EE 459/500 — HDL Based Digital
Design with Programmable Logic

Lecture 10
Arithmetic Units

Read before class:
First part of Chapter 4 from textbook

Overview

= Adders/Subtractors
= Multipliers
= Xilinx Unisim




Adders/Subtractors - Integers

= Basic building block for Computer-Arithmetic
and Digital Signal Processing

= Operate on binary vectors; use the same sub-
function in each bit position

Adder Design

= Functional blocks:
¢ Half-Adder (HA): a 2-input bitwise addition
® Full-Adder (FA): a 3-input bit-wise addition

= Ripple-carry adder: an iterative array to perform
binary addition, full adders chained together

= Carry-look-ahead adder: a hierarchical adder to
improve performance
® Propagate and generate logic




Functional Block Implementation

= Half adder:
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= Full adder:
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Ripple Carry Adder

= A 4-bit ripple carry adder made from four 1-bit full adder
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= Worst case delay: #bits x (full adder delay)
¢ The longest path is from Ay/B, through the circuit to S,
¢ Orfrom C, through the circuitto C,

A, A,




Carry Lookahead Adder

= From the full-adder implementation, two signal
conditions: generate G and propagate P.
G;=AB Ci1= G + PG
= In order to reduce the length of the carry chain, C; is

changed to a more global function spanning multiple
cells
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VHDL Description of a 4-bit CLA

entity CLA4 is
port (A, B: in bit_vector (3 downto 0); Ci: in bit;
S: out bt vector (3 downto 0); Co, PG, GG: out bit);
end CLA4;

architecture structure of CLA4 is
component GPFullAdder
port (X, Y, Cin: in bit;
G, P, Sum: out bit);
end component;
component CLALogic is
port (G, P: in bit_vector (3 downto 0); Ci: int bit;
C: out bit_vector (3 downto 1); Co, FG, CG: out bit);
end component;
signal G, P: bit_vector (3 downto 0);
signal C: bit_vector (3 downto 0);
begin
CarryLogic: CLALogic port map (G, P, Ci, C, Co, PG, GG);
FAO: GPFullAdder port map (A(0), B(0), Ci, G(0), P(0), S(0));
FAl: GPFullAdder port map (A(1), B(1), C(1), G(1), P(1), S(1));
FA2: GPFullAdder port map (A(2), B(2), C(2), G(2), P(2), S(2));
FAl: GPFullAdder port map (A(3), B(3), C(3), G(3), P(3), S(3));
end structure;

CLALogic

entity CLALogic is

port (G, P: in bit vector (3 downto 0); Ci: in bit;

C: out bit _vector (3 downto 1); Co, PG, GG: out bit);

end CLALogic;
architecture Equations of CLALogic is

signal GG_int, PG_int: bit
begin

C(1)<=G(0) or (P(0) and Ci);

C(2)<=G(1l) or (P(1l) and G(0) or (P(1l) and P(0) and Ci);

C(3)<=G(2) or (P(2) and P(1l) and G(0) or (P(2) and P(1l) and P(0)
and Ci) ;

PG_int<=P(3) and P(2) and P(1l) and P(0);
GG_int<=G(3) or (P(3) and G(2)) or (P(3) and P(2) and G(1)) or
(P(3) and P(2) and P(1) and P(0) and G(0));
Co<=GG_int or (PG_int and Ci);
PG<=PG_int;
GG<=GG_int;
end Equations;




16-bit Carry Lookahead Adder

Extend to 16 bits, to have four 4-bit adders use one of the same
carry lookahead circuits
Delay Specifications
® NOT=1, XOR=3 AND=3, AND-OR=2
Longest delays:
® Ripple carry adder =3+15*2+3=36
® CLA =3+3*2+3=12
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Subtraction

= Subtraction (A-B)
¢ Unsigned:
= A2B=>A-B
= A<B => the difference A-B+2" is subtracted from 2", a “~” sign
added before the result (2"-X is taking the 2’s complement of X)
= Signed integer
® For binary numbers
S apy ... 8,249
s=0 for positive numbers;
s=1 for negative numbers
¢ Signed-magnitude: the n-1 digits are a positive magnitude
¢ Signed 2’s complement




2’s Complement Adder/Subtractor

= Subtraction can be done by adding 2’s complement
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= For S=1, subtract, the 2’s complement of B is formed by using XORs
to form the 1’'s complement and adding the 1 applied to C,

= For S=0, add, B is passed through unchanged

VHDL code for adder/subtractor

LIBRARY ieee;
USE ieee.std logic_1164.all;

ENTITY addsubtract IS

PORT ( S : IN STD_LOGIC ;
A, B : IN STD_LOGIC_VECTOR (3 DOWNTO O0) ;
Sout : OUT STD_LOGIC_VECTOR (3 DOWNTO O0) ;
Cout : OUT STD_LOGIC) ;

END adderlpm;
ARCHITECTURE structural OF addsubtract IS

COMPONENT full add
PORT( a, b, c_in : IN STD_LOGIC;
c_out : OUT STD_LOGIC) ;
END COMPONENT ;

-- Define a signal for internal carry bits
SIGNAL C : STD_LOGIC_VECTOR (4 downto 0);
SIGNAL B comp : STD_LOGIC_VECTOR (4 downto 1);




VHDL code for adder/subtractor

-- add/subtract select to carry input (S = 1 for subtract)
Cc(0) <= S;

adders:
FOR i IN 1 to 4 GENERATE

--invert B for subtract function (B(i) xor 1,)

--do not invert B for add function (B(i) xor 0)

B comp (i) <= B(i) xor S;

adder: full add PORT MAP (A(i),B_comp(i),C(I -1),C(i),Sout(i));
END GENERATE;

Cout <= C(4);

END structural;

VHDL code for adder/subtractor

LIBRARY ieee;
USE ieee.std logic_1164.all;

ENTITY addsubtract IS

PORT ( S : IN STD LOGIC;
A, B : IN STD_LOGIC_VECTOR (3 DOWNTO O0);
Sout : OUT STD_LOGIC_VECTOR (3 DOWNTO 0) ;
Cout : OUT STD LOGIC) ;

END adderlpm;

ARCHITECTURE behavioral OF addsubtract IS
signal Sum : STD_LOGIC_VECTOR (4 downto 0);
BEGIN
with S select
Sum <= A + B when ‘0’
A - B + “10000” when others;
Cout <= Sum(4) ;
Sout <= Sum (3 downto 0) ;
END behavioral;




Overview

= Adders/Subtractors
= Multipliers
= Xilinx Unisim

Multiplication

= Multiply requires shifting the multiplicand to the left

adding it to the partial sum

= Requires a shift register as wide as the product and an
accumulator for the partial and final product.
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Add-and-Shift Multiplier

= Place the multiplier in the rightmost 4 bits of the 8-bit product
register

Muttiplicand

Example: 10 x 14

_—y

‘DDDD ‘ 1110 @

Muttiplier

Prociuct

= Shift 1 -- The bit shifted out of the product register is 0. No
add is performed.

Multiplicand
1010
_/
000D 0111 ﬂ @
ultiplier
Product shift right -- no add
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= Shift 2 -- The bit shifted out of the product register is 1. Add
the multiplicand to the first 4 bits of the product register.

Muttiplicancd

1010

1010 o011

Muttiglier
Product

IRCD

shift right -- add

= Shift 3 -- Again add the multiplicand to the leftmost 4 bits of
the product register.

Muttiplicand

1
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1111
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L]

tlultiplier
Procuct
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shift right -- add
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= Shift 4 -- Shift then add.

Multiplicancd

1010

1 ooon 1000

Multiplier
Product

1o )

shift right - add

* Finally, shift right and end. The product is found in the 8-bit
product register (140)

Muttiplicand
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1000

1100

Muttiplier
Product

10x 14 =140

o

shift right -- end
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Add-and-Shift Multiplier

Product

ACC

i
r
o | Done
1

4 - Bit adder

St

|

e
Multiplicand

Multiplier

Add-and-Shift Multiplier

initial contents of product register
(add multiplicand since M= 1)

after addition
after shift

1 1<— M(11)
(13)

(add multiplicand since M=1) 1

after addition

after shift

(skip addition since M =0)
after shift

(add multiplicand since M=1) 1

after addition
after shift (final answer)

dividing line between product and multiplier
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State Graph

—/Done

St/Load

MIAd

FIGURE 4-27: Behavioral Model for 4 x 4 Binary Multiplier

-- This is a behavioral model of a multiplier for unsigned
—- binary numbers. It multiplies a 4-bit multiplicand
-- by a 4-bit multiplier to give an 8-bit product.

—- The maximum number of clock cycles needed for a
—— multiply is 10.

gL A VHDL code for 4-bit
binary multiplier

entity multdX4 s
port(Clk, St: 1in bit;
Mplier, Mcand: in unsigned(3 downto 0);
Done: out bit);
end mult4X4;

architecture behavel of multdX4 is
signal State: integer range 0 to 9;

signal ACC: unsigned(8 downto 0); -- accumulator
alias M: bit is ACC(0); -- M is bit 0 of ACC
begin
process (C1k)
begin
if Clk'event and Clk = '1' then -- executes on rising edge of clock
case State is
when 0 => -- initial State
if St = '1' then
ACC(8 downto 4) <= "00000"; -- begin cycle
ACC(3 downto 0) <= Mplier; -- load the multiplier
State <= 1;
end if;
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when 1 | 3 | 5| 7 = -- "add/shift" State
if M = '1l" then -- add multiplicand
ACC(8 downto 4) <= '0' & ACC(7 downto 4) + Mcand;
State <= State + 1;

else
ACC <= "0' & ACC(8 downto 1); -- shift accumulator right
State <= State + 2;
end if;
when 2 | 4 | 6 | 8 => -- "shift" State
ACC <= '0" & ACC(8 downto 1); -- right shift
State <= State + 1;
when 9 => -- end of cycle
State <= 0;
end case;
end if;

end process;
Done <= "1' when State = 9 else '0';
end behavel;

Array Multiplier

X, X, X, X
Y, Y, Y, Y,
XY, XY, XY, XY,
XY, XY, XY, XY,
C'I 2 C‘I 1 CIU
CIS 513 S‘I 2 5'I 1 s‘I o
XY, XY, XY, XY,
CZZ CZI CZU
C23 SZE 522 SZ'I 520
X3 Y3 XZ Y3 X'I Y3 XO Y3
C32 C3.| C30
C33 533 S32 531 530
P, P, P P, P, P, P, P,

Multiplicand
Multiplier

Partial product 0
Partial product 1
First row carries
First row sums
Partial product 2
Second row carries
Second row sums
Partial product 3 {
Third row carries
Third row sums
Final product
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Array Multiplier
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entity Array Mult dis
port{X, Y: in bit_vector(3 downto 0);
P: out bit_vector(7 downto 0));
end Array Mult;

architecture Behavioral of Array Mult is H
signal C1, C2, C3: bit_vector(3 downto 0); VHDL code for 4-bl
signal 51, 52, S3: bit_vector(3 downto 0);

signal XY0, XY1, XY2, XY3: bit_vector(3 downto 0);

- =
component FullAdder It I
port(X, ¥, Cin: in bit; array mu Ip Ier
Cout, Sum: out bit):
end component;
component HalfAdder
port(X, Y: in bit;
Cout, Sum: out bit);
end component;
begin
XY0(0) <= X(0) and ¥(0); XY1(0) <= X(0) and ¥(1);
XY0(1) <= X(1) and Y(0); XY1(1) <= X(1) and Y(1):
XY0(2) <= X(2) and Y(0); XYL1(2) <= X(2) and Y(1);
XY0(3) <= X(3) and Y(0); XY1(3) <= X(3) and Y(1);

XY2(0) <= X(0) and Y(2); XY3(0) <= X(0) and Y(3);
XY2(1) <= X(1) and Y(2); XY3(1) <= X(1) and Y(3);
KY2(2) <= X(2) and ¥Y(2); XY3(2) <= X(2) and Y(3);
XY2(3) <= X(3) and Y(2): XY3(3) <= X(3) and Y(3):

FAL: FullAdder port map (XY0(2), XY1(1), C1(0), C1(1), S1{1));
FA2: FullAdder port map (XYO(3), XY1(2), C1(1), C1(2), S51(2});
FA3: FullAdder port map (S1(2), XY2(1), C2(0), C2(1), S2(1));
Fa4: Fulladder port map (51(3), Xv2(2), C2(1), C2(2), S2(2));
FAS: FullAdder port map (C1(3), XY2(3), C2(2), C2(3), S2(3));
FAG: FullAdder port map (52(2), XY3(1), C3(0), C3(1), S3(1));
FA7: FullAdder pert map (52(3), XY3(2), C3(1), C3(2), 53(2)):
FAB: FullAdder port map (C2(3), XY3(3), C3(2), C3(3), S3(3));
HAL: HalfAdder port map (XYO(1), XY1(0), C1(0), S1(0));
HA2: HalfAdder port map (XYL(3), C1(2), CL(3), S1(3));
HA3: HalfAdder port map (S1(1), XY2(0), C2(0}, S2(0));
HA4: HalfAdder port map (S2(1), XY3(0), C3(0), S3(0));

P(0) <= XYO(0); P(1) <= S1(0); P(2) <= S2(0);
P(3) <= S3(0); P(4) <= S3(1); P(5) <= S3(2);
P(6) <= S3(3); P(7) <= C3(3);

end Behavioral;

== Full Adder and half adder entity and architecture descriptions
—- should be in the project




entity FullAdder is VHDL COde for 4-bit

port(X, Y, Cin: 1in bit;
Cout, Sum: out bit); = .
end FullAdder; array multiplier

architecture equations of FullAdder ds
begin

Sum <= X xor Y xor Cin;

Cout <= (X and Y) or (X and Cin) or (Y and Cin);
end equations;

entity HalfAdder -is
port(X, Y: 1in bit;
Cout, Sum: out bit);
end HalfAdder;

architecture equations of HalfAdder -is
begin

Sum <= X xor Y;

Cout <= X and Y;
end equations:

Overview

= Adders/Subtractors
= Multipliers
= Xilinx Unisim
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Xilinx simulation libraries

= Xilinx provides the following simulation libraries
for simulating primitives and cores
(http://www.xilinx.com/support/documentation/s

w manuals/xilinx11/ise ¢ simulation libraries.

htm):

UNISIM library for functional simulation of Xilinx primitives
UniMacro library for functional simulation of Xilinx macros
XilinxCoreLib library for functional simulation of Xilinx cores
Xilinx EDK library for behavioral simulation of Xilinx Embedded
Development Kit (EDK) IP components

SIMPRIM library for timing simulation of Xilinx primitives
SmartModel/SecurelP simulation library for both functional and
timing simulation of Xilinx Hard-IP, such as PPC, PCle, GT,
and TEMAC IP.

Xilinx Unisim Library of Primitives

= Xilinx ISE XST system includes a library of
primitives and macros called Unisim

= Many modules in the library are technology
dependent

= Most modules are parameterized

= More modules are available through
CoreGenerator (see also Lab #5 of this
course)

= Spartan-6 Libraries Guide for HDL Designs:
http://www.xilinx.com/support/documentation

/sw manuals/xilinx11/spartan6 hdl.pdf
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Example: VHDL Instantiation Template

library UNIMACERO;
use unimacro.Veoomponents.all;

== ADDMACC MACRO: Add and Multiple Accumulate Function implemented in a DSP48E
- Virtex=&, Spartan=6&
—= Xilinx HDL Libraries Guide, wversion 11.2

ADDMACC MACRO inst : ADDMACT MACRO
generic map |
DEVICE =» "VIRTEXE", == Target Dewice: "VIRTEXE", "SPARTANG"

LATENCY => 3, == Dezired clock cycle latency, 1=4
WIDTH_PREADD =»> 18, == Pre-Adder input bus width, 1-25
WIDTH_MULTIPLIER =»> 18, == Multiplier input bus width, 1=18
WIDTH_ FRODUCT => 48) == Product output bus width, 1-48

port map |
FRODUCT => PRODUCT, == ADDMACC ouput bus, width determined by WIDTH PRODUCT generic
MULTIPLIER => MULTIPLIER, == MULTIPLIER input bus, width determined by WIDTH MULTIPLIER generic
PREADDER] => PREADDERL, == lat Pre=fdder input bus, width determined by N:ETH_PREADDER generic
PREARDDERZ =» PREADDERZ, == 2nd Pre-adder input bus, width determined by WIDTH_PREADDER generic
CRARRYIN => CARRYIN, == l=hit carry=in input to accumulator
CE => CE, == l=hit active high input clock enable
CLE =» CLEK, == l=hit pogitive edge clock input

LOAD =-> LOAD, —-- l-bit actiwve high input load accumulator enable
LOAD DARTA => LOAD DATA, == Load accumulator input data,

== width determined by WIDTH PRODUCT generic
EST =» RET == l=hit input active high reset
bi
== End of ADDMACC MACRO inst imstantiatien

Always check documentation for your FPGA family to
see what’s available!

Example: Spartan-3E FPGA

= Use primitive named "RAMB16_S2" (an 8k x 2 Single-
Port RAM for Spartan-3E FPGA) to create an 8k x 4
single port RAM

library ieee;

use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;
use ieee.std logic arith.all;

library unisim;
use unisim.vcomponents.all;

entity ram test is
end ram test;
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architecture Behavioral of ram test is

--signal declarations.

signal clk, en, ssr, we : std_logic:='0"';

signal Dout, Din : std_logic_vector (3 downto 0) :="0000";
signal addr : std logic_vector (12 downto 0):=(others => '0');
begin

--RAMB16_S2 is 8k x 2 Single-for Spartan-3E.
--We use this to create 8k x 4 Single-Port RAMPort RAM.
--Initialize RAM which carries LSB 2 bits of the data.

RAM1 : RAMB16_S2 port map (
DO => Dout (1 downto 0), -- 2-bit Data Output
ADDR => ADDR, -- 13-bit Address Input
CLK => CLK, -- Clock
DI => Din(1 downto 0), -- 2-bit Data Input
EN => EN, -- RAM Enable Input
SSR => SSR, -- Synchronous Set/Reset Input
WE => WE -- Write Enable Input

)

--Initialize RAM which carries MSB 2 bits of the data.

RAM2 : RAMB16_ S2 port map (
DO => Dout (3 downto 2), -- 2-bit Data Output
ADDR => ADDR, -- 13-bit Address Input

CLK => CLK,
DI => Din(3 downto 2),

EN => EN,
SSR => SSR,
WE => WE

--100 MHz clock generation for testing process.
clk process : process
begin
wait for 5 ns;
clk <= not clk;
end process;

--Write and Read.
--RAM has a depth of 13 bits and has a width of 4 bits.
simulate : process
begin
en <='1";
we <= 'l';
--Write the value "i" at the address "i" for 10 clock cycles.
for i in 0 to 10 loop
addr <= conv_std_logic_vector (i, 13);
din <= conv_std _logic_vector (i, 4);
wait for 10 ns;
end loop;
we<= '0';
--Read the RAM for addresses from 0 to 20.
for i in 0 to 20 loop
addr <= conv_std logic_ vector (i,13);
wait for 10 ns;
end loop;

end process;

end Behavioral;
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Summary

= Adders/subtractors are very important
arithmetic units utilized in a variety of
applications (processors, DSPs, etc.)

= More ways to design them; tradeoffs between
area and performance

= Always check documentation for your FPGA
family

Appendix A: Other Arithmetic Functions

= Qverflow detection: overflow occurs if n+1 bits
are required to contain the results from an n-bit
addition or subtraction

* |ncrementing: counting up, A+1, B+4

= Decrementing: counting down, A-1, B-4

= Multiplication by constant: left shift

= Division by constant: right shift

= Zero fill: filling zero either at MSB or LSB end

= Extension: copy the MSB of the operand into
the new positions
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