
1

EE 459/500 – HDL Based Digital

Design with Programmable Logic

Lecture 13

Control and Sequencing: Hardwired

and Microprogrammed Control

References:

Chapter s 4,5 from textbook

Chapter 7 of M.M. Mano and C.R. Kime, Logic and Computer

Design Fundamentals, Pearson Prentice-Hall, 2008.

 Control and Sequencing
• Algorithmic State Machine (ASM) Chart of

Multiplier

• Hardwired control

• Microprogrammed control

Overview

2

2

3

Multiplier Example

 Example: (101 x 011)

 Partial products are:

 101 x 0, 101 x 1, and 101 x 1

 1 0 1

 x 0 1 1

 1 0 1

 1 0 1

 0 0 0

0 0 1 1 1 1

Example (1 0 1) x (0 1 1) again

 Reorganizing to follow hardware algorithm:

1 0 1

x 0 1 1

0 0 0 0

+ 1 0 1

0 1 0 1

0 0 1 0 1

+ 1 0 1

0 1 1 1 1

0 0 1 1 1 1

0 0 0 1 1 1 1

Multiplicand (B)

Multiplier (Q)

Clear C || A (Carry and register A)

Multiplier0 = 1 => Add B

Addition

Shift Right (Zero-fill C)

Multiplier1 = 1 => Add B

Addition

Shift Right

Multiplier2 = 0 => No Add, Shift

Right

3

Multiplier Example: Block Diagram

C out

n

n

n - 1

Counter P

Zero detect

Control
unit

G (Go)

log 2
n

Q o

Z

Parallel adder

Multiplicand

Register B

Shift register A
0 C Shift register Q

Multiplier

Product

OUT

IN

Control signals

n

n n

4

Multiplier Example: Operation

1. The multiplicand is loaded into register B.

2. The multiplier is loaded into register Q.

3. When G becomes 1, register C|| A is initialized to 0.

4. Down Counter P is initialized to n – 1 (n = number of bits in

multiplier)

5. The partial products are formed in register C||A||Q.

6. Each multiplier (Q) bit, beginning with the LSB, is processed (if bit is

1, B is added to partial product of A; if bit is 0, do nothing)

7. C||A||Q is shifted right using the shift register

• Partial product bits fill vacant locations in Q as multiplier is shifted out

• If overflow during addition, the outgoing carry is recovered from C

during the right shift

8. Steps 6 and 7 are repeated until P = 0 as detected by Zero detect.

4

Multiplier Example: ASM Chart

0 1 G

IDLE

MUL0

0 1 Z

MUL1

0 1

0 C ← 0, A ←

P ← n – 1

A ← A + B,
C ← C out

P ← P – 1

C ← 0, C || A || Q ← sr C || A || Q,

Q 0

7

Multiplier Example: ASM Chart (Contd.)

 Three states are necessary to implement
multiplier
• IDLE state:

 Input G is used as the condition for starting the multiplication

 C, A, and P are initialized

• MUL0 state: conditional addition is performed based
on the value of Q0.

• MUL1 state:
 Right shift is performed to capture the partial product and

position the next bit of the multiplier in Q0

 Down counter P = P - 1

 P=0 is used to sense completion or continuation of the
multiplication.

5

9

 The ASM chart provides information about

• Control of the microoperations (control word)

• Sequencing of these operations

 The design can be split up in two parts:

• Control signals

• Sequencing

Control and sequencing

Control signals for multiplier

10

C out

n

n

n - 1

Counter P

Zero detect

Control
unit

G (Go)

log 2
n

Q o

Z

Parallel adder

Multiplicand

Register B

Shift register A
0 C Shift register Q

Multiplier

Product

OUT

IN

Control signals

n

n n

4

Initialize

Shift_dec

Clear_C

Load_B

Load_Q

Load

Shift_dec

Initialize

6

Multiplier Example: Control Signal Table

Control Signals for Binary Multiplier

Control

signal name

Control signal

expression

Register A : A
← 0 I nitia liz e G

A ← A + B Load MUL0 · Q0

C || A || Q sr C || A || Q Shift_dec M UL1

Register B : B ← IN Load_B LO ADB

F lip-F lop C : C ← 0 C lea r _C IDLE ·

G + MUL1

C ← C ou t
Load —

Register Q : Q ← IN Load_Q LO ADQ

C || A || Q
 ← sr C || A || Q Shift_dec —

Cou n ter P : P ← n – 1 I nitia liz e —

P
 ← P – 1 Shift_dec —

IDLE ·

 ←

11

Block diagram

module

Microoperation

 Signals are defined on a register basis

 LOAD_Q and LOAD_B: external signals controlled from

the system using the multiplier and will not be

considered a part of this design

 Some control signals are “reused” for different registers.

• Four control signals are the “outputs” of the control unit:

initialize, load, shift_dec, clear_c

Multiplier Example: Control Signal Table (Contd.)

12

7

Multiplier Example – Sequencing part of ASM

0 1

IDLE

MUL0

0 1

01

MUL1 10

00

G

Z

 With the outputs

represented by the

table, they can be

removed from the

ASM making the

ASM to represent

only the sequencing

(next state) behavior

 Simplified ASM

chart. Similar to a

state diagram/graph

but without outputs

specified.

13

14

 Control and Sequencing
• Algorithmic State Machine (ASM) Chart of

Multiplier

• Hardwired control

• Microprogrammed control

Overview

8

15

Control

 Hardwired Control

• Implemented using gates and flip-flops

• Faster, less flexible, limited complexity

 Microprogram Control

• Control Store

 Memory storing control signals and next state info

 Controller sequences through memory

• Slower, more flexible, greater complexity

 Control Design Methods

• (1) Sequential circuit techniques; studied earlier in

this course

• Procedure specializations that use a single signal to

represent each state

 (2) Sequence Register and Decoder

• Sequence register with encoded states, e.g., 00, 01, 10, 11.

• Decoder outputs produce “state” signals, e.g., 0001, 0010,

0100, 1000.

 (3) One Flip-Flop per State

• Flip-flop outputs as “state” signals, e. g., 0001, 0010, 0100,

1000.

Hardwired control

16

9

 Use a register to represent the states and a decoder to

generate an output signal corresponding to each state

 Use the State Table to find the input logic

(2) Sequencer (sequence register) and Decoder

17

Input Logic

Multiplier Example: Sequencer and Decoder

Design - Specification

 Define:

• States: IDLE, MUL0, MUL1

• Input Signals: G, Z, Q0 (Q0 affects outputs, not next state)

• Output Signals: Initialize, Load, Shift_Dec, Clear_C

• State Transition Diagram (Use Sequencing ASM)

• Output Function: Use Control Signal Table

• Decide on type of flip-flops to use

 Find:

• State Assignments

• Use two state bits to encode

the three states IDLE, MUL0,

 and MUL1.

State M1 M0

IDLE 0 0

MUL0 0 1

MUL1 1 0

Unused 1 1

18

10

 Assuming that state variables M1 and M0 are decoded into states,

the next state part of the State Table is:

Current State Input

G Z

Next State

M1 M0

IDLE 0 0 0 0

IDLE 0 1 0 0

IDLE 1 0 0 1

IDLE 1 1 0 1

MUL0 0 0 1 0

MUL0 0 1 1 0

MUL0 1 0 1 0

MUL0 1 1 1 0

Current State

Input

G Z

Next State

M1 M0

MUL1 0 0 0 1

MUL1 0 1 0 0

MUL1 1 0 0 1

MUL1 1 1 0 0

Unused 0 0 d d

Unused 0 1 d d

Unused 1 0 d d

Unused 1 1 d d

Multiplier Example: Sequencer and Decoder

Design - Formulation

19

State Table with Decoder Outputs

20

11

Multiplier Example: Sequencer and Decoder

Design - Equations Derivation/Optimization

 Finding the equations for M1 and M0 using decoded states:

 M1 = MUL0

 M0 = IDLE · G + MUL1 · Z

 The output equations using the decoded states:
 Initialize = IDLE · G
 Load = MUL0 · Q0
 Clear_C = IDLE · G + MUL1
 Shift_dec = MUL1

 Doing multiple level optimization, extract IDLE·G:
 START = IDLE · G
 M1 = MUL0
 M0 = START + MUL1 · Z
 Initialize = START

 Load = MUL0 · Q0
 Clear_C = START + MUL1
 Shift_dec = MUL1

 The resulting circuit using flip-flops, a decoder, and the above
equations is given on the next slide.

21

Multiplier Example: Sequencer and Decoder

Design - Implementation

IDLE

MUL0

MUL1

Initialize

Clear_C

Shift_dec

M 0

Load

M 1

G

Z

Q 0

DECODER

A0

A1

0

3

2

1

D

C

D

C

START

22

12

--Binary multiplier with n=4
library ieee;
use ieee.std_logic_unsigned.all;

entity binary_multiplier is
 port(CLK, RESET, G, LOADB, LOADQ : in std_logic;
 MULT_IN : in std_logic_vector (3 downto 0);
 MULT_OUT : out std_logic_vector (7 downto 0));
end binary_multiplier;

architecture behavior_4 of binary_multiplier is
 type state_type is (IDLE, MUL0, MUL1);
 variable P :=3;
 signal state, next_state : state_type;
 signal A, B, Q : std_logic_vector(3 downto 0);
 signal C, Z : std_logic;
begin
 Z <= P(1) NOR P(0);
 MULT_OUT <= A & Q;

 state_register : process (CLK, RESET)
 begin
 if (RESET = '1') then
 state <= IDLE;
 elsif (CLK'event and CLK='1') then
 state <= next_state;
 endif;
 end process;

 next_state_func : process (G, Z, state)
 begin
 case state is
 when IDLE =>
 if G='1' then next_state <= MUL0;
 else next_state <= IDLE;
 end if;
 when MUL0 =>
 next_state <= MUL1;
 when MUL1 =>
 if Z='1' then next_state <= IDLE;
 else next_state <= MUL0;
 end if;
 end case;
 end process;

datapath_func : process (CLK)

variable CA : std_logic_vector (4 downto 0);

begin

 if (CLK'event and CLK='1') then

 if LOADB='1' then

 B <= MULT_IN;

 end if;

 if LOADQ = '1' then

 Q <= MULT_IN;

 end if;

 case state is

 when IDLE =>

 if G = '1' then

 C <= '0';

 A <= "0000";

 P <= "11";

 end if;

 when MUL0 =>

 if Q(0) ='1' then

 CA := ('0' & A) + ('0' & B);

 else

 CA := C & A;

 end if;

 C <= CA(4);

 A <= CA(3 downto 0);

 when MUL1 =>

 C <= '0';

 A <= C & A(3 downto 1);

 Q <= A(0) & Q(3 downto 1);

 P <= P - "01";

 end case;

 end if;

end process;

end behavior_4;

23

VHDL code: behavioral

3 processes

 Homework assignment #5:

• Write VHDL description of structural architecture

similar to the structural description of the

architecture from Example 2, Implementation 2 of

Lab #4.

• Create a testbench and simulate in Aldec-HDL.

• Report should contain: title, name, brief description,

VHDL code (with nice indentation and useful

comments throughout the code), simulation

waveforms (black on white and horizontal).

• Report should be a single PDF file named

“hw5_YourFirstName_YourLastName.pdf”

VHDL code: structural

24

13

 This method uses one flip-flop per state and a simple

set of transformation rules to implement the circuit.

 The design starts with the ASM chart, and replaces

1. State Boxes with flip-flops,

2. Scalar Decision Boxes with a demultiplexer with 2 outputs,

3. Vector Decision Boxes with a (partial) demultiplexer,

4. Junctions with an OR gate, and

5. Conditional Outputs with AND gates.

 More flip-flops needed than in previous method

25

(3) One Flip-Flop per State

State box and Scalar decision box transformations

14

 Each Decision box transforms to a Demultiplexer

 Entry point is Enable inputs

 The Conditions are the Select inputs

 Demultiplexer Outputs are the Exit points

(Vector of Input

Conditions)

(Binary Vector Values)

00

01

(Binary Vector Values)

10

X1, X0

X1

Entry Exit 0

Exit 1

X0

DEMUX

EN

A1
A0

D0

D2

D1

D3

Exit2

Exit 3

Vector decision box transformation

Junction transformation, Conditional output box

transformation

15

Logic Diagram

 Control and Sequencing
• Algorithmic State Machine (ASM) Chart of

Multiplier

• Hardwired control

• Microprogrammed control

Overview

16

Datapath + Control unit/path

 Datapath - performs data transfer and processing operations

 Control unit/path - determines the enabling and sequencing of the

operations

Control

inputs

Data

inputs

Data

outputs

Datapath

Control

outputs

Control signals

Status signals

Control

unit

Describe properties of

the state of the datapath

 Datapath:

• Registers

• MUXes, ALUs, Shifters, Combinational Circuits and Buses

• Implements microoperations (under control of the control

unit)

 Control unit:

• Selects the microoperation

• Determines the sequence (based on status and input

signals)

• Design:

 State diagram or ASM

 Microoperations

 Sequence

Datapath + Control unit/path

17

Multiplier Example

Microprogrammed Control

 Is a control unit whose control words are

stored in memory, called control memory.

 A control word contains a microinstruction

that specifies one or more microoperations.

 A sequence of microinstructions is called a

microprogram.

 A microprogram is stored in ROM (thus fixed)

or in RAM (called writable control memory).

18

Control Unit Organization

 The Control Data Register (CDR) is optional:

• Allows higher clock frequencies (pipelining)

• Makes the sequencing more complicated for decisions based on

status bits

 If the CDR is omitted:

• The only register in the control unit is the Control Address

Register (CAR)

• The memory and next-address generator are combinational

• Thus the state of the control unit is given by the contents of the

CAR

• New control data will appear at the output of the memory as long

as the address is applied

Microprogrammed Control

19

 The next address (determining the next instruction of the

new state) is function of the next-address bits and the

STATUS signals/bits.

 The way we designed the control unit, the status bits can

only affect the next address (thus next state).

 [note: status bits do not control the datapath directly]

 Thus status bits cannot directly affect the output or cause

a register transfer operation (except by affecting the

address).

 This means that the sequential circuit of the control unit

must be a Moore type.

Microprogrammed Control

 Moore type circuit:

• No conditional output boxes allowed

• Replace the conditional output boxes by states

• Additional states are required for the same

hardware algorithm

• Also, only one decision box between states

preferred (for simple next address generation)

ASM of the Control Unit

20

39

ASM of the Control Unit

ASM of the Control Unit

 Two additional states:

INIT, ADD

 Total of 5 states

needed

21

Design of the Control Unit

 To design the (micro)sequencer for the

multiplier and the microprogram we need to

determine:

• The bits in the control word

• The size of the Control memory (ROM)

• The size of the Control Address Register (CAR)

• Next-address generator structure

 Control word

 Sequencer

 Use the same Datapath:

 We need four control

signals:

• Initialize

• Load

• Clear_C

• Shift_Dec

 Status bits: Qo, Z

42

Control Signals and Datapath

C out

n

n

n - 1

Counter P

Zero detect

log 2 n

Q o

Z

Parallel adder

Multiplicand

Register B

Shift register A 0 C Shift register Q

Multiplier

Product

OUT

IN

n

n n

Initialize

Clear_C

Load_B

Load_Q

Load

Shift_dec

22

 From the datapath and ASM one finds the

register transfers initiated by the control signals.

 From the ASM one finds the states in which the

signals are active

Control Signals and Register Transfers

43

 Four control signals needed.

 We can use these signals as is or encode them to reduce the

number of bits needed in the control word.

 If we do not encode these: 4 bits needed

• Initialize 0001

• Load 0010

• ClearC 0100

• Shift/Dec 1000

Control Signals, Control Word Format

44

23

 The sequencing is determined by the ASM chart

 First, determine the sequencing requirements:

• IDLE: next state function of G

• MUL0: next state function of Qo

• MUL1: next state function of Z

 We need a pair of addresses to direct to the next

state depending on the values of the status or

input signals

 SEL determines which next address to use

Sequencer

45

Control Sequences for the micro operations based

on decision boxes in the ASM chart:

46

24

SEL Field definition and Code in the Control Word

47

Design of Control Unit

 ROM size:

• Word length: 12 bits (control word)

• Size: 5 storage location, one for each state

 Address bits:

• 3 bits to address 5 locations

• CAR is 3 bits wide

 The address loaded in the CAR:

• Comes from the next-address info in the

microinstruction: NXTADD0 or NXTADD1

25

Microprogrammed Control Unit

49

Register Transfer Description of the

Microprogram

 Each memory location contains a microinstruction,

to be executed in the corresponding state. The

register transfer statements are:

26

 The above Register Transfer Operation can be

translated into a symbolic microprogram (control

words):

 Example:

address IDLE: G: CAR ← INIT, G’: CAR ← IDLE

Can be written as:

Symbolic Microprogram

51

52

Symbolic Microprogram

27

 Similar for the other instructions:

Binary Microprogram

53

VHDL code

54

 Homework assignment #6:

• Write VHDL structural description of this multiplier

(slide #49) using the microprogrammed approach for

the control unit.

• Use a ROM as studied in Lab #5.

• Create a testbench and simulate in Aldec-HDL.

• Report should contain: title, name, brief description,

VHDL code (with nice indentation and useful

comments throughout the code), simulation

waveforms (black on white and horizontal).

• Report should be a single PDF file named

“hw6_YourFirstName_YourLastName.pdf”

28

 Interaction between datapaths and control units

 Two types of control units:

• Non-programmed

• Programmed

 Two implementation approaches for Hardwired Control

(non-programmed):

• Sequence Register and Decoder

• One Flip-Flop per state

 Use of ASM to specify control functions:

• Microoperations

• Sequence of operations

 Microprogrammed control is a more structured approach

for complex systems

Summary

55

Appendix A: Speeding Up the Multiplier

 In processing each bit of the multiplier, the

circuit visits states MUL0 and MUL1 in

sequence.

 By redesigning the multiplier, is it possible to

visit only a single state per bit processed?

56

29

Speeding Up Multiply (Contd.)

 The operations in MUL0 and MUL1:

• In MUL0, a conditional add of B

• In MUL1, a right shift of C || A || Q in a shift register, the

decrementing of P, and a test for P = 0 (on the old value of P)

 Any solution that uses one state must combine all of

the operations listed into one state

• The operations involving P are already done in a single state,

so not a problem.

• The right shift, however, depends on the result of the

conditional addition. So these two operations must be

combined!

57

Speeding Up Multiply (Contd.)

 By replacing the shift

register with a

combinational shifter

and combining the

adder and shifter,

the states can be merged.

 The C-bit is no longer needed.

 In this case, Z and Q0

have been made into

a vector.

G

IDLE

MUL

00

01

10

11

0 1

Z || Q 0

A || Q sr C out
 || (A + 0) || Q A || Q sr C out

 || (A + 0) || Q

A || Q sr C out
 || (A + B) || Q A || Q sr C out

 || (A+ B) || Q

P P –

 1

0 A

P n –

1

58

