
1

EE 459/500 – HDL Based Digital

Design with Programmable Logic

Lecture 18

Computer Basics

References:

Chapter 9 of M. Morris Mano and Charles Kime, Logic and

Computer Design Fundamentals, Pearson Prentice Hall, 4th

Edition, 2008.

Overview

 Part 1 – Datapaths
• Introduction

• Datapath Example

 Arithmetic Logic Unit (ALU)

 Shifter

• Datapath Representation and Control Word

 Part 2 – A Simple Computer
• Instruction Set Architecture (ISA)

• Single-Cycle Hardwired Control

 Part 3 – Multiple Cycle Hardwired Control
• Single Cycle Computer Issues

• Sequential Control Design

2

Introduction

 Computer Specification

• Instruction Set Architecture (ISA) - the specification of a

computer's appearance to a programmer at its lowest level

• Computer Architecture - a high-level description of the hardware

implementing the computer derived from the ISA

• The architecture usually includes additional specifications such as

speed/performance, cost, and reliability

Introduction

 Simple computer architecture decomposed into:

• Datapath: performing operations (i.e., data manipulation)

 A set of registers

 Microoperations performed on the data stored in the registers

 A control interface

• Control unit: controlling datapath operations

 Programmable & Non-programmable

Control
inputs

Data

inputs

Data

outputs

Datapath

Control
outputs

Control signals

Status signals

Control
unit

3

 Register file:

• Four parallel-load regs

• Two mux-based
register selectors

• Register destination
decoder

 Microoperation implementation

• Mux B for external
constant input

• Buses A and B with external
address and data outputs

• Function Unit:

 ALU and Shifter with
Mux F for output select

 Mux D for external data input

 Logic for generating status bits:
V, C, N, Z

 Datapath Example

MD select
0 1

MUX D

V

C

N

Z

n

n

n

n

n

n

n

n

n n

n

2 2

n

n

A data B data

Register file

1 0

MUX B Address

Out

Data

Out

Bus A

Bus B

n

n

Function unit

A B n

G select
4

Zero Detect

MF select

n n

n

F

MUX F

H select
2

n

A B

S 2:0
 || C in

Arithmetic/logic

unit (ALU)

G

B

S

Shifter

H

MUX

0

1

2

3

MUX

0

1

2

3

0 1 2 3

Decoder

Load

Load

Load

Load

Load enable

Write

D data

D address

2

Destination select

Constant in

MB select

A select

A address

B select

B address

R3

R2

R1

R0

Bus D n

Data In

I L
I R

0 0

0 1

Microoperation: R0 ← R1 + R2

MD select
0 1
MUX D

V

C

N

Z

n

n

n

n

n

n

n

n

n n

n

2 2

n

n

A data B data

Register file

1 0

MUX B Address

Out

Data
Out

Bus A

Bus B

n

n

Function unit

A B n

G select
4

Zero Detect

MF select

n n

n

F

MUX F

H select
2

n

A B

S 2:0
 || C in

Arithmetic/logic

unit (ALU)

G

B
S

Shifter

H

MUX

0

1

2

3

MUX

0

1

2

3

0 1 2 3

Decoder

Load

Load

Load

Load

Load enable

Write

D data

D address
2

Destination select

Constant in

MB select

A select

A address

B select

B address

R3

R2

R1

R0

Bus D n

Data In

I L
I R

0 0

0 1

Datapath Example: Performing a Microoperation

 Apply 01 to A select to place

contents of R1 onto Bus A

 Apply 10 to B select to place

contents of R2 onto B data and

apply 0 to MB select to place

B data on Bus B

 Apply 0010 to G select to perform

addition G = Bus A + Bus B

 Apply 0 to MF select and 0 to MD

select to place the value of G onto

BUS D

 Apply 00 to Destination select to

enable the Load input to R0

 Apply 1 to Load Enable to force the Load

input to R0 to 1 so that R0 is loaded on

the clock pulse (not shown)

 The overall microoperation requires

1 clock cycle

4

Datapath Example: Key Control Actions for

Microoperation Alternatives

Various microoperations:

 Perform a shift microoperation:

apply 1 to MF select

 Use a constant in a micro-operation

using Bus B: apply 1 to MB select

 Provide an address and data for a

memory or output write

microoperation – apply 0 to Load

enable to prevent register loading

 Provide an address and obtain data

for a memory or output read

microoperation – apply 1 to MD

select

 For some of the above, other control

signals become don't cares

MD select
0 1
MUX D

V

C

N

Z

n

n

n

n

n

n

n

n

n n

n

2 2

n

n

A data B data

Register file

1 0

MUX B Address

Out

Data
Out

Bus A

Bus B

n

n

Function unit

A B n

G select
4

Zero Detect

MF select

n n

n

F

MUX F

H select
2

n

A B

S 2:0
 || C in

Arithmetic/logic

unit (ALU)

G

B
S

Shifter

H

MUX

0

1

2

3

MUX

0

1

2

3

0 1 2 3

Decoder

Load

Load

Load

Load

Load enable

Write

D data

D address
2

Destination select

Constant in

MB select

A select

A address

B select

B address

R3

R2

R1

R0

Bus D n

Data In

I L
I R

0 0

0 1

 Part 1 – Datapaths
• Introduction

• Datapath Example

 Arithmetic Logic Unit (ALU)

 Shifter

• Datapath Representation and Control Word

 Part 2 – A Simple Computer
• Instruction Set Architecture (ISA)

• Single-Cycle Hardwired Control

 Part 3 – Multiple Cycle Hardwired Control
• Single Cycle Computer Issues

• Sequential Control Design

Overview

5

Arithmetic Logic Unit (ALU)

C i C i +
 1

One stage of
arithmetic

circuit

One stage of
logic circuit

2-to-1
MUX 0

1
S

A i

B i

S 0

S 1

S 2

C i

G i

A i

B i

S 0

S 1

A i

B i

S 0

S 1

C in

 Decompose the ALU into:

• An arithmetic circuit & A logic circuit

• A selector to pick between the two circuits

 There are only four functions of B
to select as Y in G = A + Y +Cin:

• 0

• B

• B

• 1

Arithmetic Circuit

 Arithmetic circuit design

• Decompose the arithmetic circuit
into:

 An n-bit parallel adder

 A logic block that selects four
choices for input B to the adder

S 1

S 0

B

n

B input
logic

n
A

n

X

C in

Y

n G =
 X +

Y +
 C in

C out

n-bit
parallel
adder

Cin = 0 Cin = 1

G = A

G = A + 1

G = A – 1

G = A + B

G = A

G = A + B

G = A + B + 1

G = A + B + 1

Y

Arithmetic

operations

6

4-Bit Basic Left/Right Shifter

 Serial Inputs:
• IR for right shift

• IL for left shift

 Shift Functions:
(S1, S0) = 00 Pass B unchanged

 01 Right shift

 10 Left shift

 11 Unused

B 3

I R I L

S

2

B 2
B 1

B 0

H 0 H 1 H 2 H 3

S

M
U
X

0 1 2
S

M
U
X

0 1 2
S

M
U
X

0 1 2
S

M
U
X

0 1 2

Barrel Shifter

 A rotate is a shift in which the bits shifted out are inserted into the positions

vacated

 The circuit rotates its contents left from 0 to 3 positions depending on S:

S = 00 position unchanged S = 10 rotate left by 2 positions

S = 01 rotate left by 1 positions S = 11 rotate left by 3 positions

D 3

S 0

3 S 1 S 0

M
U
X

D 2 D 1 D 0

Y 0 Y 1 Y 2 Y 3

S 1

0 1 2 3 S 1 S 0

M
U
X

0 1 2 3 S 1 S 0

M
U
X

0 1 2 3 S 1 S 0

M
U
X

0 1 2

7

 Large barrel shifters can be constructed using:

• Layers of multiplexers

• 2-dimensional array circuits designed at the electronic level

• Example 8-bit:

 Layer 1 shifts by 0, 4

 Layer 2 shifts by 0, 2

 Layer 3 shifts by 0, 1

 Part 1 – Datapaths
• Introduction

• Datapath Example

 Arithmetic Logic Unit (ALU)

 Shifter

• Datapath Representation and Control Word

 Part 2 – A Simple Computer
• Instruction Set Architecture (ISA)

• Single-Cycle Hardwired Control

 Part 3 – Multiple Cycle Hardwired Control
• Single Cycle Computer Issues

• Sequential Control Design

Overview

8

Datapath Representation

 In the register file:
• Select inputs for multiplexers

=> A address & B address

• Decoder input => D address

• Load enable => write

• Input data to the registers =>
D data

• Multiplexer outputs => A
data & B data

 The register file now
appears like a memory
based on clocked flip-
flops

 FS?

Address out

Data out

Constant in

MB select

Bus A

Bus B

FS

V

C

N

Z

MD select

n

D data

Write

D address

A address B address

A data B data

2
m x

 n
Register file

m

m m

n
n

n

n

n

A B

Function
unit

F

4

MUX B

1 0

MUX D

0 1

n

n
Data in

Boolean Equations:

MFi = F3 F2

Gi = Fi

Hi = Fi

FS(3:0)

MF

Select

G

Select(3:0)

H

Select(1:0) Micr ooperation

0000 0 0000 XX

0001 0 0001 XX

0010 0 0010 XX

0011 0 0011 XX

0100 0 0100 XX

0101 0 0101 XX

0110 0 0110 XX

0111 0 0111 XX

1000 0 1 X 00 XX

1001 0 1 X 01 XX

1010 0 1 X 10 XX

1011 0 1 X 11 XX

1100 1 XXXX 00

1101 1 XXXX 01

1110 1 XXXX 10

F A

F A 1

F A B

F A B 1

F A B

F A B 1

F A 1

F A

F A B

F A B

F A B

F A

F B

F sr B

F sl B

Definition of Function Select

(FS) Codes V

C

N

Z

Function unit

A B

n

G select
4

Zero Detect

MF select

n n

n F

MUX F

H select
2

A B

S 2:0
 || C in

Arithmetic/logic

unit (ALU)

G

B
S

Shifter

H

I L
I R

0

0

0 1

FS

9

The Control Word

 The datapath has many control

input signals, can be organized

into a control word

 To execute a microinstruction, we

apply control word values for a

clock cycle

 Control word

D A AA BA
M

B

FS
M

D

R

W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DA – D Address, AA – A Address

BA – B Address, MB – Mux B

FS – Function Select, MD – Mux D

RW – Register Write

10

8

14

0

13

11

Bus D

Constant in

n

n

MUX B

1 0

D data Write

D address

A address B address

A data B data

8 x
 n

Register file

A B

Function

unit

n

n

n

MUX D

0 1

n
n

Data in

Bus A

Bus B

R W

12

AA

15

D A

n

BA

9

Address out

Data out

V

C

N

Z

7

MD 1

MB 6

4 FS

5

3

2

F A

D A , AA, B A MB FS MD R W

Function Code Function Code Function Code Function Code Function Code

R 0 000 Register 0 0000 Function 0 No write 0

R 1 001 Constant 1 0001 Data In 1 Write 1

R 2 010 0010

R 3 011 0011

R 4 100 0100

R 5 101 0101

R 6 110 0110

R 7 111 0111

1000

1001

1010

1011

1100

1101

1110

F A

F A 1

B

F A B 1

F A B

F A B 1

F A 1

F A

F A B

F A B

F A B

F A

F B

F sr B

F sl B

Control Word Encoding

10

Microoperations for the Datapath – Symbolic &

Binary Representation

Micr o-

o p eratio n D A A A B A M B F S M D R W

0 0 1 0 1 0 011 0 010 1 0 1

10 0 XX X 110 0 111 0 0 1

11 1 1 11 XXX 0 000 1 0 1

00 1 0 00 XXX 1 001 0 0 1

XX X X XX 011 0 XXX X X 0

10 0 XX X XXX X XXX X 1 1

1 0 1 0 0 0 000 0 101 0 0 1

R 1 R 2 R 3 –

R 4 s l R6

R 7 R 7 1 +

R 1 R 0 2 +

Data out R 3

R 4 D ata in

R 5 0

Micr o-

op eratio n D A A A B A M B F S M D R W

R 1 R 2 R 3 R e g ister F unction Write

R 4 — R 6 R e g ister F unction Write

R 7 R 7 — Re gister Function Write

R 1 R 0 — Con s tant Write

—— R 3 R eg i s t e r — — N o Wr it e

R 4 —— — — Data in Write

R 5 R 0 R 0 R e g ister F unction Write

R 1 R 2 R 3 – F A B 1 + + =

R 4 s l R6 F sl B =

R 7 R 7 1 + F A 1 + =

R 1 R 0 2 + F A B + =

Data out R 3

R 4 D ata in

R 5 0 F A B =

Function

Datapath

Simulation
1 4 7 1 0 4 5

2 0 7 0

3 6 0 3 0

X X

2 0 7 0

3 6 0 2 3 0

14 1 2 0 10

2 0 0 1 X

18 18

1 255 2

2

3

4 12 18

5 0

6

7 8

clock

DA

1 4

AA

2

BA

3 6

Constant_in 2

MB

Address_out

Data_out

FS

5

Status_bits

Data_in

MD

RW

reg0 0

reg1

 reg2

reg3

reg4

reg5

reg6

reg7

7
8

5

11

 Part 1 – Datapaths
• Introduction

• Datapath Example

 Arithmetic Logic Unit (ALU)

 Shifter

• Datapath Representation and Control Word

 Part 2 – A Simple Computer
• Instruction Set Architecture (ISA)

• Single-Cycle Hardwired Control

 Part 3 – Multiple Cycle Hardwired Control
• Single Cycle Computer Issues

• Sequential Control Design

Overview

Instruction Set Architecture (ISA) for Simple

Computer (SC)

 Instructions are stored in RAM or ROM as a program, the addresses
for instructions are provided by a program counter (PC)
• Count up or load a new address

• The PC and associated control logic are part of the Control Unit

 A typical instruction specifies:
• Operands to use

• Operation to be performed

• Where to place the result, or which instruction to execute next

 Executing an instruction
• Activate the necessary sequence of operations specified by the

instruction

• Be controlled by the control unit and performed in:
 Datapath

 Control unit

 External hardware such as memory or input/output

12

ISA Examples

 RISC (Reduced Instruction Set Computer)
• Digital Alpha

• Sun Sparc

• MIPS RX000

• IBM PowerPC

• HP PA/RISC

 CISC (Complex Instruction Set Computer)
• Intel x86

• Motorola 68000

• DEC VAX

 VLIW (Very Large Instruction Word)
• Intel Itanium

ISA: Storage Resources

 "Harvard architecture“:

 separate instruction and

data memories

 Permit use of

single clock cycle per

instruction

implementation

 Due to use of "cache" in

modern computer

architectures, it is a fairly

realistic model

Instruction
memory

2
15 x 16

Data
memory

2
15 x 16

Register file

8 x 16

Program counter

(PC)

13

ISA: Instruction Formats

 The three formats are: Register, Immediate, and Jump/Branch

 All formats contain an Opcode field in bits 9 through 15.

• The Opcode specifies the operation to be performed

(c) Jump and Branch

(a) Register

Opcode

Destination
register (DR)

Source reg-
ister A (SA)

Source reg-
ister B (SB)

15 9 8 6 5 3 2 0

(b) Immediate

Opcode

Destination
register (DR)

Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Operand (OP)

Opcode

Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Address (AD)
(Right)

Address (AD)
(Left)

ISA: Instruction Format - Register

 This format supports:

• R1 ← R2 + R3

• R1 ← sl R2

 Three 3-bit register fields:

• DR - destination register (R1 in the examples)

• SA - the A source register (R2 in the first example)

• SB - the B source register (R3 in the first example and R2 in the

second example)

 Why is R2 in the second example SB instead of SA?

(a) Register

Opcode

Destination

register (DR)

Source reg-

ister A (SA)

Source reg-

ister B (SB)

15 9 8 6 5 3 2 0

14

ISA: Instruction Format - Immediate

(b) Immediate

Opcode

Destination

register (DR)

Source reg-

ister A (SA)

15 9 8 6 5 3 2 0

Operand (OP)

 This format supports:

• R1 ← R2 + 3

 The B Source Register field is replaced by an Operand field OP

specifying a constant. (3-bit constant, values from 0 to 7)

 The constant:

• Zero-fill (on the left of) the operand to form 16-bit constant

• 16-bit representation for values 0 through 7

ISA: Instruction Format - Jump & Branch

 This instruction supports changes in the sequence of instruction
execution by adding an extended, 6-bit, signed 2’s-complement
address offset to the PC value

 The SA field: permits jumps and branches on N or Z based on
the contents of Source register A

 The Address (AD) field (6-bit) replaces the DR and SB fields

• Example: Suppose that a jump for the Opcode and the PC contains
45 (0…0101101) and AD contains – 12 (110100). Then the new PC
value will be:
0…0101101 + (1…110100) = 0…0100001 (i.e., 45 + (– 12) = 33)

(c) Jump and Branch

Opcode

Source reg-

ister A (SA)

15 9 8 6 5 3 2 0

Address (AD)

(Right)

Address (AD)

(Left)

15

ISA: Instruction Specifications
Instr u ctio n O pc ode Mnem on ic Form a t D escrip tion

St a t u s

Bits

Move A 0000000
MO V A RD ,RA R [DR] R[SA] N , Z

Increment 0000001
INC R D , RA R[DR] R [SA] + 1 N , Z

Add 0000010
ADD R D , RA,RB R [DR] R[SA] + R[SB] N , Z

Subtr a ct 0000101
SUB R D , RA,RB R [DR] R[SA] [SB] N , Z

D e crement 0000110
DEC R D , RA R[DR] R[SA] 1 N , Z

AND 0001000
AND R D , RA,RB R [DR] R[SA] R[SB] N , Z

O R 0001001 OR RD ,RA,RB R[DR] R[SA] R[SB] N , Z

Exclusive OR 0001010 XOR R D , RA,RB R [DR] R[SA] R[SB] N , Z

NO T 0001011
NO T R D , RA R[DR] N, Z R[SA]

R

Move B 0001100 MO VB RD ,RB R [DR] R[SB]

Shift Right 0001101 SHR R D , RB R[DR] sr R[SB]

Shift Left 0001110 SHL R D , RB R[DR] sl R[SB]

Load Imm e diate 1001100 LDI R D , O P R[DR] zf OP

Add Immediate 1000010 ADI R D , RA,OP R [DR] R[SA] + zf OP

Load 0010000 LD RD ,RA R [DR] M[R[SA]]

Store 0100000 ST RA,RB M [R[SA]] R[SB]

Branch on Zero 1100000 BRZ R A,AD if (R[S A] = 0) PC PC + s e A D

Branch on Negative 1100001 BRN R A,AD if (R[S A] < 0) PC PC + s e A D

J u mp 1110000 JMP R A P C R[SA]

ISA: Example Instructions and Data in Memory

Memory Representation of Instruction and Data

D ecimal

Ad d r ess
Memory Contents

Decimal

Opcode Other Field Operation

25 00001 01 001 010 011 5 (Subtract) DR:1, SA:2, SB:3 R1 R2 R3

35 01000 00 000 100 101 32 (Store) S A:4, SB:5 M[R4] R5

45 10000 10 010 111 011 66 (Add

Im mediate)

DR: 2 , S A : 7 , OP :3 R 2 R7

55 11000 00 101 110 100 96 (Branch

on Z e ro)

AD: 44, SA:6 If R6 = 0,
PC PC 20

70 000 0000 00110 0 000 Data = 1 92. After execution of instruction in 35,
Data = 8 0 .

16

 Part 1 – Datapaths
• Introduction

• Datapath Example

 Arithmetic Logic Unit (ALU)

 Shifter

• Datapath Representation and Control Word

 Part 2 – A Simple Computer
• Instruction Set Architecture (ISA)

• Single-Cycle Hardwired Control

 Part 3 – Multiple Cycle Hardwired Control
• Single Cycle Computer Issues

• Sequential Control Design

Overview

 Based on the ISA defined,

design a computer architecture

to support the ISA

 The architecture is to fetch and

execute each instruction in a

single clock cycle

Single-Cycle

Hardwired

Control:

Bus A Bus B

Address out

Data out MW

Data in

MUX B

1 0

MUX D

0 1

DATAPATH

RW
DA

AA

Constant
in

BA

MB

FS

V

C

N

Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data_in Address

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L

P B
C

Branch
Control

V
C
N
Z

J
B L

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL

17

The Control Unit

 Datapath: the Data Memory has been attached to the Address

Out, Data Out, and Data In lines of the Datapath.

 Control Unit:

• The MW input to the Data Memory is the Memory Write signal from

the Control Unit.

• The Instruction Memory address input is provided by the PC and its

instruction output feeds the Instruction Decoder.

• Zero-filled IR(2:0) becomes Constant In

• Extended IR(8:6) || IR(2:0) and Bus A are address inputs to the PC.

• The PC is controlled by Branch Control logic

Program Counter (PC) Function

 PC function is based on instruction specifications involving jumps

and branches:

• The first two transfers require addition to the PC of:

 Address Offset = Extended IR(8:6) || IR(2:0)

• The third transfer requires that the PC be loaded with:

 Jump Address = Bus A = R[SA]

 In addition to the above register transfers, the PC must implement

the counting function:

• PC ← PC + 1

Branch on Zero BRZ if (R[S A] = 0) PC

←
 PC + s e A D

Branch on Negative BRN if (R[S A] < 0) PC PC + s e A D

J u mp JMP P C R[SA]

←

←

18

PC Function (Contd.)

 Branch Control determines the PC transfers based on five

inputs:

• N,Z – negative and zero status bits

• PL – load enable for the PC

• JB – Jump/Branch select: If JB = 1, Jump, else Branch

• BC – Branch Condition select: If BC = 1, branch for N = 1, else

branch for Z = 1.

PL JB BC PC Operation

0 X X Count Up

1 1 X Jump

1 0 1 Branch on Negative (else Count Up)

1 0 0 Branch on Zero (else Count Up)

Instruction Decoder

 Converts the instruction into the signals necessary to
control the computer during the single cycle execution,
combinational
• Inputs: the 16-bit Instruction

• Outputs: control signals

 DA, AA, and BA: Register file addresses (IR (8:0))

• simply pass-through signals: DA = DR, AA = SA, and BA = SB

 FS: Function Unit Select

 MB and MD: Multiplexer Select Controls

 RW and MW: Register file and Data Memory Write Controls

 PL, JB, and BC: PC Controls

 Observe that for other than branches and jumps, FS =
IR(12:9)
• The other control signals should depend as much as possible on

IR(15:13)

19

Instruction Decoder (Contd.)

T ruth T a ble for Instruction Decoder Logic

Instruction Function T ype

Instruction Bits

15 14 13 9

1. Function unit operations using

registers

0 0 0 X

2. Memory read 0 0 1 X

3. Memory write 0 1 0 X

4. Function unit operations using

register and constant

1 0 0 X

5. Conditional branch on zero (Z) 1 1 0 0 X

6. Conditional branch on negative

(N)

1 1 0 1

7. Unconditional J ump 1 1 1 X X

Contr ol W o r d Bits

M B M D R W M W P L J B B C

0 0 1 0 0 X X

0 1 1 0 0 X X

0 X 0 1 0 X X

1 0 1 0 0 X X

X 0 0 1 0 0

X X 0 0 1 0 1

X 0 0 1 1 X

Instruction Decoder (Contd.)

 Instruction types are based on the control blocks and the
seven control signals to be generated (MB, MD, RW,
MW, PL, JB, BC):

• Datapath and Memory Control (types 1-4)

 Mux B

 Memory and Mux D

• PC Control (types 5-7)
 Bit 15 = Bit 14 = 1 => PL

 Bit 13 => JB.

 Bit 9 was use as BC which contradicts FS = 0000 needed for
branches. To force FS(0) to 0 for branches, Bit 9 into FS(0) is
disabled by PL.

20

Instruction Decoder (Contd.)

 The end result by use of the types, careful assignment of codes,

and use of don't cares, yields very simple logic:

 This completes the

design of most of the

essential parts of

the single-cycle

simple computer

19 – 17

DA

16 – 14

AA

13 – 11

BA

10

MB

9 – 6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0

Example Instruction Execution

 Decoding, control inputs and paths shown for

ADI, LD and BRZ on next 6 slides

21

Decoding for ADI

19 – 17

DA

16 – 14

AA

13 – 11

BA

10

MB

9 – 6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0

1 0 0 0 0 1 0

1 1 0 0 1 0 0 0 0 0 0

Bus A Bus B

Address out

Data out MW

Data in

MUX B

1 0

MUX D

0 1

DATAPATH

RW
DA

AA

Constant
in

BA

MB

FS

V

C

N

Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data in Address

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L

P B
C

Branch
Control

V
C
N
Z

J
B L

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL
1 1

0
 0

 1
 0

0 0 0 0 0
0 0 1 0

1

0

1

0

0 0 0

+

No

Write

Increment

PC

Control Inputs and

Paths for ADI

22

Decoding for LD

19 – 17

DA

16 – 14

AA

13 – 11

BA

10

MB

9 – 6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0

0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 1 0

Bus A Bus B

Address out

Data out MW

Data in

MUX B

1 0

MUX D

0 1

DATAPATH

RW
DA

AA

Constant
in

BA

MB

FS

V

C

N

Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data in Address

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L

P B
C

Branch
Control

V
C
N
Z

J
B L

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL
0 1

0
 0

 0
 0

1 0 0 1 0
0 0 0 0

0

1

1

0

0 1 0

No Write

Increment

PC

Control Inputs and

Paths for LD

23

Decoding for BRZ

19 – 17

DA

16 – 14

AA

13 – 11

BA

10

MB

9 – 6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0

1 1 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

Bus A Bus B

Address out

Data out MW

Data in

MUX B

1 0

MUX D

0 1

DATAPATH

RW
DA

AA

Constant
in

BA

MB

FS

V

C

N

Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data in Address

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L

P B
C

Branch
Control

V
C
N
Z

J
B L

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL
1 0

0
 0

 0
 0

0 1 0 0 0
0 0 0 0

1

0

0

0

1 0 0

No Write

Branch on

Z

No Write

Control Inputs and

Paths for BRZ

24

Abstract View of Critical Path

 Part 1 – Datapaths
• Introduction

• Datapath Example

 Arithmetic Logic Unit (ALU)

 Shifter

• Datapath Representation and Control Word

 Part 2 – A Simple Computer
• Instruction Set Architecture (ISA)

• Single-Cycle Hardwired Control

 Part 3 – Multiple Cycle Hardwired Control
• Single Cycle Computer Issues

• Sequential Control Design

Overview

25

Single-Cycle Computer Issues

 Shortcoming of Single Cycle Design

• Complexity of instructions executable in a single cycle is limited

• Accessing both an instruction and data from a simple single

memory impossible

• A long worst case delay path limits clock frequency and the rate of

performing instructions

 Handling of Shortcomings

• The first two shortcomings can be handled by the multiple-cycle

computer

• The third shortcoming is dealt with by using a technique called

pipelining described in later lectures

Multiple-Cycle Computer

 Converting the single-cycle computer into a

multiple-cycle computer involves:

• Modifications to the datapath/memory

• Modification to the control unit

• Design of a multiple-cycle hardwired control

26

Bus A Bus B

Address out

Data out MW

Data in

MUX B

1 0

MUX D

0 1

DATAPATH

RW
DA

AA

Constant
in

BA

MB

FS

V

C

N

Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data in Address

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L

P B
C

Branch
Control

V
C
N
Z

J
B L

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL

Single-Cycle

Simple Computer (SC)

Inst. & Data

Memory

Inst. & Data

Address Mux

New Instruction

Path Datapath

Modifications

Use a single memory for

both instructions and

data

 Requires new MUX M

with control signal MM to

select between the

instruction address from

the PC and the data

address

 Requires path from

Memory Data Out to the

instruction register in the

control unit

27

Datapath Modifications (Continued)

 Additional registers needed to hold operands

between cycles

• Add 8 temporary storage registers to the Register File

 Register File becomes 16 x 16

 Addresses to Register File increase from 3 to 4 bits

• Register File addresses come from:

 The instruction for the Storage Resource registers (0 to 7)

 The control word for the Temporary Storage registers (8 to 15)

• Add Register Address Logic to the Register File to select

the register address sources

 Three new control fields for register address source selection

and temporary storage addressing: DX, AX, BX

Register

Address

Logic

16 x 16 Register

File

28

 Control Unit Modifications

 Must hold instruction over the multiple cycles to

draw on instruction information throughout

instruction execution

• Requires an Instruction Register (IR) to hold the

instruction

 Load control signal IL

• Requires the addition of a "hold" operation to the PC

since it only counts up to obtain a new instruction

 New encoding for the PC operations uses 2 bits

Instruction

Register IR

Add "hold"

operation

29

 Part 1 – Datapaths
• Introduction

• Datapath Example

 Arithmetic Logic Unit (ALU)

 Shifter

• Datapath Representation and Control Word

 Part 2 – A Simple Computer
• Instruction Set Architecture (ISA)

• Single-Cycle Hardwired Control

 Part 3 – Multiple Cycle Hardwired Control
• Single Cycle Computer Issues

• Sequential Control Design

Overview

Sequential Control Design

 To control microoperations over multiple cycles, a Sequential

Control replaces the Instruction Decoder

• Input: Opcode, Status Bits, Control State

• Output:

 Control Word (Modified Datapath Control part)

 Next State: Control Word (New Sequencing Control part)

• Consists of:

 Register to store the Control State

 Combinational Logic to generate the Control Word (both

sequencing and datapath control parts)

• The Combinational Logic is quite complex so we assume that it

is implemented by using a PLA or synthesized logic and focus on

ASM level design

30

Control State

Register

Combinational

Control Logic

New/ Modified

Control Word

Control Word

 Datapath part: field MM added, and fields DX, AX, and BX

replace DA, AA, and BA, respectively

• If the MSB of a field is 0, e.g., AX = 0XXX, then AA is 0

concatenated with SA (3bits) field in the IR

• If the MSB of a field is 1, e. g. AX = 1011, then AA = 1011

 Sequencing part:

• IL controls the loading of the IR

• PS controls the operations of the PC

• NS gives the next state of the Control State register

 E.g., NS is 4 bits, the length of the Control State register - 16 states are

viewed as adequate for this design

NS PS

I

L

M

B

M

D

R

W

M

M

M

W

DX AX BX FS

27 24 23 22 21 20 17 16 13 12 9 8 7 4 3 2 1 0

Datapath Sequencing

31

DX AX BX Code MB Code FS Code MD R W MM MW Code

R [DR] R [SA] R [SB] 0 XXX Register 0 0000 FnUt No

write

Address

Out

No

write

0

R 8 R 8 R 8 1000 Constant 1 0001 Data In Write PC Write 1

R 9 R 9 R 9 1001 0010

R 10 R 10 R 10 1010 Unused 0011

R 11 R 11 R 11 1011 Unused 0100

R 12 R 12 R 12 1100 0101

R 13 R 13 R 13 1101 0110

R 14 R 14 R 14 1110 Unused 0111

R 15 R 15 R 15 1111 1000

1001

1010

1011

1100

1101

1110

Unused 1111

F A
←

F A 1
+ ←

F A B
+ ←

F A B 1
+ ←

F A 1
– ←

F A B ^

←

F A B
v ←

F A B
←

F A
←

F B
←

F sr B
←

F sl B
←

+

+

Encoding for Datapath Control

Encoding for Sequencing Control

NS PS IL

Ne xt State Action Code Action Code

Gives next state

of Control State

Register

Hold PC 00 No load 0

Inc PC 01 Load instr . 1

Branch 10

J ump 11

32

ASM Charts for Sequential Control

 An instruction requires two steps:

• Instruction fetch – obtaining an instruction from memory

• Instruction execution – the execution of a sequence of

microoperations to perform instruction processing

• Due to the use of the IR, these two steps require a minimum of

two clock cycles

 ISA: Instruction Specifications and ASM charts for the

instructions (that all require two clock cycles)

• A vector decision box is used for the opcode

• Scalar decision boxes are used for the status bits

ISA: Instruction Specifications (for reference)

I n st ruction Speci fications for the Simple Comput er - Part 1

Instr u ctio n O pc ode Mnem on ic Form a t D escrip tion

St a t u s

Bits

Move A 0000000
MO V A RD ,RA R [DR] R[SA] N , Z

Increment 0000001
INC R D , RA R[DR] R [SA] + 1 N , Z

Add 0000010
ADD R D , RA,RB R [DR] R[SA] + R[SB] N , Z

Subtr a ct 0000101
SUB R D , RA,RB R [DR] R[SA] [SB] N , Z

D e crement 0000110
DEC R D , RA R[DR] R[SA] 1 N , Z

AND 0001000
AND R D , RA,RB R [DR] R[SA] R[SB] N , Z

O R 0001001 OR RD ,RA,RB R[DR] R[SA] R[SB] N , Z

Exclusive OR 0001010 XOR R D , RA,RB R [DR] R[SA] R[SB] N , Z

NO T 0001011
NO T R D , RA R[DR] N, Z R[SA]

R

33

P C P C + 1

+ R [S B] + 1

R
[D R

] R
[S A

]

v

R
[S B

]

R
[D R

] R
[S A

]

R
[D R

] R
[S A

]

+ R
[S B

]

R
[D R

] R
[S A

]

–

1 R [D R] R [S A]

R
[S B

]

R
[D R

] R
[S A

]

R
[S B

]

R
[D R

] R
[S A

]

0 0 0 0 0 0 1

0 0 0 0 0 1 0
0 0 0 0 1 0 1
0 0 0 0 1 1 0

0 0 0 1 0 0 0
0 0 0 1 0 0 1
0 0 0 1 0 1 0
0 0 0 1 0 1 1

0 0 0 0 0 0 0

O p c o d e

E X 0

I N F

R [D R] R [S A]

←

+ 1 R [D R] R [S A] ←

←

←

I R M [P C] ←

←

←

←

←

←

←

+

ASM Chart for 2-Cycle

Instructions - Part 1

ISA: Instruction Specifications (for reference)

I n st ruction Speci fications for the Simple Comput er - Part 2

Instr u ctio n O pc ode Mnem on ic Form a t D escrip tion

St a t u s

Bits

Move B 0001100 MO VB RD ,RB R [DR] R[SB]

Shift Right 0001101 SHR R D , RB R[DR] sr R[SB]

Shift Left 0001110 SHL R D , RB R[DR] sl R[SB]

Load Imm e diate 1001100 LDI R D , O P R[DR] zf OP

Add Immediate 1000010 ADI R D , RA,OP R [DR] R[SA] + zf OP

Load 0010000 LD RD ,RA R [DR] M[SA]

Store 0100000 ST RA,RB M [SA] R[SB]

Branch on Zero 1100000 BRZ R A,AD if (R[S A] = 0) PC PC + s e A D

Branch on Negative 1100001 BRN R A,AD if (R[S A] < 0) PC PC + s e A D

J u mp 1110000 JMP R A P C R[SA]

34

IR ←M[PC]

0 0 1 0 0 0 0

0 1 0 0 0 0 0

1 0 0 1 1 0 0
1 0 0 0 0 1 0
1 1 0 0 0 0 0

1 1 0 0 0 0 1

1 1 1 0 0 0 0

0 0 0 1 1 0 0

O p c o d e

E X 0

I N F

P C P C + 1 ←

R
[D R

] R
[S B

] ←

+ se AD PC PC
←

PC R [S A]
←

R
[D R

] zf OP ←

Chapter 10 Part 2

[] R
[D R

] R
[S A

] ← M

R [S B] ← [] R
[S A

] M

R
[D R

] R
[S A

] ←

+ zf OP

0

0

1

1

ASM Chart for 2-Cycle

Instructions - Part 2

 Portion in Red

duplicated from

previous ASM

chart

Z

N

To INF

State Table for 2-Cycle Instructions

S t a t e

I n p u t s
N e x t

s t a t e

O u t p u t s

C o m m e n t s O p c o d e V C N Z

I

L

P

S D X A X B X

M

B F S

M

D

R

W

M

M

M

W

I N F X X X X X X X X X X X EX0 1 00 X X X X X X X X X X X X X X X X X X 0 1 0 I R ←

M [PC]

E X 0 0 000000 X X X X INF 0 01 0 X X X 0 X X X X X X X X 0000 0 1 X 0 M O V A R [DR]
← R [SA]*

E X 0 0 000001 X X X X INF 0 01 0 X X X 0 X X X X X X X X 0001 0 1 X 0 I N C R [DR]
← R [S A] + 1*

E X 0 0 000010 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 0010 0 1 X 0 A D D R [DR]
← R [S A] + R [S B]*

E X 0 0 000101 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 0101 0 1 X 0 S U B R [DR }
← R [S A] + + 1*

E X 0 0 000110 X X X X INF 0 01 0 X X X 0 X X X X X X X X 0110 0 1 X 0 D E C R [DR]
← R [S A] + (- 1) *

E X 0 0 001000 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 1000 0 1 X 0 A N D R [DR]
← R [SA] ^ R [S B]*

E X 0 0 001001 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 1001 0 1 X 0 O R R [DR]
← R [SA]

v R [S B]*

E X 0 0 001010 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 1010 0 1 X 0 X O R R [DR]
← R [SA] R [S B]*

E X 0 0 001011 X X X X INF 0 01 0 X X X 0 X X X X X X X X 1011 0 1 X 0 N O T R [DR]
← *

E X 0 0 001100 X X X X INF 0 01 0 X X X X X X X 0 X X X 0 1100 0 1 X 0 M O V B R [DR]
← R [S B]*

E X 0 0 010000 X X X X INF 0 01 0 X X X 0 X X X X X X X X X X X X 1 1 0 0 L D R [DR]
← M [R [SA]]*

E X 0 0 100000 X X X X INF 0 01 X X X X 0 X X X 0 X X X 0 X X X X X 0 0 1 S T M [R [SA]]
← R [S B]*

E X 0 1 001100 X X X X INF 0 01 0 X X X X X X X X X X X 1 1100 0 1 0 0 LDI R [DR]
← z f OP *

E X 0 1 000010 X X X X INF 0 01 0 X X X 0 X X X X X X X 1 0010 0 1 0 0 ADI R [DR]
← R [S A] + z f OP *

E X 0 1 100000 X X X 1 I N F 0 1 0 X X X X 0 X X X X X X X X 0000 X 0 0 0 B R Z PC
← PC + s e A D

E X 0 1 100000 X X X 0 I N F 0 0 1 X X X X 0 X X X X X X X X 0000 X 0 0 0 B R Z PC
← PC + 1

E X 0 1 100001 X X 1 X INF 0 10 X X X X 0 X X X X X X X X 0000 X 0 0 0 B R N PC
← PC + s e A D

E X 0 1 100001 X X 0 X INF 0 01 X X X X 0 X X X X X X X X 0000 X 0 0 0 B R N PC
← PC + 1

E X 0 1 110000 X X X X INF 0 11 X X X X 0 X X X X X X X X 0000 X 0 0 0 J M P PC
← R [S A]

R S B []

R S A []

+

* For this state and input combinations, PC PC+1 also occurs

35

3-Process ASM VHDL Code

entity controller is

 port (opcode : in std_logic_vector(6 downto 0);

 reset, clk : in std_logic;

 zero, negative : in std_logic;

 IL, MB, MD, MM, RW, MW : out std_logic;

 PS : out std_logic_vector(1 downto 0);

 DX, AX, BX, FS : out std_logic_vector(3 downto 0);

);

end controller;

architecture Behavioral of controller is

type state_type is (RES, FTH, EX);

signal cur_state, next_state : state_type;

begin

state_register:process(clk, reset)

 begin

 if (reset='1') then

 cur_state<=RES;

 elsif (clk'event and clk='1') then

 cur_state<=next_state;

 end if;

end process;

3-Process ASM VHDL Code

out_func: process (cur_state, opcode, zero, negative)

begin

(IL,PS, MB, FS, MD, RW, MW, MM) <= std_logic_vector'(0x"000");

FS<="0000";

 case cur_state is

 when RES =>

 next_state <= FTH;

 when FTH =>

 -- set the control vector values

 next_state <= EXE;

 when EXE =>

 case opcde is:

 when “0000000” +>

end process;

end Behavioral;

36

EX0

Opcode

Opcode

Opcode

To INF

Opcode

Opcode

0001101
Z

Z

Z

0

1

0

1

1

0

0001101

0001101

0001101

0001101

EX1

EX2

EX3

EX4

R8 ← R[SA]

R9 ← zf OP

R8 ← sr R8

R9 ← R9 - 1

PC ← PC +
 1

R[DR] ← R8

ASM Chart for Multiple

Bits Right Shift

 R8 – used to perform shifts

 R9 – used to store and

decrement shift count

 Zero test in EX1 is to

determine if the shift amount

is 0; if so, goes to state INF

State Table For Multiple Bits Right Shift

S t a t e

I n p u t s

N e x t

s t a t e

O u t p u t s

C o m m e n t s

O p c o d e V C N Z

I

L P S D X A X B X M B F S M D R W M M

M

W

EX0 0001 101 X X X 0 E X 1 0 0 0 1000 0 X X X X X X X X 0000 0 1 X 0 S R M R 8
← R [S A], :

→ EX1

EX0 0001 101 X X X 1 I N F 0 0 1 1000 0 X X X X X X X X 0000 0 1 X 0 S R M R 8
← R [S A], Z :

→ I N F *

EX1 0001 101 X X X 0 E X 2 0 0 0 1001 X X X X X X X X 1 1100 0 1 X 0 S R M R 9
← z f OP , :

→ EX2

EX1 0001 101 X X X 1 I N F 0 0 1 1001 X X X X X X X X 1 1100 0 1 X 0 S R M R 9
← z f OP , Z :

→ I N F *

EX2 0001 101 X X X X EX3 0 00 1000 X X X X 1000 0 1101 0 1 X 0 S R M R 8
← s r R 8,

→ EX3

EX3 0001 101 X X X 0 E X2 0 0 0 1001 1001 X X X X X 0110 0 1 X 0 S R M R 9
← R 9 - 1, :

→ E X 2

EX3 0001 101 X X X 1 E X4 0 0 0 1001 1001 X X X X X 0110 0 1 X 0 S R M R 9
← R 9 - 1, Z :

→ E X 4

EX4 0001 101 X X X X INF 0 01 0 X X X 1000 X X X X X 0000 0 1 X 0 S R M R [D R]
← R 8,

→ I N F *

Z

Z

Z

* For this state and input combinations, PC PC+1 also occurs

37

Summary

 Concept of Datapath for implementing

computer microinstructions

 Control word provides a means of organizing

the control of the microoperations

 Concept of ISA and instruction formats and

operations of Simple Computer (SC)

 Single clock cycle vs. multiple cycle

(instruction fetch + instruction execution)

