® Route

What is an FPGA?

Configurable

LLLLIIII LI LI II I I

o e

What is an FPGA?

Programmable
interconnect
Programmable
logic blocks

A

L —

—
—

Example of Xilinx CLB

Configurable logic block (CLB)

2L Ll Slice Slice
)ii CLB CLB ‘ Logic cell | ‘ Logic cell |
‘ Logic cell | ‘ Logic cell |
Slice Slice
o cs CLB | Logic cell || || Logic cell |
‘ Logic cell | ‘ Logic cell |
Simplified view of a Xilinx Logic Cell
16-bit SR
16x1 RAM
a 4-input
b LUT [,
c = y
mux
d B flip-flop
‘ —q* g
e »>
clock |
clock enable *
set/reset

Idealized Configurable Logic Block (CLB)

Logic Block

INPUTS

I

4-LUT

4-input "look up table"

= 4-input look-up table (LUT)
¢ implements combinational logic functions

= Register

¢ optionally stores output of LUT

set by configuration
bit-stream

—>» OUTPUT

How could you build a generic Boolean
logic circuit? Memories as LUTs

memory

N-bit
address

word

2N words

1-bit memory to
hold boolean
value

Address is vector
of boolean input
values

Contents encode
a boolean function
Read out logical

value (col) for
associated row

LUT as general logic gate

An n-lut as a direct implementation

of a function truth-table. INPUTS |
Each latch location holds the value 0000

.) 0001
of the function corresponding to one 0010

input combination. 0011
Lo 0011

Example: 2-lut 0100

INPUTS| AND OR 0101
EE

0111

10{o0 1 **°* 1000

1111 1 1001

1010

Can be used to implement any 1011
function of 2 inputs. 1100
1101

How many of these are there? 1110
How many functions of n inputs? 111

Example: 4-lut

F(0,0,0,0) < storein 1stlatch

F(0,0,0,1) = storein 2nd latch
F(0,0,1,0) =—
F(0,0,1,1) =

[]

LUT as general logic gate

X1 Xp X3 X4| Y X1 Xp X3 X4| Y
0000 0000
000 1(/1 000 1([1
001 0(1 001 0|[0
001 1(/1 001 1|[0
01001 010 0|0
0101(/1 01011
0110(1 011 0|[0
011 1(]1 0111}
1000([100 0|0
10011 10011
1010[f 101 00
101 1[j 101 1|0
Pk 1o
1110} X1 X2 X3 Xa 1 4 1 0|0
111 1|[o] 111 1|9
Xy X

Y

* Look-Up Tables are
primary elements for
logic
implementation

e Each LUT can
implement any
function of
4 inputs

10

5-Input functions implemented using two LUTs

Nt

42/25221200000000f2aaaaass00000000[X

J

T ERRRRRRRRRRRRRRRRRRRRRRRRRRRRRE)
2220000 =-220000[-=220000=---=20000X
42002-00-2002=00/-2004=00=-00--=00lx
40-202040-20-202020~0-20202020x0x0=0X

—

hOAOAoAOAOOOOOOOAAAAAOOAOOAAOOAO<

N

Recall: Multiplexer/Demultiplexer

= Multiplexer: route one of many inputs to a single

output

= Demultiplexer: route single input to one of many

outputs

l lcontrol

multiplexer

{ Jcontrol

demultiplexer

Ul

4x4 switch

T —

11

Multiplexers/Selectors: to implement logic

= 21mux: Z=A'10+AI1

= 41mux: Z=A'B'I0+A'BI1+AB'I2+ABI3

= 81mux: Z=AB'C'l0+AB'CI1 + ABC'I2 + ABCI3 +
AB'C'l4 + AB'CI5 + ABC'l6 + ABCI7

10—
I1
It
I 8:1 | ,
10— I4—| mux z
10| 2| ez T
mux I
11—. z 13— 17—
TB LTBTC

Multiplexers as LUTs

= 2":1 multiplexer implements any function of n variables
¢ With the variables used as control inputs and
¢ Data inputs tied to 0 or 1
® In essence, a look-up table

= Example:
® F(AB,C)=m0+ m2 + m6 + m7
=AB'C' + ABC' + ABC' + ABC
= A'B'(C') + AB(C') + AB'(0) + AB(1)

samux — F

NN A WN =S

S$2 S1 SO

I T

A B C

12

Multiplexers as LUTs (cont’d)

= 271:1 mux can implement any function of n variables
® With n-1 variables used as control inputs and
¢ Data inputs tied to the last variable or its complement

= Example:
® F(A,B,C)=m0 + m2 + m6 + m7
=AB'C' + ABC' + ABC' + ABC
= A'B'(C') + A'B(C'") + AB'(0) + AB(1)
1 —0
0 —1 A B C|F
1 —2 00 [0 [T & ’
0 3 o o0 |1 |o P F
0 —|4 g1mux — 0 1[0 |1 o o | #TMUX | —
0 s 0 1 |1 o0 —
1 e T o0 o0 [0, L= g1 s0
1 17 10 |1 |o]
S2 S1 SO L1t o |1y A B
‘ ‘ ‘ 1 1 1 1
A B C
Cascading Multiplexers
= Large multiplexers implemented by cascading smaller
ones
10— 8:1
n—r 41 mux alternative
12— mux 1 implementation
B 21
il 2oz o 81
14— - mux
55— 41
I6 —P| mux g —
7 . l 41 ||,
I 4_| mux
BC A 15 _]
control signals B and C simultaneously choose
one of I0, I1, I2, I3 and one of I4,1I5,1I6,1I7 16 _|
17 _|
control sighal A chooses which of the
upper or lower mux's output to gate to Z AB

13

4-LUT Implementation

= n-bit LUT is implemented as a 2" x
PUTS 1 memory:
® Inputs choose one of 2" memory
locations.
‘ ‘ ‘ ® Memory locations (latches) are
normally loaded with values from user’s
configuration bit stream.
Inputs to mux control are the CLB
inputs.
OUTRUT Result is a general purpose “logic

gate”.
® n-LUT can implement any function of n
inputs!

—Z

16x1
mux

5[E|[=

Q o o

= = I
.

Latches programmed as part
S~—__— of configuration bit-stream

o)
Q
=

Example: Xilinx Virtex-E Floorplan

Configurable Logic Blocks

. i:ﬁle:st funetion geps Input/Output Blocks
« flipflop * combinational,
latch, and flipflop
output
2 2 2 2 « sampled inputs
ARHEHEEHHHRE
o HEIFEIEERIEE @
VersaRing

pupul pupuy

Block RAM
* 4096 bits each
« every 12 CLB columns

14

Virtex-E Configurable Logic Block (CLB)

CLB = 4 logic cells (LC) in two slices
LC: 4-input function generator, carry logic, storage element
80 x 120 CLB array on 2000E

cout cour
B
G4 > e =
G3 > SP 63 > SP
Lut Cary& [LT Carry &
62 > Control 2T e Control O
G1 > 61>
BY > LRe | 9v>fQ Lre]
XB XB
Fa > =X > = x
F3 > P F3 > P
Lut Carry & L Lut Carry & b q
F2 > Control 25 Q> xa 2 > Conirol ce xa
F1 > F1>
BX > | Lre | BX >—4 RC
Slice 1 Slice 0
on 16x1 synchronous RAM o FF or latch

ds072_04_121799

Details of Virtex-E Slice — implements any two 4-input
functions

cour
= O
o | Loy . 4-input
[R — .
. e . 5 ™ . function
o——— the
o
Fan i e
—zn ;-f- e
[EKvisa |[&vea] [y 3-input
mwisn |lex o) g |_|f T P
o — [T I [Fd—=ss function;
e e C B
B =y istered
FE= Ly registere
" op
w/l
Lo —
ax [
& —
on P —

15

Details of Virtex-E Slice — any two 6-input function

o4 et i .
g = o ==
P Fa e
from other o e e the
. | .
slice . o i
) . Gdinput
| [:I’_J_\tﬂ . function
a4 wisH ||8x DI AY - 7]
L iy epe
= ——
S B w
o
L — -
[L m—
L m—

cN a2 05 082000

Distributed RAM

RAM16X1S

= CLB LUT configurable as >
Distributed RAM wr |

¢ Asingle LUT equals 16x1 e
RAM

® Two LUTs Implement Single e
and Dual-Port RAMs N o o

® Cascade LUTs to increase §
RAM size

= Synchronous write

= Synchronous/Asynchronou p— >=
s read
¢ Accompanying flip-flops used
for synchronous read

RAM32X1
[)

Ly

LL11g 111

wr g

T R
—t—1—t

16

Shift Register

= Each LUT can be

configured as shift register &
® Serial in, serial out CLK

= Dynamically addressable
delay up to 16 cycles

= For programmable
pipeline

= Cascade for greater cycle
delays

= Use CLB flip-flops to add
depth

DEPTH[3:0]

LTt —

|y

—— OuT

Carry & Control Logic

cout
]

T
L Y8
— 1
o4 A S
Gg Look-Up Carry D Q
@ Table [
(] & o
* Control
Logic —lec
R
F5IN |
BY POl
SR I
b, |
2 Look-Uj ~ *
F3 0ok-Up. Carr
F2 Table O — &ry o
Fi
Control
Logic @—EC R
N —————————————T
&
SLICE

17

Fast Carry Logic

+ Each CLB contains separate
logic and routing for the fast
generation of sum & carry
signals

® Increases efficiency and
performance of adders,
subtractors, accumulators,
comparators, and counters

+ Carry logic is independent of
normal logic and routing
resources

MSB —>
L
o) D
o c
25
2o
s
(&)

LSB —»

Accessing Carry Logic

« All major synthesis tools can infer carry logic for

arithmetic functions
® Addition (SUM <= A + B)

® Subtraction (DIFF <= A - B)

® Comparators (if A < B then...)

® Counters (count <= count +1)

18

Overview

= FPGA Devices
® ASIC vs. FPGA
® FPGA architecture
= CLB, RAM
= |0, Interconnects
= FPGA Design Flow
® Synthesis
® Place
® Route

Basic 1/0 Block (I0B) Structure

Three-State
FF Enable * EC
Clock @]

Three-State
Control

Set/Reset * L 4

Output >

FF Enable Output Path

‘_
Direct Input<
FF Enable
. Input Path
Registered«{Q D
Input EC
SR
I

19

I0B Functionality

= |0B provides interface between the package pins
and CLBs

Each IOB can work as uni- or bi-directional 1/0
= Qutputs can be forced into High Impedance

Inputs and outputs can be registered
¢ advised for high-performance 1/0O
Inputs can be delayed

Example: Virtex-E I0OB detail

OBUFT

J —
p il
1 a o EE
CE| elay
IBUF
Vief
SR
SR

CLK >—t
ICE ds022_02_091300

Interconnects: Routing

Every one of these
connection points
is a transmission gate

Logic blocks embedded in a ‘sea’ of
connection resources

CLB = logic block

I0B = I/O buffer

PSM = programmable
switch matrix

o] [eemmle e

Interconnections critical
¢ Transmission gates on paths
= Flexibility
= Connect any LB to any other oL
but

X Much slower than connections
within a logic block Ditect Ce

X Much slower than long lines on an— ﬁ.'f”.:'ﬁ..':ﬁ
ASIC

This switch matrix is
amass of transmission
gates too!

Programmable switch matrix

Mol

LI

Doubies

L=

]

Horizontal
routing

PSM PSM

channel

— |

L

= =k

J—

I
2]

/
\

Vertical
routing
channels

|
|

(interconnect) L1 L L4 1 L4 |

& Sl i Diamond
switch

PSM: Programmable
Switch Matrix (for
making connections
between interconnects of
different channels). The
structure shown only
allows i-fo-i connections

21

Diamond switch

Example: SRAM-type FPGA Interconnection

Logic Cell | |

—{ D

2

Logic Cell

Cell Connection

. . Matrix (CCM)

SRAM

.-J

J---PSM____!

Logic Cell

— -

Laogic Cell

22

Configuring an FPGA

= Millions of SRAM cells holding LUTs and Interconnect Routing info
= Volatile Memory. Loses configuration when board power is turned off.

= Keep Bit Pattern describing the SRAM cells in non-Volatile Memory e.g.
ROM or Digital Camera card

= Configuration takes ~ secs

JTAG Port

Configuration data in ——

Configuration data out *+—

. @ = 1/ pin/pad
Programming
Bit File []] = sram ce
=

JTAG Testing

Oooooooooooo
{1

Oooooooooooo

o o o

Overview

= FPGA Devices
® ASIC vs. FPGA
® FPGA architecture
= CLB, RAM
= |O, Interconnects
= FPGA Design Flow
¢ Synthesis
® Place
® Route

23

FPGA Generic Design Flow

| . l: Design
Design Entry Verification

A

. Design
= Design Entry: Implementatio

® Create your design files using:
= schematic editor or
= hardware description language (VHDL, Verilog)
= Design implementation on FPGA:
® Partition, place, and route to create bit-stream file
= Design verification:
¢ Use Simulator to check function.
® Load onto FPGA device (cable connects PC to development board)
® Check operation at full speed in real environment

VHDL description (Your Source Files)

Functional simulation

I . -
[

1 Synthesis Post-synthesis simulation
[e SN I I

1 Implementation

——
T

Timing simulation
I S I
)

. Configuration

On chip testing

L 1] == ==
. .
eee ees

24

Logic Synthesis

VHDL description Circuit netlist

architecture MLU_DATAFLOW of MLU is
Cloc<B-
signal A1:STD_LOGIC;
signal BI:STD_LOGIC;
signal Y1:STD_LOGIC; ey
signal MUX_0, MUX_I, MUX_2, MUX_3: STD_LOGIC; I B———
begin
Al<=A when (NEG_A=0) clse
not A; I AB—i,
Bl<=Bwhen (NEG_B=0') else et
not B;
Y<=Y1 when (NEG_Y=0)clse
not Y13
\npu-:&4{>—4|-:j
MUX_0<=Al and BI; . ™
MUX_1<=Al or BI; :““ jg S
MUX_2<=Al xor BI; s
MUX_3<=Al xnor BI; rB—
-
—
with (L1 & LO) select —
- w00 —
Y1<=MUX_0when "00", e o _»
MUX_I when "01", _
MUX 2 when "10". j
& 8 —
MUX_3 when others; - =
= . o L
InpuER———__+
end MLU_DATAFLOW;

e R]

j, o —Butpst

Implementation

= After synthesis the entire implementation

process is performed by FPGA vendor tools

dit Search View Workspace Design Simulation Tools Window Help

7 0 E FF IOHS YO S| w w000
% Xitink Implementation

ord| | L=

T B EE

& sd| Translate Map Post-Map STR Place&Route Post-PAR STR Timing
&%|| Completed Error

*j‘: No Parcitions were found in this design. 2

INGDBUTLD Design Results Summary:
o

CES || s ——
wio|| ember of warnings: ee
s

Writing NGD file "comparator.ngd” ...
Total REAL ctime to NGDSUILD completion: § sec
Total CPU time to NGDBUILD cempletion: 3 sec

Writing NGDBUILD log file "comparatoz.bld"...

INGDBUILD done.

Executing "C:\Xilinx\13.1\ISE_DS\ISE\bin\nt\map.cxe" -p 4VFX125F363-12 -0 "map.ncd” -pr off
cm area -ir off -c 100 -global opt off "comparator.ngd” "comparator.pof"

Release 13.1 - Map 0.40d (nt)

Copyright (e) 1995-2011 Xilinx, Inc. All rights reserved.

14 L] Close.

i

=l

25

Translation STXILNX

Circuit netlist Timing Constraints
i i Nati aint Editor
Electronic Design a 1V§
Interchange Format COHSFralnt
File

EDIF User Constraint File

I\[€)D) Native Generic Database file

Y
5
1
®,
Q
=
3
@
=
-,

FPGA

@
=)

o
=)

SEGMENTS(0)

jan}
)

jort
[}

~
&

junt
>

G5

T
@

)

AITA
[N=t;

Q
=

Circuit netlist

ClockD>

Inputol
Input1o

Inpuﬂg:)
Input2] >

E o —=0utputd
Input3C—
|npuls&§j:>m -
Input9o— é
InpLt4l Input?
InpUt5E— D —>0utput1
L
Input6=—
Mapping
ClockiD-
LUTO
mnuwm
input10 L LUT4
Input1 D LUTI J—
\nputzgj LUT5 FF1
[] o o H=outputo
INpUL3E— LUT2 %
InpUtBE— - 11
Input9— é
Inputa Input? FF2
LUT3 =
InputsE— o 2 H—0utputt
Input6ED—

27

FPGA

Placement
CLB SLICES
cm‘:: - Lﬁ%: - - - -
I .LL T4 F
=]]:}‘LUJJ LUTS
- E}TLLL{D 3'3 ’:m,
e LE}EU'F I FF2 o
uuuuuuu { > u > 70"’
ROuti ng FPGA

s
| Programmable Connections |

28

Configuration

= Once a design is implemented, you must create a

file that the FPGA can understand

® This file is called a bitstream: a BIT file (.bit extension)

= The BIT file can be downloaded directly to the
FPGA, or can be converted into a PROM file
which stores the programming information

Map report

Design Summary
Number of errors: 0
Number of warnings: 0
Logic Utilization:

Number of Slice Flip Flops: 30 out of 26,624 1%
Number of 4 input LUTs: 38 out of 26,624 1%
Logic Distribution:
Number of occupied Slices: 33 outof 13,312 1%
Number of Slices containing only related logic: 33 outof 33 100%
Number of Slices containing unrelated logic: Ooutof 33 0%
*See NOTES below for an explanation of the effects of unrelated logic
Total Number 4 input LUTs: 62 out of 26,624 1%
Number used as logic: 38
Number used as a route-thru: 24
Number of bonded IOBs: 10outof 221 4%
I0OB Flip Flops: 7
Number of GCLKs: 1 out of 8 12%

29

Place & route report

Asterisk (*) preceding a constraint indicates it was not met.
This may be due to a setup or hold violation.

Constraint | Requested | Actual | Logic | Absolute |Number of
| Levels | Slack |errors
* TS_CLOCK = PERIOD TIMEGRP "CLOCK" 5 ns | 5.000ns | 5.140ns 14 | -0.140ns | 5
HIGH 50% | | | | |
TS_genlHz ClocklHz = PERIOD TIMEGRP "genl | 5.000ns | 4.137ns 12 | 0.863ns 10

"genlHz_ClocklHz" 5 ns HIGH 50% | | | | |

Post layout timing report

Clock to Setup on destination clock CLOCK

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|

Timing errors: 9 Score: 543
Constraints cover 574 paths, 0 nets, and 187 connections

Design statistics:
Minimum period: 5.140ns (Maximum frequency: 194.553MHz)

Summary

= FPGAs are more and more prevalent!

= They offer a flexible platform for increasingly
complex systems

= Design automation tools take care of the entire
design process from VHDL - configuration
bitstream file

Appendix A: other FPGA architectures
Virtex-l

e BB E=m=Ee— /O Blocks (I0Bs)

Block SelectRAM™

EDOyIE
resource soalla
EOO)
=== Programmable
=ll a000 08 interconnect
Dedicated =[] |]
multipliers =.l [l
B Configurable
= =. o o Logic Blocks
0) o o = (CLBs)
1D 8 O 4 6 D D T
Virtex™-|
architecture’s core Clock Management
voltage (DCMs, BUFGMUXes)

operates at 1.5V

31

Slices and CLBs

= Each Virtex-Il CLB

. . CcouT couT
contains four slices %ggﬁ
¢ Local routing provides

feedback between slices 7
in the same CLB, and it <—
provides routing to U
neighboring CLBs [
® A switch matrix provides T
access to general routing e
| Slice SO Local Routing
resources
CTIN CIN

Dedicated Multiplier Blocks

= 18-bit twos complement signed operation

= Optimized to implement Multiply and Accumulate
functions

= Multipliers are physically located next to block
SelectRAM™ memory

Data_A
(18 bits) M)

4 x 4 signed
18 x 18 - Output 8x8 Slnged
Multiplier (36 bits) | 12 x 12 signed

18 x 18 signed

Data_B ‘
(18 bits)

Virtex-4 Architecture

RocketlO™
Multi-Gigabit
Transceivers

622 Mbps-10.3 Gbps

Advanced CLBs
200K Logic Cells

XtremeDSP™
Technology Slices
256 18x18 GMACs

Smart RAM
New block RAM/FIFO

Xesium Clocking
Technology
500 MHz

Tri-Mode
Ethernet MAC
10/100/1000 Mbps

PowerPC™ 405
with APU Interface
450 MHz, 680 DMIPS

1 Gbps SelectiO™

ChipSync™ Source synch,
XCITE Active Termination

Choose the Platform that Best Fits the
Application!

Resource

Logic

Memory
DCMs

DSP Slices
SelectlO
RocketlO
PowerPC
Ethernet MAC

14K-200K LCs

240-960

NA

12K-140K LCs

0.6-10 Mb

20

240-896

0-24 Channels

2or 4 Cores

E?
i

2.3-5.7Mb

EHIII

33

Spartan-6 FPGA Big Cost Savings:

Hard Memory, DSP, PCle Blocks

FPGA*
Memory
Controllers >
~45K
PCle
Interface Logic Cell
DSP Logio Device
General Purpose
Logic _—T
* 2 SDRAM Controllers gK Logic Cells
= PCle Interface 6K Logic Cells

General Purpose Logic 22K Logic Cells
DSP e, Fir. symmenic Tap ety 11K Logic Cells

Total

45K Logic Cells

40%
— Overall |
Savings

FPGA
with Hard IP*
Hard Memony
49— Controllers
~25K y Hard PCle
Logic Cell Interface
Device I Hard
DSP48A
Hard Block
Hard Block
~24K Logic Cells**
Hard Block
24K Logic Cells

rd IP Blocks Provide 80%#+ Die Area Savings

34

