
1

EE 459/500 – HDL Based Digital

Design with Programmable Logic

Lecture 10

Arithmetic Units

Read before class:

First part of Chapter 4 from textbook

Overview

 Adders/Subtractors

 Multipliers

 Xilinx Unisim

2

Adders/Subtractors - Integers

 Basic building block for Computer-Arithmetic

and Digital Signal Processing

 Operate on binary vectors; use the same sub-

function in each bit position

Adder Design

 Functional blocks:
• Half-Adder (HA): a 2-input bitwise addition

• Full-Adder (FA): a 3-input bit-wise addition

 Ripple-carry adder: an iterative array to perform

binary addition, full adders chained together

 Carry-look-ahead adder: a hierarchical adder to

improve performance
• Propagate and generate logic

3

Functional Block Implementation

 Half adder:

 S=X Y

 C=X∙Y

 Full adder:

 S=X Y Cin

 C=XY + (X Y)Cin

 =G+P∙Cin

• XY: carry generate G

• X Y: carry propagate P

+
X

Y
S

C

+ +

+

+

X Y

P

G

Cin

S C

Half

Adder
Half

Adder

X Y Cin

S
C

P

G C2

Ripple Carry Adder

 A 4-bit ripple carry adder made from four 1-bit full adder

 Worst case delay: #bits x (full adder delay)

• The longest path is from A0/B0 through the circuit to S3

• Or from C0 through the circuit to C4,

4

Carry Lookahead Adder

 From the full-adder implementation, two signal
conditions: generate G and propagate P.

 Pi = Ai Bi Si = Pi Ci

 Gi = AiBi Ci+1 = Gi + PiCi

 In order to reduce the length of the carry chain, Ci is
changed to a more global function spanning multiple
cells
 C1=G0+P0C0

 C2=G1+P1C1=G1+P1(G0+P0C0)

 =G1+P1G0+P1P0C0 =G0-2 + P0-2C0

 C3=G2+P2C2=G2+P2(G1+P1G0+P1P0C0)

 =G2+P2G1+P2P1G0+P2P1P0C0 = G0-3+P0-3C0

 C4=G3+P3C3=G3+P3(G2+P2G1+P2P1G0+P2P1P0C0)

 =G3+P3G2+P3P2G1+P3P2P1G0+P3P2P1P0C0 = G0-4 +P0-4C0

+ +

3

2

3

2 2

2

2

2

2

5

VHDL Description of a 4-bit CLA
entity CLA4 is

 port (A, B: in bit_vector (3 downto 0); Ci: in bit;

 S: out bt_vector (3 downto 0); Co, PG, GG: out bit);

end CLA4;

architecture structure of CLA4 is

 component GPFullAdder

 port (X, Y, Cin: in bit;

 G, P, Sum: out bit);

 end component;

 component CLALogic is

 port (G, P: in bit_vector (3 downto 0); Ci: int bit;

 C: out bit_vector (3 downto 1); Co, FG, CG: out bit);

 end component;

 signal G, P: bit_vector (3 downto 0);

 signal C: bit_vector (3 downto 0);

begin

 CarryLogic: CLALogic port map (G, P, Ci, C, Co, PG, GG);

 FA0: GPFullAdder port map (A(0), B(0), Ci, G(0), P(0), S(0));

 FA1: GPFullAdder port map (A(1), B(1), C(1), G(1), P(1), S(1));

 FA2: GPFullAdder port map (A(2), B(2), C(2), G(2), P(2), S(2));

 FA1: GPFullAdder port map (A(3), B(3), C(3), G(3), P(3), S(3));

end structure;

CLALogic

entity CLALogic is

 port (G, P: in bit_vector (3 downto 0); Ci: in bit;

 C: out bit_vector (3 downto 1); Co, PG, GG: out bit);

end CLALogic;

architecture Equations of CLALogic is

 signal GG_int, PG_int: bit

begin

 C(1)<=G(0) or (P(0) and Ci);

 C(2)<=G(1) or (P(1) and G(0) or (P(1) and P(0) and Ci);

 C(3)<=G(2) or (P(2) and P(1) and G(0) or (P(2) and P(1) and P(0)

and Ci);

 PG_int<=P(3) and P(2) and P(1) and P(0);

 GG_int<=G(3) or (P(3) and G(2)) or (P(3) and P(2) and G(1)) or

(P(3) and P(2) and P(1) and P(0) and G(0));

 Co<=GG_int or (PG_int and Ci);

 PG<=PG_int;

 GG<=GG_int;

end Equations;

6

16-bit Carry Lookahead Adder

 Extend to 16 bits, to have four 4-bit adders use one of the same

carry lookahead circuits

 Delay Specifications

• NOT=1, XOR=3 AND=3, AND-OR=2

 Longest delays:

• Ripple carry adder =3+15*2+3=36

• CLA =3+3*2+3=12

Subtraction

 Subtraction (A-B)
• Unsigned:

 A≥B => A-B

 A<B => the difference A-B+2n is subtracted from 2n, a “–” sign
added before the result (2n-X is taking the 2’s complement of X)

 Signed integer
• For binary numbers

 s an-2 … a2a1a0

 s=0 for positive numbers;
 s=1 for negative numbers
• Signed-magnitude: the n-1 digits are a positive magnitude
• Signed 2’s complement

7

2’s Complement Adder/Subtractor

 Subtraction can be done by adding 2’s complement

 For S=1, subtract, the 2’s complement of B is formed by using XORs

to form the 1’s complement and adding the 1 applied to C0

 For S=0, add, B is passed through unchanged

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY addsubtract IS

PORT (S : IN STD_LOGIC;

 A, B : IN STD_LOGIC_VECTOR (3 DOWNTO 0);

 Sout : OUT STD_LOGIC_VECTOR (3 DOWNTO 0);

 Cout : OUT STD_LOGIC);

END adderlpm;

ARCHITECTURE structural OF addsubtract IS

COMPONENT full_add

 PORT(a, b, c_in : IN STD_LOGIC;

 c_out : OUT STD_LOGIC);

END COMPONENT;

-- Define a signal for internal carry bits

SIGNAL C : STD_LOGIC_VECTOR (4 downto 0);

SIGNAL B_comp : STD_LOGIC_VECTOR (4 downto 1);

VHDL code for adder/subtractor

8

-- add/subtract select to carry input (S = 1 for subtract)

C(0) <= S;

adders:

FOR i IN 1 to 4 GENERATE

 --invert B for subtract function (B(i) xor 1,)

 --do not invert B for add function (B(i) xor 0)

 B_comp(i) <= B(i) xor S;

 adder: full_add PORT MAP (A(i),B_comp(i),C(I -1),C(i),Sout(i));

END GENERATE;

Cout <= C(4);

END structural;

VHDL code for adder/subtractor

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY addsubtract IS

PORT (S : IN STD_LOGIC;

 A, B : IN STD_LOGIC_VECTOR (3 DOWNTO 0);

 Sout : OUT STD_LOGIC_VECTOR (3 DOWNTO 0);

 Cout : OUT STD_LOGIC);

END adderlpm;

ARCHITECTURE behavioral OF addsubtract IS

signal Sum : STD_LOGIC_VECTOR (4 downto 0);

BEGIN

with S select

 Sum <= A + B when ‘0’

 A – B + “10000” when others;

Cout <= Sum(4);

Sout <= Sum(3 downto 0);

END behavioral;

VHDL code for adder/subtractor

9

 Adders/Subtractors

 Multipliers

 Xilinx Unisim

Overview

Multiplication

 Multiply requires shifting the multiplicand to the left

adding it to the partial sum

 Requires a shift register as wide as the product and an

accumulator for the partial and final product.

10

 Place the multiplier in the rightmost 4 bits of the 8-bit product

register

Example: 10 x 14

Add-and-Shift Multiplier

 Shift 1 -- The bit shifted out of the product register is 0. No

add is performed.

11

 Shift 2 -- The bit shifted out of the product register is 1. Add

the multiplicand to the first 4 bits of the product register.

 Shift 3 -- Again add the multiplicand to the leftmost 4 bits of

the product register.

12

 Shift 4 -- Shift then add.

 Finally, shift right and end. The product is found in the 8-bit

product register (140)

10 x 14 = 140

13

Add-and-Shift Multiplier

Add-and-Shift Multiplier

14

State Graph

VHDL code for 4-bit

binary multiplier

15

Array Multiplier

16

Array Multiplier

VHDL code for 4-bit

array multiplier

17

VHDL code for 4-bit

array multiplier

 Adders/Subtractors

 Multipliers

 Xilinx Unisim

Overview

18

Xilinx simulation libraries

 Xilinx provides the following simulation libraries

for simulating primitives and cores

(http://www.xilinx.com/support/documentation/s

w_manuals/xilinx11/ise_c_simulation_libraries.

htm):
• UNISIM library for functional simulation of Xilinx primitives

• UniMacro library for functional simulation of Xilinx macros

• XilinxCoreLib library for functional simulation of Xilinx cores

• Xilinx EDK library for behavioral simulation of Xilinx Embedded

Development Kit (EDK) IP components

• SIMPRIM library for timing simulation of Xilinx primitives

• SmartModel/SecureIP simulation library for both functional and

timing simulation of Xilinx Hard-IP, such as PPC, PCIe, GT,

and TEMAC IP.

Xilinx Unisim Library of Primitives

 Xilinx ISE XST system includes a library of

primitives and macros called Unisim

 Many modules in the library are technology

dependent

 Most modules are parameterized

 More modules are available through

CoreGenerator (see also Lab #5 of this

course)

 Spartan-6 Libraries Guide for HDL Designs:

http://www.xilinx.com/support/documentation

/sw_manuals/xilinx11/spartan6_hdl.pdf

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_simulation_libraries.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_simulation_libraries.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_simulation_libraries.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/spartan6_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/spartan6_hdl.pdf

19

Example: VHDL Instantiation Template

Always check documentation for your FPGA family to

see what’s available!

Example: Spartan-3E FPGA

 Use primitive named "RAMB16_S2" (an 8k x 2 Single-

Port RAM for Spartan-3E FPGA) to create an 8k x 4

single port RAM

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

library unisim;

use unisim.vcomponents.all;

entity ram_test is

end ram_test;

20

architecture Behavioral of ram_test is

--signal declarations.

signal clk, en, ssr, we : std_logic:='0';

signal Dout, Din : std_logic_vector(3 downto 0):="0000";

signal addr : std_logic_vector(12 downto 0):=(others => '0');

begin

--RAMB16_S2 is 8k x 2 Single-for Spartan-3E.

--We use this to create 8k x 4 Single-Port RAMPort RAM.

--Initialize RAM which carries LSB 2 bits of the data.

RAM1 : RAMB16_S2 port map (

 DO => Dout(1 downto 0), -- 2-bit Data Output

 ADDR => ADDR, -- 13-bit Address Input

 CLK => CLK, -- Clock

 DI => Din(1 downto 0), -- 2-bit Data Input

 EN => EN, -- RAM Enable Input

 SSR => SSR, -- Synchronous Set/Reset Input

 WE => WE -- Write Enable Input

)

--Initialize RAM which carries MSB 2 bits of the data.

RAM2 : RAMB16_S2 port map (

 DO => Dout(3 downto 2), -- 2-bit Data Output

 ADDR => ADDR, -- 13-bit Address Input

 CLK => CLK,

 DI => Din(3 downto 2),

 EN => EN,

 SSR => SSR,

 WE => WE

);

--100 MHz clock generation for testing process.

clk_process : process

begin

 wait for 5 ns;

 clk <= not clk;

end process;

--Write and Read.

--RAM has a depth of 13 bits and has a width of 4 bits.

simulate : process

begin

 en <='1';

 we <= '1';

 --Write the value "i" at the address "i" for 10 clock cycles.

 for i in 0 to 10 loop

 addr <= conv_std_logic_vector(i,13);

 din <= conv_std_logic_vector(i,4);

 wait for 10 ns;

 end loop;

 we<= '0';

 --Read the RAM for addresses from 0 to 20.

 for i in 0 to 20 loop

 addr <= conv_std_logic_vector(i,13);

 wait for 10 ns;

 end loop;

end process;

end Behavioral;

21

Summary

 Adders/subtractors are very important

arithmetic units utilized in a variety of

applications (processors, DSPs, etc.)

 More ways to design them; tradeoffs between

area and performance

 Always check documentation for your FPGA

family

Appendix A: Other Arithmetic Functions

 Overflow detection: overflow occurs if n+1 bits
are required to contain the results from an n-bit
addition or subtraction

 Incrementing: counting up, A+1, B+4

 Decrementing: counting down, A-1, B-4

 Multiplication by constant: left shift

 Division by constant: right shift

 Zero fill: filling zero either at MSB or LSB end

 Extension: copy the MSB of the operand into
the new positions

