
1

1

EE 459/500 – HDL Based Digital

Design with Programmable Logic

Lecture 15

Memories

Overview

 Introduction

 Memories

• Read Only Memories

• Random Access Memories

• FIFOs

2

2

3

Motivation

 Most applications need memory!

 Store constants (filter coefficients), implement

instruction and data, LUTs, FIFOs, registers, etc.

 FPGAs incorporate dedicated memories to eliminate

the need to interface with external memory chips

Memories

 The good news: huge selection of technologies
• Small & faster vs. large & slower

• Every year capacities go up and prices go down

• New kid on the block: high density, fast flash memories

 Non-volatile, read/write, no moving parts! (robust, efficient)

 The bad news: perennial system bottleneck
• Latencies (access time) haven’t kept pace with cycle times

• Separate technology from logic, so must communicate between

silicon; physical limitations (# of pins, R’s, C’s, and L’s) limit

bandwidths

 New hopes: optical interconnect, 3D IC’s

• Likely the limiting factor in cost & performance of many digital

systems: designers spend a lot of time figuring out how to keep

memories running at peak bandwidth

4

3

Memories classification
Read-Write Memory Read-Only Memory

Volatile Memory
Non-volatile

Memory

Mask-Programmed ROM (PROM)

(nonvolatile)

Random Access Sequential Access

EPROM

EEPROM

FLASH SRAM

DRAM

FIFO

LIFO

Shift Register

CAM

5

 Key Design Metrics:

1.Memory Density (number of bits/mm2) and Size

2.Access Time (time to read or write) and Throughput

3.Power Dissipation

 Volatile: need electrical power

 Nonvolatile: magnetic disk, retains its stored information after the removal of power

 Random access: memory locations can be read or written in a random order

 EPROM: erasable programmable read-only memory

 EEPROM: electrically erasable programmable read-only memory

 FLASH: memory stick, USB disk

 Access pattern: sequential access: (video memory streaming) first-in-first-out (buffer), last-in-

first-out (stack), shift register, content-addressable memory

 Static vs. Dynamic: dynamic needs periodic refresh but is simpler, higher density

Basic memory system

 L address lines are
decoded to address 2L
words of memory

 Each word is M bits

 Read and Write are
single control lines
defining the simplest
memory operations

6

Data Input Lines

L address lines

Read

Write

Data Output Lines

L

1

1

M

M

Memory

Array

2L Words

M Bits per Word

4

7

Memory Array Architecture

Memory Operation Timing - Read

 Most basic memories are asynchronous
• Storage in latches/flip-flops or electrical charge storage elements (C’s)

• No clock

• Controlled by control inputs and address, which are controlled by CPU and
synchronized by its own clock

 Timing of signal changes/data observation is critical to operation

 Read cycle: the access time, the maximum time from the application of
the address to the appearance of the data at the Data output

Read cycle

Clock

Address

Memory
enable

Read/
Write

Data
output

20 ns

T1 T2 T3 T4 T1

Address valid

65 ns

Data valid

8

5

Memory Operation Timing - Write

 Write cycle: the maximum time from the application of the address to
the completion of all internal operations required to store a word

 Critical times measured with respect to edges of write pulse (1-0-1):
• Address must be established at least a specified time before 1-0 and held for at least

a specified time after 0-1 to avoid disturbing stored contents of other addresses

• Data must be established at least a specified time before 0-1 and held for at least a
specified time after 0-1 to write correctly

Write cycle

Clock

Address

Memory
enable

Read/
Write

Data
input

20 ns

T1 T2 T3 T4 T1

Address valid

Data valid

75 ns

9

10

Overview

 Motivation

 Memories

• Read Only Memories

• Random Access Memories

• FIFOs

6

Read Only Memories (ROMs)

 ROM modeling: ROMs are usually modeled in VHDL

with an array of array object

 Signal-Based Declaration VHDL Coding Example

type rom_type is array (0 to 127) of std_logic_vector (19 downto 0);

signal ROM : rom_type:= (

X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A", X"00300", X"08602",

X"02310", X"0203B", X"08300", X"04002", X"08201", X"00500", X"04001", X"02500",

(…)

X"04078", X"01110", X"02500", X"02500", X"0030D", X"02341", X"08201", X"0410D"

);

Arrays in VHDL

 type WORD16 is array (15 downto 0) of bit;

 signal DATA_WORD: WORD16; -- a 16-bit register

 subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0);

 type TAB12 is array (11 downto 0) of WORD8;

 type TAB03 is array (2 downto 0) of TAB12;

 You can also declare an array as a matrix:

 subtype TAB13 is array (7 downto 0, 4 downto 0) of

 STD_LOGIC_VECTOR (8 downto 0);

12

7

Examples

 subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0);

 type TAB05 is array (4 downto 0) of WORD8;

 type TAB03 is array (2 downto 0) of TAB05;

 signal WORD_A : WORD8;

 signal TAB_A, TAB_B : TAB05;

 signal TAB_C, TAB_D : TAB03;

 constant CNST_A : TAB03 := (

("00000000","01000001","01000010","10000011","00001100"),

("00100000","00100001","00101010","10100011","00101100"),

("01000010","01000010","01000100","01000111","01000100"));

 TAB_A <= TAB_B; TAB_C <= TAB_D; TAB_C <= CNST_A;

 TAB_A (5) <= WORD_A; TAB_C (1) <= TAB_A;

 TAB_A (5) (0) <= ’1’; TAB_C (2) (5) (0) <= ’0’;

 TAB_A (4 downto 1) <= TAB_B (3 downto 0);

13

Describing ROM with a Case Statement

ARCHITECTURE behav OF rom8x4 IS

BEGIN

PROCESS(addr)

BEGIN

 CASE addr IS

 when "000" => q <= "0001";

 when "001" => q <= "0000";

 when "010" => q <= "0111";

 when "011" => q <= "1101";

 when "100" => q <= "1000";

 when "101" => q <= "1100";

 when "110" => q <= "0110";

 when "111" => q <= "1011";

 when others => NULL;

 END case;

 END process;

END behav;

ENTITY rom8x4 IS

 PORT (

 addr: in std_logic_vector(2 downto 0);

 q: out std_logic_vector(3 downto 0));

END rom8x4;

14

8

ROMs in Xilinx Library

 Spartan-6 library does not contain direct support for

ROMs. However, block RAMs could be utilized.

• http://www.xilinx.com/support/documentation/sw_manuals/xilinx11

/spartan6_hdl.pdf

• Atlys board has a Spartan-6 FPGA

 Virtex family of FPGAs do have library support for ROMs

 Example: Virtex-4:

• http://www.xilinx.com/support/documentation/sw_manuals/xilinx11

/virtex4_hdl.pdf

• ROM16x1 (16-word by 1 bit ROM)

• ROM32x1

• ROM64x1

• ROM128x1

• ROM256x1...
15

Example: ROM16x1

library UNISIM;

use UNISIM.vcomponents.all;

-- ROM16X1: 16 x 1 Asynchronous Distributed => LUT ROM

-- Xilinx HDL Libraries Guide, version 11.2

ROM16X1_inst : ROM16X1

generic map (

 INIT => X"0000")

port map (

O => O, -- ROM output

A0 => A0, -- ROM address[0]

A1 => A1, -- ROM address[1]

A2 => A2, -- ROM address[2]

A3 => A3 -- ROM address[3]

);

-- End of ROM16X1_inst instantiation

16

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/spartan6_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/spartan6_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/virtex4_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/virtex4_hdl.pdf

9

How do we use ROMs

architecture beh of my_example_rom is

signal ABUS : std_logic_vector(3 downto 0);

signal DBUS : std_logic_vector(1 downto 0);

begin

bit0 : ROM16X1

 generic map (INIT => “1010 1110 0001 0001”)

 port map (O => DBUS(0), A0 => ABUS(0),

 A1 => ABUS(1), A2 => ABUS(2), A3 => ABUS(3));

bit1 : ROM16X1

 generic map (INIT => ”1101 1010 1111 0101”)

 port map (O => DBUS(1), A0 => ABUS(0),

 A1 => ABUS(1), A2 => ABUS(2), A3 => ABUS(3));

rom_inc : process(CLK) is

 begin

 if (CLK’event and CLK=‘1’) then

 ABUS <= ABUS + 1;

 end if;

 end process;

jump : process(DBUS) is

 begin

 if (DBUS=“11”) then

 ABUS <= “0000”;

 end if;

 end;

end architecture;
17

18

Overview

 Motivation

 Memories

• Read Only Memories

• Random Access Memories

• FIFOs

10

19

Random Access Memories (RAMs)

 Read/Write memory

 Types:
• Static RAM (SRAM):

 Once a word is written at a location, it remains stored as long

as power is applied to the chip, unless the same location is

written again.

 Fast speed, but their cost per bit higher.

 Application: Cache ($) memories in Microprocessors

• Dynamic RAM (DRAM):
 The data stored at each location must be periodically

refreshed by reading it and then writing it back again,

otherwise it disappears.

 Their density is greater and their cost per bit lower, but the

speed is slower.

Static RAMs: Latch Based Memory

20

 Works fine for small memory blocks (e.g., small reg. files)

• Inefficient in area for large memories

• Density is the key metric in large memory circuits

How do we minimize cell size?

11

21

Static RAM Cell

 Read:
1. Select row

2. Cell pulls one line low and one high

3. Sense output on bit and bit

 Write:
1. Drive bit lines (e.g, bit=1, bit=0)

2. Select row

 Why does this work?
• When one bit-line is low, it will force output high; that will set

new state

Typical SRAM Organization: 16-word x 4-bit

12

Logic Diagram of a Typical SRAM

 Write Enable is usually active low (WE_L)

 Din and Dout are combined to save pins:

 A new control signal, Output Enable (OE_L)
• WE_L is asserted (Low), OE_L is unasserted (High)

 D serves as the data input pin

• WE_L is unasserted (High), OE_L is asserted (Low)

 D is the data output pin

• Neither WE_L and OE_L are asserted?

 Chip is disconnected

• Never both asserted!

Typical SRAM Timing

24

13

25

Making Larger Memories

 We can make larger
memories from smaller
ones by using the decoded
higher order address bits to
control CS (chip select)
lines, tying all address,
data, and R/W lines in
parallel

 A 16-Word by1-Bit memory
constructed using 4-Word
by 1-Bit memory

D3

S1

S0

D2

D1

D0

Decoder

R/W

A2

A3

A1

A0

Data In

Data Out

R/W
CS

A0
A1 D-In

D-Out

R/W
CS

A0
A1 D-In

D-Out

R/W
CS

A0
A1 D-In

D-Out

R/W
CS

A0
A1 D-In

D-Out

26

Making Wider Memories

 Tie the address and control

lines in parallel and keep

the data lines separate

 Example: make a 4-word by

4-bit memory from 4, 4-

word by 1-bit memories

 Note: Both 16x1 and 4x4

memories take 4-chips

and hold 16 bits of data R/W

A1
A0

Data In

Data Out

R/W
CS

A0
A1 D-In

D-Out

R/W
CS

A0
A1 D-In

D-Out

R/W
CS

A0
A1 D-In

D-Out

R/W
CS

A0
A1 D-In

D-Out

CS

3 2 1 0

3 2 1 0

14

RAMs in Xilinx Library

 Static Block RAMs

 Single port
• RAM32X1S, RAM64X1S, ...

 Dual port
• RAM64X1D, RAM128X1D, ...

27

• The difference between single port RAM and dual port RAM is that

single port RAM can be accessed at one address at one time, thus you

can read/write only one memory cell during each clock cycle. Dual port

RAM has ability to simultaneously read and write different memory

cells at different addresses.

• Single port uses a 6 transistor basic RAM cell, while the dual port RAM

cell uses 8 transistor cell for memory.

28

Block RAMs (BRAMs)

 A Block RAM is a dedicated (cannot be used to implement

other functions like digital logic) two port memory

 The Block RAM in Spartan-6 FPGAs stores up to 18K bits

of data and can be configured as:

• Two independent 9 Kb RAMs

• One 18 Kb RAM

 Write and Read are synchronous operations

 The two ports are symmetrical and totally independent,

sharing only the stored data.

 Embedded dual- or single-port RAM modules, ROM

modules, synchronous FIFOs, and data-width converters

are easily implemented using the Xilinx CORE Generator

block memory modules

15

Difference between Distributed and Block RAMs

 Distributed RAM = parallel array of large # of elements

 distributed RAM is ideal for small sized memories.

For large memories, extra wiring delays

 Use block RAM for large sized memories and

distributed RAM for small sized memories or FIFO's

 WRITE operation is synchronous in both

 READ operation:

• Distributed RAM: asynchronous (data is read from memory

as soon as the address is given, doesn't wait for the clock

edge)

• Block RAM: synchronous

Example: RAM32X1S

library UNISIM;

use UNISIM.vcomponents.all;

-- RAM32X1S: 32 x 1 posedge write distributed => LUT RAM

-- All FPGA

-- Xilinx HDL Libraries Guide, version 11.2

RAM32X1S_inst : RAM32X1S

generic map (

 INIT => X"00000000")

port map (

 O => O, -- RAM output

 A0 => A0, -- RAM address[0] input

 A1 => A1, -- RAM address[1] input

 A2 => A2, -- RAM address[2] input

 A3 => A3, -- RAM address[3] input

 A4 => A4, -- RAM address[4] input

 D => D, -- RAM data input

 WCLK => WCLK, -- Write clock input

 WE => WE -- Write enable input

);

-- End of RAM32X1S_inst instantiation
30

16

31

True dual-port 18 Kb block RAM dual-port

memories

 See “Spartan-6 FPGA Block RAM Resources” for timing diagrams

• http://www.xilinx.com/support/documentation/user_guides/ug383.pdf

• http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf

How to tell XST which type of RAM you want to

use?

 XST (Xilinx Synthesis Tool) may implement a declared

RAM as either

• block RAM

• distributed RAM

 You can force the implementation style to use block RAM

or distributed RAM resources

 Done using the ram_style constraint

 Before the begin statement in the architecture section:

• attribute ram_style: string;

• attribute ram_style of ram: signal is “distributed“;

• Here ram is the signal name. Change "distributed" to "block" to

force XST to use block RAM resources. Default value of the

attribute ram_style is "auto".

http://www.xilinx.com/support/documentation/user_guides/ug383.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf

17

 library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity ram_example is

port (Clk : in std_logic;

 address : in integer;

 we : in std_logic;

 data_i : in std_logic_vector(7 downto 0);

 data_o : out std_logic_vector(7 downto 0)

);

end ram_example;

architecture Behavioral of ram_example is

--Declaration of type and signal of a 256 element RAM; each word is 8 bit wide.

type ram_t is array (0 to 255) of std_logic_vector(7 downto 0);

signal ram : ram_t := (others => (others => '0'));

attribute ram_style: string;

 attribute ram_style of ram : signal is “distributed“;

begin

--process for read and write operation.

PROCESS(Clk)

BEGIN

 if(rising_edge(Clk)) then

 if(we='1') then

 ram(address) <= data_i;

 end if;

 data_o <= ram(address);

 end if;

END PROCESS;

end Behavioral;

Example

Block RAM Applications

 The Xilinx CORE Generator program offers an

easy way to generate wider and deeper memory

structures using multiple Block RAM instances

 It outputs VHDL or Verilog instantiation

templates and simulation models

 See Lab#5 for details

18

Creating BRAMs with Core Generator

Using the result in your VHDL project

ENTITY my_bram8x8 IS

 PORT (

 clka : IN STD_LOGIC;

 wea : IN STD_LOGIC_VECTOR(0 DOWNTO 0);

 addra : IN STD_LOGIC_VECTOR(2 DOWNTO 0);

 dina : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 douta : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

);

END my_bram8x8;

 Use to instantiate components:

memory2 : my_bram8x8 port map (clka=>clk_1Hz, wea=>wea_null,

addra=>my_addr_counter, dina=>dina_null,

douta=>dout_bram8x8);

19

.coe file format (used during Core Generator

usage)

memory_initialization_radix=2;

memory_initialization_vector=

10000000,

01000000,

00100000,

00010000,

00001000,

00000100,

00000010,

00000001;

Dynamic RAM (DRAM)

 Basic Principle: Storage of information on
capacitors

 Charge and discharge of capacitor to change
stored value

 Use of transistor as “switch” to:
• Store charges

• Charge or discharge

 You will normally not find DRAMs in FPGAs

20

Overview

 Motivation

 Memories

• Read Only Memories

• Random Access Memories

• FIFOs

First-in-first-out (FIFO) Memory

40

 Used to implement queues.

 These find common use in

computers and communication

circuits.

 Generally, used for rate matching

data producer and consumer:

 Producer can perform many writes

without consumer performing any

reads (or vice versa). However,

because of finite buffer size, on

average, need equal number of

reads and writes.

 Typical uses:

• Interfacing I/O devices. Example

network interface. Data bursts from

network, then processor bursts to

memory buffer (or reads one word

at a time from interface).

Operations not synchronized.

• Example: Audio output. Processor

produces output samples in bursts

(during process swap-in time).

Audio DAC clocks it out at constant

sample rate.

stating state

after write

after read

21

 Address pointers are used internally to keep

next write position and next read position into

a dual-port memory.

 If pointers equal after write FULL:

 If pointers equal after read EMPTY:

FIFO Interfaces

41

 After write or read operation,

FULL and EMPTY indicate status

of buffer.

 Used by external logic to

control own reading from or

writing to the buffer.

 FIFO resets to EMPTY state.

 HALF FULL (or other indicator

of partial fullness) is optional.

DIN

DOUT

WE

RE

EMPTY

FULL

HALF FULL

RST CLK

FIFO

write ptr

read ptr

write ptr read ptr

write ptr read ptr

FIFO Implementation

42

 FIFOs available in Xilinx library for

Virtex-4 and up devices

 For Spartan-6 one could use

LogiCORE FIFO Generator?

 See Lab#7 supplemental

 WE RE equal EMPTYi FULLi

 0 0 0 0 0

 0 0 1 EMPTYi-1 FULLi-1

 0 1 0 0 0

 0 1 1 1 0

 1 0 0 0 0

 1 0 1 0 1

 1 1 0 0 0

 1 1 1 EMPTYi-1 FULLi-1

 Assume, dual-port memory with asynchronous read, synchronous
write.

 Binary counter for each of read and write address. CEs controlled by
WE and RE.

 Equal comparator to see when pointers match.

 Flip-flop each for FULL and EMPTY flags:

22

Summary

 Memories are complex circuits and different

from random logic

 Companies, like Xilinx, offer pre-designed cores

to help designers improve productivity

 Always consult documentation of FPGAs to see

what types of memory blocks are available

 Do not underestimate FIFOs

 Timing issues are extremely important

References and Credits

 Textbook

• Sections 3.2, 3.4, 6.6, 8.7, 8.8, and 11.2

 Chapter 13 of Volnei A. Pedroni book

 Chapter 9 of M. Morris Mano and Charles Kime book

 Jan Rabaey book (on timing and clock issues)

 MIT 6.111 slides

• http://web.mit.edu/6.111/www/f2011/handouts/L10.pdf

 Berkeley CS150 slides

• http://www-inst.eecs.berkeley.edu/~cs150/fa07/Lectures/lec13-mem-sram.pdf

 XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices - ROMs

and ROM coding examples (page 247):

• http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/xst_v6s6.pdf

 Spartan-6 Libraries Guide for HDL Designs

 http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/spartan6_hdl.pdf

 Spartan-6 FPGA Block RAM Resources

• http://www.xilinx.com/support/documentation/user_guides/ug383.pdf 44

http://web.mit.edu/6.111/www/f2011/handouts/L10.pdf
http://www-inst.eecs.berkeley.edu/~cs150/fa07/Lectures/lec13-mem-sram.pdf
http://www-inst.eecs.berkeley.edu/~cs150/fa07/Lectures/lec13-mem-sram.pdf
http://www-inst.eecs.berkeley.edu/~cs150/fa07/Lectures/lec13-mem-sram.pdf
http://www-inst.eecs.berkeley.edu/~cs150/fa07/Lectures/lec13-mem-sram.pdf
http://www-inst.eecs.berkeley.edu/~cs150/fa07/Lectures/lec13-mem-sram.pdf
http://www-inst.eecs.berkeley.edu/~cs150/fa07/Lectures/lec13-mem-sram.pdf
http://www-inst.eecs.berkeley.edu/~cs150/fa07/Lectures/lec13-mem-sram.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/xst_v6s6.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/spartan6_hdl.pdf
http://www.xilinx.com/support/documentation/user_guides/ug383.pdf

23

45

 Storage Cell
• SR Latch

• Select input for
control

• Dual Rail Data
Inputs B and B

• Dual Rail Data
Outputs C and C

Select

B

RAM cell

C

C

B

S

R

Q

Q

Appendix A:

Revisiting Static RAM Cell: SR latch based

SRAM Bit Slice

 Represents all

circuitry that is

required for 2n 1-bit

words

• Multiple RAM cells

• Control Lines:

 Word select i

– one for each word

 Bit Select

• Data Lines:

 Data in

 Data out

WriteRead/

(a) Logic diagram

Select

S

R

Q

Q

B

RAM cell

C

C

B

Select

S

R

Q

Q

RAM cell

X

Word
select
0

Word
select
2

n - 1

Data in

Write logic

Read/
Write

Bit
select

S

R

Q

Q

X

X

X

Data out Read logic

Read/Write
logic

Data in

Data out

Read/
Write

Bit
select

(b) Symbol

Word
select
0

Word
select
1

Word
select
2
n

RAM cell

RAM cell

RAM cell

- 1

24

2n-Word by 1-Bit RAM IC

 To build a RAM IC

from a RAM slice:

• Decoder decodes

the n address lines to

2n word select lines

• A 3-state buffer on the

data output permits

RAM ICs to

be combined into a

RAM with c 2n words Chip
select

A 3

A 2

A 1

A 0

Data
input

Data
output

(b) Symbol

Read/
Write

16 x 1
RAM

Read/

Word select

Read/Write
logic

Data in

Data out

Write

Bit
select

(a) Block diagram

RAM cell

RAM cel l

RAM cell

Data input

Chip select

Read/Write

Data
output

A 3

A 2

A 1

A 0

2
3

2
2

2
1

2
0

4-to-16

Decoder 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Cell Arrays and Coincident Selection

 Memory arrays can be very large =>

• Large decoders

• Large fanouts for the input bit lines

• The decoder size and fanouts can be
reduced by approximately using a
coincident selection in a 2-D array: uses
two decoders, one for words and one for
bits:
 Word select becomes Row select

 Bit select becomes Column select

 See next slide for example

n

25

Cell Arrays and Coincident Selection (Contd.)

A1 and A0 used for Row select

A3 and A2 for Column select

Data input

Read/Write

X X X

A 3
A 2

RAM cell
0

RAM cell
1

RAM cell
2

RAM cell
3

Read/Write
logic

Data in

Data out

Read/
Write

Bit
select

RAM cell
4

RAM cell
5

RAM cell
6

RAM cell
7

Read/Write
logic

Data in

Data out

Read/
Write

Bit
select

RAM cell
8

RAM cell
9

RAM cell
10

RAM cell
11

Read/Write
logic

Data in

Data out

Read/
Write

Bit
select

RAM cell
12

RAM cell
13

RAM cell
14

RAM cell
15

Read/Write
logic

Data in

Data out

Read/
Write

Bit
select

Column
decoder

2-to-4 Decoder
with enable

2
1 2

0

0 1

Column select

2

Enable

3

Chip select

Data
output

Row
select

Row decoder

A 0

A 1

X

2-to-4
Decoder

2
0

2
1

1

2

3

0

