
1

EE 459/500 – HDL Based Digital

Design with Programmable Logic

Lecture 18

Computer Basics

References:

Chapter 9 of M. Morris Mano and Charles Kime, Logic and

Computer Design Fundamentals, Pearson Prentice Hall, 4th

Edition, 2008.

Overview

 Part 1 – Datapaths
• Introduction

• Datapath Example

 Arithmetic Logic Unit (ALU)

 Shifter

• Datapath Representation and Control Word

 Part 2 – A Simple Computer
• Instruction Set Architecture (ISA)

• Single-Cycle Hardwired Control

 Part 3 – Multiple Cycle Hardwired Control
• Single Cycle Computer Issues

• Sequential Control Design

2

Introduction

 Computer Specification

• Instruction Set Architecture (ISA) - the specification of a

computer's appearance to a programmer at its lowest level

• Computer Architecture - a high-level description of the hardware

implementing the computer derived from the ISA

• The architecture usually includes additional specifications such as

speed/performance, cost, and reliability

Introduction

 Simple computer architecture decomposed into:

• Datapath: performing operations (i.e., data manipulation)

 A set of registers

 Microoperations performed on the data stored in the registers

 A control interface

• Control unit: controlling datapath operations

 Programmable & Non-programmable

Control
inputs

Data

inputs

Data

outputs

Datapath

Control
outputs

Control signals

Status signals

Control
unit

3

 Register file:

• Four parallel-load regs

• Two mux-based
register selectors

• Register destination
decoder

 Microoperation implementation

• Mux B for external
constant input

• Buses A and B with external
address and data outputs

• Function Unit:

 ALU and Shifter with
Mux F for output select

 Mux D for external data input

 Logic for generating status bits:
V, C, N, Z

 Datapath Example

MD select
0 1

MUX D

V

C

N

Z

n

n

n

n

n

n

n

n

n n

n

2 2

n

n

A data B data

Register file

1 0

MUX B Address

Out

Data

Out

Bus A

Bus B

n

n

Function unit

A B n

G select
4

Zero Detect

MF select

n n

n

F

MUX F

H select
2

n

A B

S 2:0
 || C in

Arithmetic/logic

unit (ALU)

G

B

S

Shifter

H

MUX

0

1

2

3

MUX

0

1

2

3

0 1 2 3

Decoder

Load

Load

Load

Load

Load enable

Write

D data

D address

2

Destination select

Constant in

MB select

A select

A address

B select

B address

R3

R2

R1

R0

Bus D n

Data In

I L
I R

0 0

0 1

Microoperation: R0 ← R1 + R2

MD select
0 1
MUX D

V

C

N

Z

n

n

n

n

n

n

n

n

n n

n

2 2

n

n

A data B data

Register file

1 0

MUX B Address

Out

Data
Out

Bus A

Bus B

n

n

Function unit

A B n

G select
4

Zero Detect

MF select

n n

n

F

MUX F

H select
2

n

A B

S 2:0
 || C in

Arithmetic/logic

unit (ALU)

G

B
S

Shifter

H

MUX

0

1

2

3

MUX

0

1

2

3

0 1 2 3

Decoder

Load

Load

Load

Load

Load enable

Write

D data

D address
2

Destination select

Constant in

MB select

A select

A address

B select

B address

R3

R2

R1

R0

Bus D n

Data In

I L
I R

0 0

0 1

Datapath Example: Performing a Microoperation

 Apply 01 to A select to place

contents of R1 onto Bus A

  Apply 10 to B select to place

contents of R2 onto B data and

apply 0 to MB select to place

B data on Bus B

 Apply 0010 to G select to perform

addition G = Bus A + Bus B

 Apply 0 to MF select and 0 to MD

select to place the value of G onto

BUS D

 Apply 00 to Destination select to

enable the Load input to R0

 Apply 1 to Load Enable to force the Load

input to R0 to 1 so that R0 is loaded on

the clock pulse (not shown)

 The overall microoperation requires

1 clock cycle

4

Datapath Example: Key Control Actions for

Microoperation Alternatives

Various microoperations:

 Perform a shift microoperation:

apply 1 to MF select

 Use a constant in a micro-operation

using Bus B: apply 1 to MB select

 Provide an address and data for a

memory or output write

microoperation – apply 0 to Load

enable to prevent register loading

 Provide an address and obtain data

for a memory or output read

microoperation – apply 1 to MD

select

 For some of the above, other control

signals become don't cares

MD select
0 1
MUX D

V

C

N

Z

n

n

n

n

n

n

n

n

n n

n

2 2

n

n

A data B data

Register file

1 0

MUX B Address

Out

Data
Out

Bus A

Bus B

n

n

Function unit

A B n

G select
4

Zero Detect

MF select

n n

n

F

MUX F

H select
2

n

A B

S 2:0
 || C in

Arithmetic/logic

unit (ALU)

G

B
S

Shifter

H

MUX

0

1

2

3

MUX

0

1

2

3

0 1 2 3

Decoder

Load

Load

Load

Load

Load enable

Write

D data

D address
2

Destination select

Constant in

MB select

A select

A address

B select

B address

R3

R2

R1

R0

Bus D n

Data In

I L
I R

0 0

0 1

 Part 1 – Datapaths
• Introduction

• Datapath Example

 Arithmetic Logic Unit (ALU)

 Shifter

• Datapath Representation and Control Word

 Part 2 – A Simple Computer
• Instruction Set Architecture (ISA)

• Single-Cycle Hardwired Control

 Part 3 – Multiple Cycle Hardwired Control
• Single Cycle Computer Issues

• Sequential Control Design

Overview

5

Arithmetic Logic Unit (ALU)

C i C i +
 1

One stage of
arithmetic

circuit

One stage of
logic circuit

2-to-1
MUX 0

1
S

A i

B i

S 0

S 1

S 2

C i

G i

A i

B i

S 0

S 1

A i

B i

S 0

S 1

C in

 Decompose the ALU into:

• An arithmetic circuit & A logic circuit

• A selector to pick between the two circuits

 There are only four functions of B
to select as Y in G = A + Y +Cin:

• 0

• B

• B

• 1

Arithmetic Circuit

 Arithmetic circuit design

• Decompose the arithmetic circuit
into:

 An n-bit parallel adder

 A logic block that selects four
choices for input B to the adder

S 1

S 0

B

n

B input
logic

n
A

n

X

C in

Y

n G =
 X +

Y +
 C in

C out

n-bit
parallel
adder

Cin = 0 Cin = 1

G = A

G = A + 1

G = A – 1

G = A + B

G = A

G = A + B

G = A + B + 1

G = A + B + 1

Y

Arithmetic

operations

6

4-Bit Basic Left/Right Shifter

 Serial Inputs:
• IR for right shift

• IL for left shift

 Shift Functions:
(S1, S0) = 00 Pass B unchanged

 01 Right shift

 10 Left shift

 11 Unused

B 3

I R I L

S

2

B 2
B 1

B 0

H 0 H 1 H 2 H 3

S

M
U
X

0 1 2
S

M
U
X

0 1 2
S

M
U
X

0 1 2
S

M
U
X

0 1 2

Barrel Shifter

 A rotate is a shift in which the bits shifted out are inserted into the positions

vacated

 The circuit rotates its contents left from 0 to 3 positions depending on S:

S = 00 position unchanged S = 10 rotate left by 2 positions

S = 01 rotate left by 1 positions S = 11 rotate left by 3 positions

D 3

S 0

3 S 1 S 0

M
U
X

D 2 D 1 D 0

Y 0 Y 1 Y 2 Y 3

S 1

0 1 2 3 S 1 S 0

M
U
X

0 1 2 3 S 1 S 0

M
U
X

0 1 2 3 S 1 S 0

M
U
X

0 1 2

7

 Large barrel shifters can be constructed using:

• Layers of multiplexers

• 2-dimensional array circuits designed at the electronic level

• Example 8-bit:

 Layer 1 shifts by 0, 4

 Layer 2 shifts by 0, 2

 Layer 3 shifts by 0, 1

 Part 1 – Datapaths
• Introduction

• Datapath Example

 Arithmetic Logic Unit (ALU)

 Shifter

• Datapath Representation and Control Word

 Part 2 – A Simple Computer
• Instruction Set Architecture (ISA)

• Single-Cycle Hardwired Control

 Part 3 – Multiple Cycle Hardwired Control
• Single Cycle Computer Issues

• Sequential Control Design

Overview

8

Datapath Representation

 In the register file:
• Select inputs for multiplexers

=> A address & B address

• Decoder input => D address

• Load enable => write

• Input data to the registers =>
D data

• Multiplexer outputs => A
data & B data

 The register file now
appears like a memory
based on clocked flip-
flops

 FS?

Address out

Data out

Constant in

MB select

Bus A

Bus B

FS

V

C

N

Z

MD select

n

D data

Write

D address

A address B address

A data B data

2
m x

 n
Register file

m

m m

n
n

n

n

n

A B

Function
unit

F

4

MUX B

1 0

MUX D

0 1

n

n
Data in

Boolean Equations:

MFi = F3 F2

Gi = Fi

Hi = Fi

FS(3:0)

MF

Select

G

Select(3:0)

H

Select(1:0) Micr ooperation

0000 0 0000 XX

0001 0 0001 XX

0010 0 0010 XX

0011 0 0011 XX

0100 0 0100 XX

0101 0 0101 XX

0110 0 0110 XX

0111 0 0111 XX

1000 0 1 X 00 XX

1001 0 1 X 01 XX

1010 0 1 X 10 XX

1011 0 1 X 11 XX

1100 1 XXXX 00

1101 1 XXXX 01

1110 1 XXXX 10

F A

F A 1

F A B

F A B 1

F A B

F A B 1

F A 1

F A

F A B

F A B

F A B

F A

F B

F sr B

F sl B

Definition of Function Select

(FS) Codes V

C

N

Z

Function unit

A B

n

G select
4

Zero Detect

MF select

n n

n F

MUX F

H select
2

A B

S 2:0
 || C in

Arithmetic/logic

unit (ALU)

G

B
S

Shifter

H

I L
I R

0

0

0 1

FS

9

The Control Word

 The datapath has many control

input signals, can be organized

into a control word

 To execute a microinstruction, we

apply control word values for a

clock cycle

 Control word

D A AA BA
M

B

FS
M

D

R

W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DA – D Address, AA – A Address

BA – B Address, MB – Mux B

FS – Function Select, MD – Mux D

RW – Register Write

10

8

14

0

13

11

Bus D

Constant in

n

n

MUX B

1 0

D data Write

D address

A address B address

A data B data

8 x
 n

Register file

A B

Function

unit

n

n

n

MUX D

0 1

n
n

Data in

Bus A

Bus B

R W

12

AA

15

D A

n

BA

9

Address out

Data out

V

C

N

Z

7

MD 1

MB 6

4 FS

5

3

2

F A

D A , AA, B A MB FS MD R W

Function Code Function Code Function Code Function Code Function Code

R 0 000 Register 0 0000 Function 0 No write 0

R 1 001 Constant 1 0001 Data In 1 Write 1

R 2 010 0010

R 3 011 0011

R 4 100 0100

R 5 101 0101

R 6 110 0110

R 7 111 0111

1000

1001

1010

1011

1100

1101

1110

F A

F A 1

B

F A B 1

F A B

F A B 1

F A 1

F A

F A B

F A B

F A B

F A

F B

F sr B

F sl B

Control Word Encoding

10

Microoperations for the Datapath – Symbolic &

Binary Representation

Micr o-

o p eratio n D A A A B A M B F S M D R W

0 0 1 0 1 0 011 0 010 1 0 1

10 0 XX X 110 0 111 0 0 1

11 1 1 11 XXX 0 000 1 0 1

00 1 0 00 XXX 1 001 0 0 1

XX X X XX 011 0 XXX X X 0

10 0 XX X XXX X XXX X 1 1

1 0 1 0 0 0 000 0 101 0 0 1

R 1 R 2 R 3 –

R 4 s l R6

R 7 R 7 1 +

R 1 R 0 2 +

Data out R 3

R 4 D ata in

R 5 0

Micr o-

op eratio n D A A A B A M B F S M D R W

R 1 R 2 R 3 R e g ister F unction Write

R 4 — R 6 R e g ister F unction Write

R 7 R 7 — Re gister Function Write

R 1 R 0 — Con s tant Write

—— R 3 R eg i s t e r — — N o Wr it e

R 4 —— — — Data in Write

R 5 R 0 R 0 R e g ister F unction Write

R 1 R 2 R 3 – F A B 1 + + =

R 4 s l R6 F sl B =

R 7 R 7 1 + F A 1 + =

R 1 R 0 2 + F A B + =

Data out R 3

R 4 D ata in

R 5 0 F A B =

Function

Datapath

Simulation
1 4 7 1 0 4 5

2 0 7 0

3 6 0 3 0

X X

2 0 7 0

3 6 0 2 3 0

14 1 2 0 10

2 0 0 1 X

18 18

1 255 2

2

3

4 12 18

5 0

6

7 8

clock

DA

1 4

AA

2

BA

3 6

Constant_in 2

MB

Address_out

Data_out

FS

5

Status_bits

Data_in

MD

RW

reg0 0

reg1

 reg2

reg3

reg4

reg5

reg6

reg7

7
8

5

11

 Part 1 – Datapaths
• Introduction

• Datapath Example

 Arithmetic Logic Unit (ALU)

 Shifter

• Datapath Representation and Control Word

 Part 2 – A Simple Computer
• Instruction Set Architecture (ISA)

• Single-Cycle Hardwired Control

 Part 3 – Multiple Cycle Hardwired Control
• Single Cycle Computer Issues

• Sequential Control Design

Overview

Instruction Set Architecture (ISA) for Simple

Computer (SC)

 Instructions are stored in RAM or ROM as a program, the addresses
for instructions are provided by a program counter (PC)
• Count up or load a new address

• The PC and associated control logic are part of the Control Unit

 A typical instruction specifies:
• Operands to use

• Operation to be performed

• Where to place the result, or which instruction to execute next

 Executing an instruction
• Activate the necessary sequence of operations specified by the

instruction

• Be controlled by the control unit and performed in:
 Datapath

 Control unit

 External hardware such as memory or input/output

12

ISA Examples

 RISC (Reduced Instruction Set Computer)
• Digital Alpha

• Sun Sparc

• MIPS RX000

• IBM PowerPC

• HP PA/RISC

 CISC (Complex Instruction Set Computer)
• Intel x86

• Motorola 68000

• DEC VAX

 VLIW (Very Large Instruction Word)
• Intel Itanium

ISA: Storage Resources

 "Harvard architecture“:

 separate instruction and

data memories

 Permit use of

single clock cycle per

instruction

implementation

 Due to use of "cache" in

modern computer

architectures, it is a fairly

realistic model

Instruction
memory

2
15 x 16

Data
memory

2
15 x 16

Register file

8 x 16

Program counter

(PC)

13

ISA: Instruction Formats

 The three formats are: Register, Immediate, and Jump/Branch

 All formats contain an Opcode field in bits 9 through 15.

• The Opcode specifies the operation to be performed

(c) Jump and Branch

(a) Register

Opcode

Destination
register (DR)

Source reg-
ister A (SA)

Source reg-
ister B (SB)

15 9 8 6 5 3 2 0

(b) Immediate

Opcode

Destination
register (DR)

Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Operand (OP)

Opcode

Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Address (AD)
(Right)

Address (AD)
(Left)

ISA: Instruction Format - Register

 This format supports:

• R1 ← R2 + R3

• R1 ← sl R2

 Three 3-bit register fields:

• DR - destination register (R1 in the examples)

• SA - the A source register (R2 in the first example)

• SB - the B source register (R3 in the first example and R2 in the

second example)

 Why is R2 in the second example SB instead of SA?

(a) Register

Opcode

Destination

register (DR)

Source reg-

ister A (SA)

Source reg-

ister B (SB)

15 9 8 6 5 3 2 0

14

ISA: Instruction Format - Immediate

(b) Immediate

Opcode

Destination

register (DR)

Source reg-

ister A (SA)

15 9 8 6 5 3 2 0

Operand (OP)

 This format supports:

• R1 ← R2 + 3

 The B Source Register field is replaced by an Operand field OP

specifying a constant. (3-bit constant, values from 0 to 7)

 The constant:

• Zero-fill (on the left of) the operand to form 16-bit constant

• 16-bit representation for values 0 through 7

ISA: Instruction Format - Jump & Branch

 This instruction supports changes in the sequence of instruction
execution by adding an extended, 6-bit, signed 2’s-complement
address offset to the PC value

 The SA field: permits jumps and branches on N or Z based on
the contents of Source register A

 The Address (AD) field (6-bit) replaces the DR and SB fields

• Example: Suppose that a jump for the Opcode and the PC contains
45 (0…0101101) and AD contains – 12 (110100). Then the new PC
value will be:
0…0101101 + (1…110100) = 0…0100001 (i.e., 45 + (– 12) = 33)

(c) Jump and Branch

Opcode

Source reg-

ister A (SA)

15 9 8 6 5 3 2 0

Address (AD)

(Right)

Address (AD)

(Left)

15

ISA: Instruction Specifications
Instr u ctio n O pc ode Mnem on ic Form a t D escrip tion

St a t u s

Bits

Move A 0000000
MO V A RD ,RA R [DR] R[SA] N , Z

Increment 0000001
INC R D , RA R[DR] R [SA] + 1 N , Z

Add 0000010
ADD R D , RA,RB R [DR] R[SA] + R[SB] N , Z

Subtr a ct 0000101
SUB R D , RA,RB R [DR] R[SA] [SB] N , Z

D e crement 0000110
DEC R D , RA R[DR] R[SA] 1 N , Z

AND 0001000
AND R D , RA,RB R [DR] R[SA] R[SB] N , Z

O R 0001001 OR RD ,RA,RB R[DR] R[SA] R[SB] N , Z

Exclusive OR 0001010 XOR R D , RA,RB R [DR] R[SA] R[SB] N , Z

NO T 0001011
NO T R D , RA R[DR] N, Z R[SA]

R

Move B 0001100 MO VB RD ,RB R [DR] R[SB]

Shift Right 0001101 SHR R D , RB R[DR] sr R[SB]

Shift Left 0001110 SHL R D , RB R[DR] sl R[SB]

Load Imm e diate 1001100 LDI R D , O P R[DR] zf OP

Add Immediate 1000010 ADI R D , RA,OP R [DR] R[SA] + zf OP

Load 0010000 LD RD ,RA R [DR] M[R[SA]]

Store 0100000 ST RA,RB M [R[SA]] R[SB]

Branch on Zero 1100000 BRZ R A,AD if (R[S A] = 0) PC PC + s e A D

Branch on Negative 1100001 BRN R A,AD if (R[S A] < 0) PC PC + s e A D

J u mp 1110000 JMP R A P C R[SA]

ISA: Example Instructions and Data in Memory

Memory Representation of Instruction and Data

D ecimal

Ad d r ess
Memory Contents

Decimal

Opcode Other Field Operation

25 00001 01 001 010 011 5 (Subtract) DR:1, SA:2, SB:3 R1 R2 R3

35 01000 00 000 100 101 32 (Store) S A:4, SB:5 M[R4] R5

45 10000 10 010 111 011 66 (Add

Im mediate)

DR: 2 , S A : 7 , OP :3 R 2 R7

55 11000 00 101 110 100 96 (Branch

on Z e ro)

AD: 44, SA:6 If R6 = 0,
PC PC 20

70 000 0000 00110 0 000 Data = 1 92. After execution of instruction in 35,
Data = 8 0 .

16

 Part 1 – Datapaths
• Introduction

• Datapath Example

 Arithmetic Logic Unit (ALU)

 Shifter

• Datapath Representation and Control Word

 Part 2 – A Simple Computer
• Instruction Set Architecture (ISA)

• Single-Cycle Hardwired Control

 Part 3 – Multiple Cycle Hardwired Control
• Single Cycle Computer Issues

• Sequential Control Design

Overview

 Based on the ISA defined,

design a computer architecture

to support the ISA

 The architecture is to fetch and

execute each instruction in a

single clock cycle

Single-Cycle

Hardwired

Control:

Bus A Bus B

Address out

Data out MW

Data in

MUX B

1 0

MUX D

0 1

DATAPATH

RW
DA

AA

Constant
in

BA

MB

FS

V

C

N

Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data_in Address

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L

P B
C

Branch
Control

V
C
N
Z

J
B L

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL

17

The Control Unit

 Datapath: the Data Memory has been attached to the Address

Out, Data Out, and Data In lines of the Datapath.

 Control Unit:

• The MW input to the Data Memory is the Memory Write signal from

the Control Unit.

• The Instruction Memory address input is provided by the PC and its

instruction output feeds the Instruction Decoder.

• Zero-filled IR(2:0) becomes Constant In

• Extended IR(8:6) || IR(2:0) and Bus A are address inputs to the PC.

• The PC is controlled by Branch Control logic

Program Counter (PC) Function

 PC function is based on instruction specifications involving jumps

and branches:

• The first two transfers require addition to the PC of:

 Address Offset = Extended IR(8:6) || IR(2:0)

• The third transfer requires that the PC be loaded with:

 Jump Address = Bus A = R[SA]

 In addition to the above register transfers, the PC must implement

the counting function:

• PC ← PC + 1

Branch on Zero BRZ if (R[S A] = 0) PC

←
 PC + s e A D

Branch on Negative BRN if (R[S A] < 0) PC PC + s e A D

J u mp JMP P C R[SA]

←

←

18

PC Function (Contd.)

 Branch Control determines the PC transfers based on five

inputs:

• N,Z – negative and zero status bits

• PL – load enable for the PC

• JB – Jump/Branch select: If JB = 1, Jump, else Branch

• BC – Branch Condition select: If BC = 1, branch for N = 1, else

branch for Z = 1.

PL JB BC PC Operation

0 X X Count Up

1 1 X Jump

1 0 1 Branch on Negative (else Count Up)

1 0 0 Branch on Zero (else Count Up)

Instruction Decoder

 Converts the instruction into the signals necessary to
control the computer during the single cycle execution,
combinational
• Inputs: the 16-bit Instruction

• Outputs: control signals

 DA, AA, and BA: Register file addresses (IR (8:0))

• simply pass-through signals: DA = DR, AA = SA, and BA = SB

 FS: Function Unit Select

 MB and MD: Multiplexer Select Controls

 RW and MW: Register file and Data Memory Write Controls

 PL, JB, and BC: PC Controls

 Observe that for other than branches and jumps, FS =
IR(12:9)
• The other control signals should depend as much as possible on

IR(15:13)

19

Instruction Decoder (Contd.)

T ruth T a ble for Instruction Decoder Logic

Instruction Function T ype

Instruction Bits

15 14 13 9

1. Function unit operations using

registers

0 0 0 X

2. Memory read 0 0 1 X

3. Memory write 0 1 0 X

4. Function unit operations using

register and constant

1 0 0 X

5. Conditional branch on zero (Z) 1 1 0 0 X

6. Conditional branch on negative

(N)

1 1 0 1

7. Unconditional J ump 1 1 1 X X

Contr ol W o r d Bits

M B M D R W M W P L J B B C

0 0 1 0 0 X X

0 1 1 0 0 X X

0 X 0 1 0 X X

1 0 1 0 0 X X

X 0 0 1 0 0

X X 0 0 1 0 1

X 0 0 1 1 X

Instruction Decoder (Contd.)

 Instruction types are based on the control blocks and the
seven control signals to be generated (MB, MD, RW,
MW, PL, JB, BC):

• Datapath and Memory Control (types 1-4)

 Mux B

 Memory and Mux D

• PC Control (types 5-7)
 Bit 15 = Bit 14 = 1 => PL

 Bit 13 => JB.

 Bit 9 was use as BC which contradicts FS = 0000 needed for
branches. To force FS(0) to 0 for branches, Bit 9 into FS(0) is
disabled by PL.

20

Instruction Decoder (Contd.)

 The end result by use of the types, careful assignment of codes,

and use of don't cares, yields very simple logic:

 This completes the

design of most of the

essential parts of

the single-cycle

simple computer

19 – 17

DA

16 – 14

AA

13 – 11

BA

10

MB

9 – 6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0

Example Instruction Execution

 Decoding, control inputs and paths shown for

ADI, LD and BRZ on next 6 slides

21

Decoding for ADI

19 – 17

DA

16 – 14

AA

13 – 11

BA

10

MB

9 – 6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0

1 0 0 0 0 1 0

1 1 0 0 1 0 0 0 0 0 0

Bus A Bus B

Address out

Data out MW

Data in

MUX B

1 0

MUX D

0 1

DATAPATH

RW
DA

AA

Constant
in

BA

MB

FS

V

C

N

Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data in Address

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L

P B
C

Branch
Control

V
C
N
Z

J
B L

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL
1 1

0
 0

 1
 0

0 0 0 0 0
0 0 1 0

1

0

1

0

0 0 0

+

No

Write

Increment

PC

Control Inputs and

Paths for ADI

22

Decoding for LD

19 – 17

DA

16 – 14

AA

13 – 11

BA

10

MB

9 – 6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0

0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 1 0

Bus A Bus B

Address out

Data out MW

Data in

MUX B

1 0

MUX D

0 1

DATAPATH

RW
DA

AA

Constant
in

BA

MB

FS

V

C

N

Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data in Address

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L

P B
C

Branch
Control

V
C
N
Z

J
B L

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL
0 1

0
 0

 0
 0

1 0 0 1 0
0 0 0 0

0

1

1

0

0 1 0

No Write

Increment

PC

Control Inputs and

Paths for LD

23

Decoding for BRZ

19 – 17

DA

16 – 14

AA

13 – 11

BA

10

MB

9 – 6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0

1 1 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

Bus A Bus B

Address out

Data out MW

Data in

MUX B

1 0

MUX D

0 1

DATAPATH

RW
DA

AA

Constant
in

BA

MB

FS

V

C

N

Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data in Address

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L

P B
C

Branch
Control

V
C
N
Z

J
B L

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL
1 0

0
 0

 0
 0

0 1 0 0 0
0 0 0 0

1

0

0

0

1 0 0

No Write

Branch on

Z

No Write

Control Inputs and

Paths for BRZ

24

Abstract View of Critical Path

 Part 1 – Datapaths
• Introduction

• Datapath Example

 Arithmetic Logic Unit (ALU)

 Shifter

• Datapath Representation and Control Word

 Part 2 – A Simple Computer
• Instruction Set Architecture (ISA)

• Single-Cycle Hardwired Control

 Part 3 – Multiple Cycle Hardwired Control
• Single Cycle Computer Issues

• Sequential Control Design

Overview

25

Single-Cycle Computer Issues

 Shortcoming of Single Cycle Design

• Complexity of instructions executable in a single cycle is limited

• Accessing both an instruction and data from a simple single

memory impossible

• A long worst case delay path limits clock frequency and the rate of

performing instructions

 Handling of Shortcomings

• The first two shortcomings can be handled by the multiple-cycle

computer

• The third shortcoming is dealt with by using a technique called

pipelining described in later lectures

Multiple-Cycle Computer

 Converting the single-cycle computer into a

multiple-cycle computer involves:

• Modifications to the datapath/memory

• Modification to the control unit

• Design of a multiple-cycle hardwired control

26

Bus A Bus B

Address out

Data out MW

Data in

MUX B

1 0

MUX D

0 1

DATAPATH

RW
DA

AA

Constant
in

BA

MB

FS

V

C

N

Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data in Address

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L

P B
C

Branch
Control

V
C
N
Z

J
B L

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL

Single-Cycle

Simple Computer (SC)

Inst. & Data

Memory

Inst. & Data

Address Mux

New Instruction

Path Datapath

Modifications

Use a single memory for

both instructions and

data

 Requires new MUX M

with control signal MM to

select between the

instruction address from

the PC and the data

address

 Requires path from

Memory Data Out to the

instruction register in the

control unit

27

Datapath Modifications (Continued)

 Additional registers needed to hold operands

between cycles

• Add 8 temporary storage registers to the Register File

 Register File becomes 16 x 16

 Addresses to Register File increase from 3 to 4 bits

• Register File addresses come from:

 The instruction for the Storage Resource registers (0 to 7)

 The control word for the Temporary Storage registers (8 to 15)

• Add Register Address Logic to the Register File to select

the register address sources

 Three new control fields for register address source selection

and temporary storage addressing: DX, AX, BX

Register

Address

Logic

16 x 16 Register

File

28

 Control Unit Modifications

 Must hold instruction over the multiple cycles to

draw on instruction information throughout

instruction execution

• Requires an Instruction Register (IR) to hold the

instruction

 Load control signal IL

• Requires the addition of a "hold" operation to the PC

since it only counts up to obtain a new instruction

 New encoding for the PC operations uses 2 bits

Instruction

Register IR

Add "hold"

operation

29

 Part 1 – Datapaths
• Introduction

• Datapath Example

 Arithmetic Logic Unit (ALU)

 Shifter

• Datapath Representation and Control Word

 Part 2 – A Simple Computer
• Instruction Set Architecture (ISA)

• Single-Cycle Hardwired Control

 Part 3 – Multiple Cycle Hardwired Control
• Single Cycle Computer Issues

• Sequential Control Design

Overview

Sequential Control Design

 To control microoperations over multiple cycles, a Sequential

Control replaces the Instruction Decoder

• Input: Opcode, Status Bits, Control State

• Output:

 Control Word (Modified Datapath Control part)

 Next State: Control Word (New Sequencing Control part)

• Consists of:

 Register to store the Control State

 Combinational Logic to generate the Control Word (both

sequencing and datapath control parts)

• The Combinational Logic is quite complex so we assume that it

is implemented by using a PLA or synthesized logic and focus on

ASM level design

30

Control State

Register

Combinational

Control Logic

New/ Modified

Control Word

Control Word

 Datapath part: field MM added, and fields DX, AX, and BX

replace DA, AA, and BA, respectively

• If the MSB of a field is 0, e.g., AX = 0XXX, then AA is 0

concatenated with SA (3bits) field in the IR

• If the MSB of a field is 1, e. g. AX = 1011, then AA = 1011

 Sequencing part:

• IL controls the loading of the IR

• PS controls the operations of the PC

• NS gives the next state of the Control State register

 E.g., NS is 4 bits, the length of the Control State register - 16 states are

viewed as adequate for this design

NS PS

I

L

M

B

M

D

R

W

M

M

M

W

DX AX BX FS

27 24 23 22 21 20 17 16 13 12 9 8 7 4 3 2 1 0

Datapath Sequencing

31

DX AX BX Code MB Code FS Code MD R W MM MW Code

R [DR] R [SA] R [SB] 0 XXX Register 0 0000 FnUt No

write

Address

Out

No

write

0

R 8 R 8 R 8 1000 Constant 1 0001 Data In Write PC Write 1

R 9 R 9 R 9 1001 0010

R 10 R 10 R 10 1010 Unused 0011

R 11 R 11 R 11 1011 Unused 0100

R 12 R 12 R 12 1100 0101

R 13 R 13 R 13 1101 0110

R 14 R 14 R 14 1110 Unused 0111

R 15 R 15 R 15 1111 1000

1001

1010

1011

1100

1101

1110

Unused 1111

F A
←

F A 1
+ ←

F A B
+ ←

F A B 1
+ ←

F A 1
– ←

F A B ^

←

F A B
v ←

F A B
←

F A
←

F B
←

F sr B
←

F sl B
←

+

+

Encoding for Datapath Control

Encoding for Sequencing Control

NS PS IL

Ne xt State Action Code Action Code

Gives next state

of Control State

Register

Hold PC 00 No load 0

Inc PC 01 Load instr . 1

Branch 10

J ump 11

32

ASM Charts for Sequential Control

 An instruction requires two steps:

• Instruction fetch – obtaining an instruction from memory

• Instruction execution – the execution of a sequence of

microoperations to perform instruction processing

• Due to the use of the IR, these two steps require a minimum of

two clock cycles

 ISA: Instruction Specifications and ASM charts for the

instructions (that all require two clock cycles)

• A vector decision box is used for the opcode

• Scalar decision boxes are used for the status bits

ISA: Instruction Specifications (for reference)

I n st ruction Speci fications for the Simple Comput er - Part 1

Instr u ctio n O pc ode Mnem on ic Form a t D escrip tion

St a t u s

Bits

Move A 0000000
MO V A RD ,RA R [DR] R[SA] N , Z

Increment 0000001
INC R D , RA R[DR] R [SA] + 1 N , Z

Add 0000010
ADD R D , RA,RB R [DR] R[SA] + R[SB] N , Z

Subtr a ct 0000101
SUB R D , RA,RB R [DR] R[SA] [SB] N , Z

D e crement 0000110
DEC R D , RA R[DR] R[SA] 1 N , Z

AND 0001000
AND R D , RA,RB R [DR] R[SA] R[SB] N , Z

O R 0001001 OR RD ,RA,RB R[DR] R[SA] R[SB] N , Z

Exclusive OR 0001010 XOR R D , RA,RB R [DR] R[SA] R[SB] N , Z

NO T 0001011
NO T R D , RA R[DR] N, Z R[SA]

R

33

P C P C + 1

+ R [S B] + 1

R
[D R

] R
[S A

]

v

R
[S B

]

R
[D R

] R
[S A

]

R
[D R

] R
[S A

]

+ R
[S B

]

R
[D R

] R
[S A

]

–

1 R [D R] R [S A]

R
[S B

]

R
[D R

] R
[S A

]

R
[S B

]

R
[D R

] R
[S A

]

0 0 0 0 0 0 1

0 0 0 0 0 1 0
0 0 0 0 1 0 1
0 0 0 0 1 1 0

0 0 0 1 0 0 0
0 0 0 1 0 0 1
0 0 0 1 0 1 0
0 0 0 1 0 1 1

0 0 0 0 0 0 0

O p c o d e

E X 0

I N F

R [D R] R [S A]

←

+ 1 R [D R] R [S A] ←

←

←

I R M [P C] ←

←

←

←

←

←

←

+

ASM Chart for 2-Cycle

Instructions - Part 1

ISA: Instruction Specifications (for reference)

I n st ruction Speci fications for the Simple Comput er - Part 2

Instr u ctio n O pc ode Mnem on ic Form a t D escrip tion

St a t u s

Bits

Move B 0001100 MO VB RD ,RB R [DR] R[SB]

Shift Right 0001101 SHR R D , RB R[DR] sr R[SB]

Shift Left 0001110 SHL R D , RB R[DR] sl R[SB]

Load Imm e diate 1001100 LDI R D , O P R[DR] zf OP

Add Immediate 1000010 ADI R D , RA,OP R [DR] R[SA] + zf OP

Load 0010000 LD RD ,RA R [DR] M[SA]

Store 0100000 ST RA,RB M [SA] R[SB]

Branch on Zero 1100000 BRZ R A,AD if (R[S A] = 0) PC PC + s e A D

Branch on Negative 1100001 BRN R A,AD if (R[S A] < 0) PC PC + s e A D

J u mp 1110000 JMP R A P C R[SA]

34

IR ←M[PC]

0 0 1 0 0 0 0

0 1 0 0 0 0 0

1 0 0 1 1 0 0
1 0 0 0 0 1 0
1 1 0 0 0 0 0

1 1 0 0 0 0 1

1 1 1 0 0 0 0

0 0 0 1 1 0 0

O p c o d e

E X 0

I N F

P C P C + 1 ←

R
[D R

] R
[S B

] ←

+ se AD PC PC
←

PC R [S A]
←

R
[D R

] zf OP ←

Chapter 10 Part 2

[] R
[D R

] R
[S A

] ← M

R [S B] ← [] R
[S A

] M

R
[D R

] R
[S A

] ←

+ zf OP

0

0

1

1

ASM Chart for 2-Cycle

Instructions - Part 2

 Portion in Red

duplicated from

previous ASM

chart

Z

N

To INF

State Table for 2-Cycle Instructions

S t a t e

I n p u t s
N e x t

s t a t e

O u t p u t s

C o m m e n t s O p c o d e V C N Z

I

L

P

S D X A X B X

M

B F S

M

D

R

W

M

M

M

W

I N F X X X X X X X X X X X EX0 1 00 X X X X X X X X X X X X X X X X X X 0 1 0 I R ←

M [PC]

E X 0 0 000000 X X X X INF 0 01 0 X X X 0 X X X X X X X X 0000 0 1 X 0 M O V A R [DR]
← R [SA]*

E X 0 0 000001 X X X X INF 0 01 0 X X X 0 X X X X X X X X 0001 0 1 X 0 I N C R [DR]
← R [S A] + 1*

E X 0 0 000010 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 0010 0 1 X 0 A D D R [DR]
← R [S A] + R [S B]*

E X 0 0 000101 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 0101 0 1 X 0 S U B R [DR }
← R [S A] + + 1*

E X 0 0 000110 X X X X INF 0 01 0 X X X 0 X X X X X X X X 0110 0 1 X 0 D E C R [DR]
← R [S A] + (- 1) *

E X 0 0 001000 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 1000 0 1 X 0 A N D R [DR]
← R [SA] ^ R [S B]*

E X 0 0 001001 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 1001 0 1 X 0 O R R [DR]
← R [SA]

v R [S B]*

E X 0 0 001010 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 1010 0 1 X 0 X O R R [DR]
← R [SA] R [S B]*

E X 0 0 001011 X X X X INF 0 01 0 X X X 0 X X X X X X X X 1011 0 1 X 0 N O T R [DR]
← *

E X 0 0 001100 X X X X INF 0 01 0 X X X X X X X 0 X X X 0 1100 0 1 X 0 M O V B R [DR]
← R [S B]*

E X 0 0 010000 X X X X INF 0 01 0 X X X 0 X X X X X X X X X X X X 1 1 0 0 L D R [DR]
← M [R [SA]]*

E X 0 0 100000 X X X X INF 0 01 X X X X 0 X X X 0 X X X 0 X X X X X 0 0 1 S T M [R [SA]]
← R [S B]*

E X 0 1 001100 X X X X INF 0 01 0 X X X X X X X X X X X 1 1100 0 1 0 0 LDI R [DR]
← z f OP *

E X 0 1 000010 X X X X INF 0 01 0 X X X 0 X X X X X X X 1 0010 0 1 0 0 ADI R [DR]
← R [S A] + z f OP *

E X 0 1 100000 X X X 1 I N F 0 1 0 X X X X 0 X X X X X X X X 0000 X 0 0 0 B R Z PC
← PC + s e A D

E X 0 1 100000 X X X 0 I N F 0 0 1 X X X X 0 X X X X X X X X 0000 X 0 0 0 B R Z PC
← PC + 1

E X 0 1 100001 X X 1 X INF 0 10 X X X X 0 X X X X X X X X 0000 X 0 0 0 B R N PC
← PC + s e A D

E X 0 1 100001 X X 0 X INF 0 01 X X X X 0 X X X X X X X X 0000 X 0 0 0 B R N PC
← PC + 1

E X 0 1 110000 X X X X INF 0 11 X X X X 0 X X X X X X X X 0000 X 0 0 0 J M P PC
← R [S A]

R S B []

R S A []

+

* For this state and input combinations, PC  PC+1 also occurs

35

3-Process ASM VHDL Code

entity controller is

 port (opcode : in std_logic_vector(6 downto 0);

 reset, clk : in std_logic;

 zero, negative : in std_logic;

 IL, MB, MD, MM, RW, MW : out std_logic;

 PS : out std_logic_vector(1 downto 0);

 DX, AX, BX, FS : out std_logic_vector(3 downto 0);

);

end controller;

architecture Behavioral of controller is

type state_type is (RES, FTH, EX);

signal cur_state, next_state : state_type;

begin

state_register:process(clk, reset)

 begin

 if (reset='1') then

 cur_state<=RES;

 elsif (clk'event and clk='1') then

 cur_state<=next_state;

 end if;

end process;

3-Process ASM VHDL Code

out_func: process (cur_state, opcode, zero, negative)

begin

(IL,PS, MB, FS, MD, RW, MW, MM) <= std_logic_vector'(0x"000");

FS<="0000";

 case cur_state is

 when RES =>

 next_state <= FTH;

 when FTH =>

 -- set the control vector values

 next_state <= EXE;

 when EXE =>

 case opcde is:

 when “0000000” +>

end process;

end Behavioral;

36

EX0

Opcode

Opcode

Opcode

To INF

Opcode

Opcode

0001101
Z

Z

Z

0

1

0

1

1

0

0001101

0001101

0001101

0001101

EX1

EX2

EX3

EX4

R8 ← R[SA]

R9 ← zf OP

R8 ← sr R8

R9 ← R9 - 1

PC ← PC +
 1

R[DR] ← R8

ASM Chart for Multiple

Bits Right Shift

 R8 – used to perform shifts

 R9 – used to store and

decrement shift count

 Zero test in EX1 is to

determine if the shift amount

is 0; if so, goes to state INF

State Table For Multiple Bits Right Shift

S t a t e

I n p u t s

N e x t

s t a t e

O u t p u t s

C o m m e n t s

O p c o d e V C N Z

I

L P S D X A X B X M B F S M D R W M M

M

W

EX0 0001 101 X X X 0 E X 1 0 0 0 1000 0 X X X X X X X X 0000 0 1 X 0 S R M R 8
← R [S A], :

→ EX1

EX0 0001 101 X X X 1 I N F 0 0 1 1000 0 X X X X X X X X 0000 0 1 X 0 S R M R 8
← R [S A], Z :

→ I N F *

EX1 0001 101 X X X 0 E X 2 0 0 0 1001 X X X X X X X X 1 1100 0 1 X 0 S R M R 9
← z f OP , :

→ EX2

EX1 0001 101 X X X 1 I N F 0 0 1 1001 X X X X X X X X 1 1100 0 1 X 0 S R M R 9
← z f OP , Z :

→ I N F *

EX2 0001 101 X X X X EX3 0 00 1000 X X X X 1000 0 1101 0 1 X 0 S R M R 8
← s r R 8,

→ EX3

EX3 0001 101 X X X 0 E X2 0 0 0 1001 1001 X X X X X 0110 0 1 X 0 S R M R 9
← R 9 - 1, :

→ E X 2

EX3 0001 101 X X X 1 E X4 0 0 0 1001 1001 X X X X X 0110 0 1 X 0 S R M R 9
← R 9 - 1, Z :

→ E X 4

EX4 0001 101 X X X X INF 0 01 0 X X X 1000 X X X X X 0000 0 1 X 0 S R M R [D R]
← R 8,

→ I N F *

Z

Z

Z

* For this state and input combinations, PC  PC+1 also occurs

37

Summary

 Concept of Datapath for implementing

computer microinstructions

 Control word provides a means of organizing

the control of the microoperations

 Concept of ISA and instruction formats and

operations of Simple Computer (SC)

 Single clock cycle vs. multiple cycle

(instruction fetch + instruction execution)

