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EE 459/500 – HDL Based Digital 

Design with Programmable Logic 

  

Lecture 15  

Memories 

Overview 

 Introduction 

 Memories 

• Read Only Memories 

• Random Access Memories  

• FIFOs 
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Motivation 

 Most applications need memory! 

 Store constants (filter coefficients), implement 

instruction and data, LUTs, FIFOs, registers, etc. 

 FPGAs incorporate dedicated memories to eliminate 

the need to interface with external memory chips 

 

Memories 

 The good news: huge selection of technologies 
• Small & faster vs. large & slower 

• Every year capacities go up and prices go down 

• New kid on the block: high density, fast flash memories 

 Non-volatile, read/write, no moving parts! (robust, efficient) 

 The bad news: perennial system bottleneck 
• Latencies (access time) haven’t kept pace with cycle times 

• Separate technology from logic, so must communicate between 

silicon; physical limitations (# of pins, R’s, C’s, and L’s) limit 

bandwidths 

 New hopes: optical interconnect, 3D IC’s 

• Likely the limiting factor in cost & performance of many digital 

systems: designers spend a lot of time figuring out how to keep 

memories running at peak bandwidth 
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Memories classification 
Read-Write Memory Read-Only Memory 

Volatile Memory 
Non-volatile 

Memory 

Mask-Programmed ROM (PROM) 

(nonvolatile) 

Random Access Sequential Access 

EPROM 

EEPROM 

FLASH SRAM 

DRAM 

FIFO 

LIFO 

Shift Register 

CAM 
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 Key Design Metrics: 

1.Memory Density (number of bits/mm2) and Size 

2.Access Time (time to read or write) and Throughput 

3.Power Dissipation 

 Volatile: need electrical power 

 Nonvolatile: magnetic disk, retains its stored information after the removal of power 

 Random access: memory locations can be read or written in a random order 

 EPROM: erasable programmable read-only memory 

 EEPROM: electrically erasable programmable read-only memory 

 FLASH: memory stick, USB disk 

 Access pattern: sequential access: (video memory streaming) first-in-first-out (buffer), last-in-

first-out (stack), shift register, content-addressable memory 

 Static vs. Dynamic: dynamic needs periodic refresh but is simpler, higher density 

Basic memory system  

 L address lines are 
decoded to address 2L 
words of memory 

 

 Each word is M bits 

 

 Read and Write are 
single control lines 
defining the simplest 
memory operations 
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Data Input Lines 

L address lines 

Read 

Write 

Data Output Lines 

L 

1 

1 

M 

M 

Memory 

Array 

 

2L Words 

M Bits per Word 
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Memory Array Architecture 

Memory Operation Timing - Read 

 Most basic memories are asynchronous 
• Storage in latches/flip-flops or electrical charge storage elements (C’s) 

• No clock 

• Controlled by control inputs and address, which are controlled by CPU and 
synchronized by its own clock 

 Timing of signal changes/data observation is critical to operation 

 

 

 

 

 

 

 

 

 

 

 Read cycle: the access time, the maximum time from the application of 
the address to the appearance of the data at the Data output 

Read cycle 

Clock 

Address 

Memory 
enable 

Read/ 
Write 

Data 
output 

20 ns 

T1 T2 T3 T4 T1 

Address valid 

65 ns 

Data valid 
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Memory Operation Timing - Write 

 

 

 

 

 

 

 

 

 

 Write cycle: the maximum time from the application of the address to 
the completion of all internal operations required to store a word 

 Critical times measured with respect to edges of write pulse (1-0-1): 
• Address must be established at least a specified time before 1-0 and held for at least 

a specified time after 0-1 to avoid disturbing stored contents of other addresses 

• Data must be established at least a specified time before 0-1 and held for at least a 
specified time after 0-1 to write correctly 

Write cycle 

Clock 

Address 

Memory 
enable 

Read/ 
Write 

Data 
input 

20 ns 

T1 T2 T3 T4 T1 

Address valid 

Data valid 

75 ns 

9 

10 

Overview 

 Motivation 

 Memories 

• Read Only Memories 

• Random Access Memories  

• FIFOs 
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Read Only Memories (ROMs) 

 ROM modeling: ROMs are usually modeled in VHDL 

with an array of array object 

 

 Signal-Based Declaration VHDL Coding Example 
 

type rom_type is array (0 to 127) of std_logic_vector (19 downto 0); 

signal ROM : rom_type:= ( 

X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A", X"00300", X"08602", 

X"02310", X"0203B", X"08300", X"04002", X"08201", X"00500", X"04001", X"02500", 

(…) 

X"04078", X"01110", X"02500", X"02500", X"0030D", X"02341", X"08201", X"0410D" 

); 

Arrays in VHDL 

 type WORD16 is array (15 downto 0) of bit; 

 signal DATA_WORD: WORD16; -- a 16-bit register 

 

 subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0); 

 type TAB12 is array (11 downto 0) of WORD8; 

 type TAB03 is array (2 downto 0) of TAB12; 

 

 You can also declare an array as a matrix: 

 subtype TAB13 is array (7 downto 0, 4 downto 0) of 

 STD_LOGIC_VECTOR (8 downto 0); 
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Examples 

 subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0); 

 type TAB05 is array (4 downto 0) of WORD8; 

 type TAB03 is array (2 downto 0) of TAB05; 

 signal WORD_A : WORD8; 

 

 signal TAB_A, TAB_B : TAB05; 

 signal TAB_C, TAB_D : TAB03; 

 constant CNST_A : TAB03 := ( 

("00000000","01000001","01000010","10000011","00001100"), 

("00100000","00100001","00101010","10100011","00101100"), 

("01000010","01000010","01000100","01000111","01000100")); 

 TAB_A <= TAB_B; TAB_C <= TAB_D; TAB_C <= CNST_A; 

 TAB_A (5) <= WORD_A; TAB_C (1) <= TAB_A;  

 TAB_A (5) (0) <= ’1’; TAB_C (2) (5) (0) <= ’0’;  

 TAB_A (4 downto 1) <= TAB_B (3 downto 0);  
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Describing ROM with a Case Statement 

ARCHITECTURE behav OF rom8x4 IS 

BEGIN 

 

PROCESS(addr) 

BEGIN 

  CASE addr IS 

    when "000" => q <= "0001";  

    when "001" => q <= "0000";  

    when "010" => q <= "0111";  

    when "011" => q <= "1101";  

    when "100" => q <= "1000";    

    when "101" => q <= "1100";  

    when "110" => q <= "0110"; 

    when "111" => q <= "1011";  

    when others  =>  NULL;   

  END case; 

 END process; 

END behav; 

ENTITY rom8x4 IS 

 PORT ( 

  addr: in std_logic_vector(2 downto 0); 

  q: out std_logic_vector(3 downto 0)); 

END rom8x4; 

14 
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ROMs in Xilinx Library 

 Spartan-6 library does not contain direct support for 

ROMs. However, block RAMs could be utilized. 

• http://www.xilinx.com/support/documentation/sw_manuals/xilinx11

/spartan6_hdl.pdf 

• Atlys board has a Spartan-6 FPGA 

 Virtex family of FPGAs do have library support for ROMs 

 Example: Virtex-4: 

• http://www.xilinx.com/support/documentation/sw_manuals/xilinx11

/virtex4_hdl.pdf 

• ROM16x1 (16-word by 1 bit ROM) 

• ROM32x1 

• ROM64x1 

• ROM128x1 

• ROM256x1... 
15 

Example: ROM16x1 

library UNISIM; 

use UNISIM.vcomponents.all; 

 

-- ROM16X1: 16 x 1 Asynchronous Distributed => LUT ROM 

-- Xilinx HDL Libraries Guide, version 11.2 

 

ROM16X1_inst : ROM16X1 

generic map ( 

 INIT => X"0000") 

port map ( 

O => O, -- ROM output 

A0 => A0, -- ROM address[0] 

A1 => A1, -- ROM address[1] 

A2 => A2, -- ROM address[2] 

A3 => A3 -- ROM address[3] 

); 

 

-- End of ROM16X1_inst instantiation 
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http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/spartan6_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/spartan6_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/virtex4_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/virtex4_hdl.pdf
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How do we use ROMs 

architecture beh of my_example_rom is 

 

signal ABUS : std_logic_vector(3 downto 0); 

signal DBUS : std_logic_vector(1 downto 0); 

 

begin 

bit0 : ROM16X1 

  generic map (INIT => “1010 1110 0001 0001” )    

  port map (O => DBUS(0), A0 => ABUS(0),  

    A1 => ABUS(1), A2 => ABUS(2), A3 => ABUS(3) ); 

bit1 : ROM16X1 

  generic map (INIT => ”1101 1010 1111 0101”)    

  port map (O => DBUS(1), A0 => ABUS(0),  

    A1 => ABUS(1), A2 => ABUS(2), A3 => ABUS(3) ); 

 

rom_inc : process(CLK) is 

  begin 

    if (CLK’event and CLK=‘1’) then 

      ABUS <= ABUS + 1; 

    end if; 

  end process; 

 

jump : process(DBUS) is 

  begin 

    if (DBUS=“11”) then 

      ABUS <= “0000”; 

    end if; 

  end; 

 

end architecture; 
17 
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Overview 

 Motivation 

 Memories 

• Read Only Memories 

• Random Access Memories  

• FIFOs 
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Random Access Memories (RAMs) 

 Read/Write memory 

 Types: 
• Static RAM (SRAM):  

 Once a word is written at a location, it remains stored as long 

as power is applied to the chip, unless the same location is 

written again. 

 Fast speed, but their cost per bit higher. 

 Application: Cache ($) memories in Microprocessors 

 

• Dynamic RAM (DRAM): 
 The data stored at each location must be periodically 

refreshed by reading it and then writing it back again, 

otherwise it disappears. 

 Their density is greater and their cost per bit lower, but the 

speed is slower. 

Static RAMs: Latch Based Memory 

20 

 Works fine for small memory blocks (e.g., small reg. files) 

• Inefficient in area for large memories 

• Density is the key metric in large memory circuits 

 

How do we minimize cell size? 
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Static RAM Cell 

 

 

 

 

 

 Read: 
1. Select row 

2. Cell pulls one line low and one high 

3. Sense output on bit and bit 

 Write: 
1. Drive bit lines (e.g, bit=1, bit=0) 

2. Select row 

 Why does this work? 
• When one bit-line is low, it will force output high; that will set 

new state 

Typical SRAM Organization: 16-word x 4-bit 
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Logic Diagram of a Typical SRAM 

 Write Enable is usually active low (WE_L) 

 Din and Dout are combined to save pins: 

 A new control signal, Output Enable (OE_L) 
• WE_L is asserted (Low), OE_L is unasserted (High) 

 D serves as the data input pin 

• WE_L is unasserted (High), OE_L is asserted (Low) 

 D is the data output pin 

• Neither WE_L and OE_L are asserted? 

 Chip is disconnected 

• Never both asserted! 

Typical SRAM Timing 

24 
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Making Larger Memories 

 We can make larger 
memories from smaller 
ones by using the decoded 
higher order address bits to 
control CS (chip select) 
lines, tying all address, 
data, and R/W lines in 
parallel 

 

 A 16-Word by1-Bit memory 
constructed using 4-Word 
by 1-Bit memory 

D3

S1

S0

D2

D1

D0

Decoder

R/W

A2

A3

A1

A0

Data In

Data Out

R/W
CS

A0
A1 D-In

D-Out

R/W
CS

A0
A1 D-In

D-Out

R/W
CS

A0
A1 D-In

D-Out

R/W
CS

A0
A1 D-In

D-Out
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Making Wider Memories 

 Tie the address and control 

lines in parallel and keep 

the data lines separate   

 

 Example: make a 4-word by 

4-bit memory from 4, 4-

word by 1-bit memories               

 

 Note: Both 16x1 and 4x4 

memories take 4-chips  

and hold 16 bits of data R/W

A1
A0

Data In

Data Out

R/W
CS

A0
A1 D-In

D-Out

R/W
CS

A0
A1 D-In

D-Out

R/W
CS

A0
A1 D-In

D-Out

R/W
CS

A0
A1 D-In

D-Out

CS

3 2 1 0

3 2 1 0
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RAMs in Xilinx Library 

 Static Block RAMs 

 Single port 
• RAM32X1S, RAM64X1S, ... 

 Dual port 
• RAM64X1D, RAM128X1D, ... 
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• The difference between single port RAM and dual port RAM is that 

single port RAM can be accessed at one address at one time, thus you 

can read/write only one memory cell during each clock cycle. Dual port 

RAM has ability to simultaneously read and write different memory 

cells at different addresses.  

 

• Single port uses a 6 transistor basic RAM cell, while the dual port RAM 

cell uses 8 transistor cell for memory. 

28 

Block RAMs (BRAMs) 

 A Block RAM is a dedicated (cannot be used to implement 

other functions like digital logic) two port memory 

 The Block RAM in Spartan-6 FPGAs stores up to 18K bits 

of data and can be configured as: 

• Two independent 9 Kb RAMs  

• One 18 Kb RAM 

 Write and Read are synchronous operations 

 The two ports are symmetrical and totally independent, 

sharing only the stored data. 

 Embedded dual- or single-port RAM modules, ROM 

modules, synchronous FIFOs, and data-width converters 

are easily implemented using the Xilinx CORE Generator 

block memory modules 
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Difference between Distributed and Block RAMs 

 Distributed RAM = parallel array of large # of elements 

 distributed RAM is ideal for small sized memories. 

For large memories, extra wiring delays 

 Use block RAM for large sized memories and 

distributed RAM for small sized memories or FIFO's 

 WRITE operation is synchronous in both 

 READ operation: 

• Distributed RAM: asynchronous (data is read from memory 

as soon as the address is given, doesn't wait for the clock 

edge) 

• Block RAM: synchronous 

Example: RAM32X1S 

library UNISIM; 

use UNISIM.vcomponents.all; 

 

-- RAM32X1S: 32 x 1 posedge write distributed => LUT RAM 

-- All FPGA 

-- Xilinx HDL Libraries Guide, version 11.2 

 

RAM32X1S_inst : RAM32X1S 

generic map ( 

    INIT => X"00000000") 

port map ( 

    O => O, -- RAM output 

    A0 => A0, -- RAM address[0] input 

    A1 => A1, -- RAM address[1] input 

    A2 => A2, -- RAM address[2] input 

    A3 => A3, -- RAM address[3] input 

    A4 => A4, -- RAM address[4] input 

    D => D, -- RAM data input 

    WCLK => WCLK, -- Write clock input 

    WE => WE -- Write enable input 

); 

-- End of RAM32X1S_inst instantiation 
30 
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True dual-port 18 Kb block RAM dual-port 

memories 

 See “Spartan-6 FPGA Block RAM Resources” for timing diagrams 

• http://www.xilinx.com/support/documentation/user_guides/ug383.pdf 

• http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf 

How to tell XST which type of RAM you want to 

use? 

 XST (Xilinx Synthesis Tool) may implement a declared 

RAM as either 

• block RAM 

• distributed RAM 

 You can force the implementation style to use block RAM 

or distributed RAM resources 

 Done using the ram_style constraint 

 Before the begin statement in the architecture section: 

• attribute ram_style: string; 

• attribute ram_style of ram: signal is “distributed“; 

• Here ram is the signal name. Change "distributed" to "block" to 

force XST to use block RAM resources. Default value of the 

attribute ram_style is "auto". 

http://www.xilinx.com/support/documentation/user_guides/ug383.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
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 library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

entity ram_example is 

port (  Clk     : in std_logic; 

        address : in integer; 

        we      : in std_logic; 

        data_i  : in std_logic_vector(7 downto 0); 

        data_o  : out std_logic_vector(7 downto 0) 

     ); 

end ram_example; 

 

architecture Behavioral of ram_example is 

--Declaration of type and signal of a 256 element RAM; each word is 8 bit wide. 

type ram_t is array (0 to 255) of std_logic_vector(7 downto 0); 

signal ram : ram_t := (others => (others => '0')); 

attribute ram_style: string; 

 attribute ram_style of ram : signal is “distributed“; 

begin 

 

--process for read and write operation. 

PROCESS(Clk) 

BEGIN 

    if(rising_edge(Clk)) then 

        if(we='1') then 

            ram(address) <= data_i; 

        end if; 

        data_o <= ram(address); 

    end if;  

END PROCESS; 

end Behavioral; 

Example 

Block RAM Applications 

 The Xilinx CORE Generator program offers an 

easy way to generate wider and deeper memory 

structures using multiple Block RAM instances 

 

 It outputs VHDL or Verilog instantiation 

templates and simulation models 

 

 See Lab#5 for details 
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Creating BRAMs with Core Generator 

Using the result in your VHDL project 

ENTITY my_bram8x8 IS 

  PORT ( 

    clka : IN STD_LOGIC; 

    wea : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 

    addra : IN STD_LOGIC_VECTOR(2 DOWNTO 0); 

    dina : IN STD_LOGIC_VECTOR(7 DOWNTO 0); 

    douta : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) 

  ); 

END my_bram8x8; 

 

 Use to instantiate components: 
 

memory2 : my_bram8x8 port map (clka=>clk_1Hz, wea=>wea_null, 

addra=>my_addr_counter, dina=>dina_null, 

douta=>dout_bram8x8); 
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.coe file format (used during Core Generator 

usage) 

memory_initialization_radix=2; 

memory_initialization_vector= 

10000000, 

01000000, 

00100000, 

00010000, 

00001000, 

00000100, 

00000010, 

00000001; 

Dynamic RAM (DRAM) 

 Basic Principle: Storage of information on 
capacitors 

 

 Charge and discharge of capacitor to change 
stored value 

 

 Use of transistor as “switch” to: 
• Store charges 

• Charge or discharge 

 

 You will normally not find DRAMs in FPGAs 
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Overview 

 Motivation 

 Memories 

• Read Only Memories 

• Random Access Memories  

• FIFOs 

First-in-first-out (FIFO) Memory 

40 

 Used to implement queues.   

 These find common use in 

computers and communication 

circuits. 

 Generally, used for rate matching 

data producer and consumer: 

 Producer can perform many writes 

without consumer performing any 

reads (or vice versa). However, 

because of finite buffer size, on 

average, need equal number of 

reads and writes. 

 Typical uses:  

• Interfacing I/O devices.  Example 

network interface. Data bursts from 

network, then processor bursts to 

memory buffer (or reads one word 

at a time from interface).  

Operations not synchronized. 

• Example: Audio output. Processor 

produces output samples in bursts 

(during process swap-in time).  

Audio DAC clocks it out at constant 

sample rate. 

stating state 

after write 

after read 
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 Address pointers are used internally to keep 

next write position and next read position into 

a dual-port memory. 

 

 

 

 If pointers equal after write  FULL: 

 

 

 

 

 If pointers equal after read  EMPTY: 

FIFO Interfaces 

41 

 After write or read operation, 

FULL and EMPTY indicate status 

of buffer. 

 Used by external logic to 

control own reading from or 

writing to the buffer. 

 FIFO resets to EMPTY state. 

 HALF FULL (or other indicator 

of partial fullness) is optional. 

DIN 

DOUT 

WE 

RE 

EMPTY 

FULL 

HALF FULL 

RST CLK 

FIFO 

write ptr 

read ptr 

write ptr read ptr 

write ptr read ptr 

FIFO Implementation 
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 FIFOs available in Xilinx library for 

Virtex-4 and up devices 

 For Spartan-6 one could use 

LogiCORE FIFO Generator? 

 See Lab#7 supplemental  

 

  WE RE equal  EMPTYi     FULLi 

      0  0      0           0           0 

      0  0      1      EMPTYi-1   FULLi-1 

        0  1      0           0            0 

                    0  1      1           1            0 

                    1  0      0           0            0 

                    1  0      1           0            1 

                    1  1      0           0            0 

                    1  1      1     EMPTYi-1   FULLi-1 

      

 Assume, dual-port memory with asynchronous read, synchronous 
write. 

 Binary counter for each of read and write address.  CEs controlled by 
WE and RE. 

 Equal comparator to see when pointers match. 

 Flip-flop each for FULL and EMPTY flags: 
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Summary 

 Memories are complex circuits and different 

from random logic 

 Companies, like Xilinx, offer pre-designed cores 

to help designers improve productivity 

 Always consult documentation of FPGAs to see 

what types of memory blocks are available 

 Do not underestimate FIFOs 

 Timing issues are extremely important 
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45 

 

 

 Storage Cell 
• SR Latch 

• Select input for 
control 

• Dual Rail Data 
Inputs B  and B 

• Dual Rail Data 
Outputs C  and C 

 

Select 

B 

RAM cell 

C 

C 

B 

S 

R 

Q 

Q 

Appendix A: 

Revisiting Static RAM Cell: SR latch based 

SRAM  Bit Slice 

 Represents all 

circuitry that is 

required for 2n 1-bit 

words 

• Multiple RAM cells 

• Control Lines: 

 Word select i 

– one for each word 

   

 Bit Select 

• Data Lines: 

 Data in 

 Data out 

WriteRead/

(a) Logic diagram 

Select 

S 

R 

Q 

Q 

B 

RAM cell 

C 

C 

B 

Select 

S 

R 

Q 

Q 

RAM cell 

X 

Word 
select 
0 

Word 
select 
2 

n - 1 

Data in 

Write logic 

Read/ 
Write 

Bit 
select 

S 

R 

Q 

Q 

X 

X 

X 

Data out Read logic 

Read/Write 
logic 

Data in 

Data out 

Read/ 
Write 

Bit 
select 

(b) Symbol 

Word 
select 
0 

Word 
select 
1 

Word 
select 
2 
n 

RAM cell 

RAM cell 

RAM cell 

- 1 
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2n-Word by 1-Bit RAM IC 

 To build a RAM IC 

from a RAM slice: 

• Decoder  decodes 

the n address lines to 

2n word select lines 

• A 3-state buffer on the 

data output  permits 

RAM ICs to 

be combined into a 

RAM with c  2n words Chip 
select 

A 3 

A 2 

A 1 

A 0 

Data 
input 

Data 
output 

(b) Symbol 

Read/ 
Write 

16 x  1 
RAM 

Read/ 

Word select 

Read/Write 
logic 

Data in 

Data out 

Write 

Bit 
select 

(a) Block diagram 

RAM cell 

RAM cel l 

RAM cell 

Data input 

Chip select 

Read/Write 

Data 
output 

A 3 

A 2 

A 1 

A 0 

2 
3 

2 
2 

2 
1 

2 
0 

4-to-16 

Decoder 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Cell Arrays and Coincident Selection 

 Memory arrays can be very large => 

• Large decoders 

• Large fanouts for the input bit lines  

• The decoder size and fanouts can be 
reduced by approximately         using a 
coincident selection in a 2-D array: uses 
two decoders, one for words and one for 
bits: 
 Word select becomes Row select 

 Bit select becomes Column select 

 See next slide for example 

n
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Cell Arrays and Coincident Selection (Contd.) 

A1 and A0 used for Row select  

A3 and A2 for Column select 

Data input 

Read/Write 

X X X 

A 3 
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RAM cell 
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Data in 

Data out 

Read/ 
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11 

Read/Write 
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Data in 

Data out 

Read/ 
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Bit 
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RAM cell 
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13 
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15 

Read/Write 
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Data in 

Data out 

Read/ 
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Bit 
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with enable 
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2 
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Row decoder 
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X 
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