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EE 459/500 – HDL Based Digital 

Design with Programmable Logic 

  

Lecture 18  

Computer Basics 

References:  

Chapter 9 of M. Morris Mano and Charles Kime, Logic and 

Computer Design Fundamentals, Pearson Prentice Hall, 4th 

Edition, 2008. 
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Introduction 

 Computer Specification 

• Instruction Set Architecture (ISA) - the specification of a 

computer's appearance to a programmer at its lowest level 

• Computer Architecture - a high-level description of the hardware 

implementing the computer derived from the ISA 

• The architecture usually includes additional specifications such as 

speed/performance, cost, and reliability 

Introduction 

 Simple computer architecture decomposed into: 

• Datapath: performing operations (i.e., data manipulation) 

 A set of registers 

 Microoperations performed on the data stored in the registers 

 A control interface 

• Control unit: controlling datapath operations 

 Programmable & Non-programmable 

Control 
inputs 

Data 

inputs 

Data 

outputs 

Datapath 

Control 
outputs 

Control signals 

Status signals 

Control 
unit 
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 Register file: 

• Four parallel-load regs  

• Two mux-based  
register selectors 

• Register destination  
decoder 

 Microoperation implementation 

• Mux B for external  
constant input 

• Buses A and B with external 
address and data outputs 

• Function Unit: 

 ALU and Shifter with 
Mux F for output select 

 Mux D for external data input 

 Logic for generating status bits:  
V, C, N, Z 

 Datapath Example 
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Datapath Example: Performing a Microoperation 

 Apply 01 to A select to place  

contents of R1 onto Bus A 

  Apply 10 to B select to place  

contents of R2 onto B data and  

apply 0 to MB select to place  

B data on Bus B 

 
 Apply 0010 to G select to perform 

addition  G = Bus A + Bus B  

 Apply 0 to MF select and 0 to MD 

select to place the value of G onto 

BUS D 

 Apply 00 to Destination select to 

enable the Load input to R0  

 Apply 1 to Load Enable to force the Load 

input to R0 to 1 so that R0 is loaded on 

the clock pulse (not shown) 

 The overall microoperation requires 

1 clock cycle 
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Datapath Example: Key Control Actions for 

Microoperation Alternatives 

Various microoperations: 

 Perform a shift microoperation: 

apply 1 to MF select 

 Use a constant in a micro-operation 

using Bus B:  apply 1 to MB select 

 Provide an address and data for a 

memory or output  write 

microoperation – apply 0 to Load 

enable to prevent register loading 

 Provide an address and obtain data 

for a memory or output read 

microoperation – apply 1 to MD 

select 

 For some of the above, other control 

signals become don't cares 
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Arithmetic Logic Unit (ALU) 

C i C i  + 
 1 

One stage of 
arithmetic 

circuit 

One stage of 
logic circuit 

2-to-1 
MUX 0 

1 
S 

A i 

B i 

S 0 

S 1 

S 2 

C i 

G i 

A i 

B i 

S 0 

S 1 

A i 

B i 

S 0 

S 1 

C in 

 Decompose the ALU into: 

• An arithmetic circuit & A logic circuit 

• A selector to pick between the two circuits 

 There are only four functions of B 
to select as Y in G = A + Y +Cin: 

 

• 0 

• B 

• B 

• 1 

Arithmetic Circuit 

 Arithmetic circuit design 

• Decompose the arithmetic circuit 
into: 

 An n-bit parallel adder 

 A logic block that selects four 
choices for input B to the adder  

S 1 

S 0 

B 

n 

B input 
logic 

n 
A 

n 

X 

C in 

Y 

n G = 
 X + 

Y + 
 C in 

C out 

n-bit 
parallel 
adder 

Cin = 0 Cin = 1 

G = A 

G = A + 1 

G = A – 1 

G = A + B 

G = A 

G = A + B 

G = A + B + 1 

G = A + B + 1 

Y 

Arithmetic 

operations 
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4-Bit Basic Left/Right Shifter 

 

 
 

 
 
 

 

 

 

 Serial Inputs: 
• IR for right shift 

• IL for left shift 

 

  

  

  

  

  
  

  

 Shift Functions: 
(S1, S0) = 00  Pass B unchanged 

                01  Right shift 

                10  Left shift 

                11  Unused 
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Barrel Shifter 

 

 

 

 
 

 

 

 

 A rotate is a shift in which the bits shifted out are inserted into the positions 

vacated 

 The circuit rotates its contents left from 0 to 3 positions depending on S: 

S = 00 position unchanged                  S = 10 rotate left by 2 positions 

S = 01 rotate left by 1 positions           S = 11 rotate left by 3 positions 

D 3 
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 Large barrel shifters can be constructed using: 

• Layers of multiplexers  

• 2-dimensional array circuits designed at the electronic level 

• Example 8-bit: 

 Layer 1 shifts by 0, 4 

 Layer 2 shifts by 0, 2 

 Layer 3 shifts by 0, 1 

 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Multiple Cycle Hardwired Control 
• Single Cycle Computer Issues 

• Sequential Control Design 

Overview  
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Datapath Representation 

 In the register file: 
• Select inputs for multiplexers 

=> A address & B address  

• Decoder input => D address 

• Load enable => write 

• Input data to the registers => 
D data 

• Multiplexer outputs => A 
data & B data 

 

 The register file now 
appears like a memory 
based on clocked flip-
flops 

 

 FS? 
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MF 
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H 
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0000 0 0000 XX 

0001 0 0001 XX 

0010 0 0010 XX 

0011 0 0011 XX 

0100 0 0100 XX 

0101 0 0101 XX 

0110 0 0110 XX 

0111 0 0111 XX 

1000 0 1 X 00 XX 

1001 0 1 X 01 XX 

1010 0 1 X 10 XX 

1011 0 1 X 11 XX 

1100 1 XXXX 00 

1101 1 XXXX 01 

1110 1 XXXX 10 

F        A  

F      A 1 
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The Control Word 

 The datapath has many control 

input signals, can be organized 

into a control word 

 To execute a microinstruction, we 

apply control word values for a 

clock cycle  

 Control word 

D A AA BA 
M 

B 

FS 
M 

D 

R 

W 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

DA – D Address,  AA – A Address 

BA – B Address,  MB – Mux B 

FS – Function Select,  MD – Mux D 
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D data Write 
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 n 
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BA 
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MD 1 

MB 6 

4 FS 

5 

3 

2 

F      A 

D A ,  AA,  B A MB FS MD R W 

Function Code Function Code Function Code Function Code Function Code 

R 0 000 Register 0 0000 Function 0 No write 0 

R 1 001 Constant 1 0001 Data In 1 Write 1 

R 2 010 0010 

R 3 011 0011 

R 4 100 0100 

R 5 101 0101 

R 6 110 0110 

R 7 111 0111 

1000 

1001 

1010 

1011 

1100 

1101 
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F A  

F      A 1 

 

 

B  

F      A B 1  

F      A B  

F      A B 1  

F      A 1   

F      A  

F      A B   

F      A B   

F      A B  

F A  

F      B  

F sr B  
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Control Word Encoding 
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Microoperations for the Datapath – Symbolic & 

Binary Representation 

Micr o- 

o p eratio n D A A A B A M B F S M D R W 

0 0 1 0 1 0 011 0 010 1 0 1 

10 0 XX X 110 0 111 0 0 1 

11 1 1 11 XXX 0 000 1 0 1 

00 1 0 00 XXX 1 001 0 0 1 

XX X X XX 011 0 XXX  X X 0 

10 0 XX X XXX X XXX  X 1                 1 

1 0 1 0 0 0 000 0 101 0 0 1 

R 1 R 2 R 3 –  

R 4 s  l R6  

R 7 R 7    1 +  

R 1 R 0    2 +  

Data out R 3  

R 4 D ata in  

R 5     0  

Micr o- 

op eratio n D A A A B A M B F S M D R W 

R 1 R 2 R 3 R e g ister F unction Write 

R 4 — R 6 R e g ister F unction Write 

R 7 R 7 — Re gister Function Write 

R 1 R 0 — Con s tant Write 

—— R 3 R eg i s t e r — — N o Wr it e 

R 4 —— — — Data in Write 

R 5 R 0 R 0 R e g ister F unction Write 

R 1 R 2 R 3 –  F     A B 1 +    + = 

R 4 s l R6  F sl B = 

R 7 R 7    1 +  F     A 1 + = 

R 1 R 0    2 +  F     A B + = 

Data out R 3  
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R 5     0  F     A B  = 

Function 
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 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Multiple Cycle Hardwired Control 
• Single Cycle Computer Issues 

• Sequential Control Design 

Overview  

Instruction Set Architecture (ISA) for Simple 

Computer (SC) 

 Instructions are stored in RAM or ROM as a program, the addresses 
for instructions are provided by a program counter (PC)  
• Count up or load a new address  

• The PC and associated control logic are part of the Control Unit 

 

 A typical instruction specifies: 
• Operands to use  

• Operation to be performed 

• Where to place the result, or which instruction to execute next 

 

 Executing an instruction  
• Activate the necessary sequence of operations specified by the 

instruction 

• Be controlled by the control unit and performed in: 
 Datapath 

 Control unit 

 External hardware such as memory or input/output 
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ISA Examples 

 RISC (Reduced Instruction Set Computer) 
• Digital Alpha 

• Sun Sparc 

• MIPS RX000 

• IBM PowerPC 

• HP PA/RISC 

 

 CISC (Complex Instruction Set Computer) 
• Intel x86 

• Motorola 68000 

• DEC VAX 

 

 VLIW (Very Large Instruction Word) 
• Intel Itanium  

ISA: Storage Resources 

 "Harvard architecture“:  

    separate instruction and 

data memories 

 

 Permit use of 

single clock cycle per 

instruction 

implementation 

 

 Due  to use of "cache" in  

modern computer 

architectures, it is a fairly 

realistic model 

Instruction 
memory 

2 
15 x  16 

Data 
memory 

2 
15  x  16 

Register file 

8 x  16 

Program counter 

(PC) 
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ISA: Instruction Formats 

 The three formats are: Register, Immediate, and Jump/Branch 

 

 

 

 

 

 

 

 

 

 

 

 

 All formats contain an Opcode field in bits 9 through 15. 

• The Opcode specifies the operation to be performed 

(c) Jump and Branch 

(a) Register 

Opcode 

Destination 
register (DR) 

Source reg- 
ister A (SA) 

Source reg- 
ister B (SB) 

15 9 8 6 5 3 2 0 

(b) Immediate 

Opcode 

Destination 
register (DR) 

Source reg- 
ister A (SA) 

15 9 8 6 5 3 2 0 

Operand (OP) 

Opcode 

Source reg- 
ister A (SA) 

15 9 8 6 5 3 2 0 

Address (AD) 
(Right) 

Address (AD) 
(Left) 

ISA: Instruction Format - Register 

 This format supports: 

• R1 ← R2 + R3 

• R1 ← sl R2 

 Three 3-bit register fields: 

• DR - destination register (R1 in the examples) 

• SA - the A source register (R2 in the first example) 

• SB - the B source register (R3 in the first example and R2 in the 

second example) 

 Why is R2 in the second example SB instead of SA? 

(a) Register 

Opcode 

Destination 

register (DR) 

Source reg- 

ister A (SA) 

Source reg- 

ister B (SB) 

15 9 8 6 5 3 2 0 
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ISA: Instruction Format - Immediate 

(b) Immediate 

Opcode 

Destination 

register (DR) 

Source reg- 

ister A (SA) 

15 9 8 6 5 3 2 0 

Operand (OP) 

 This format supports: 

• R1 ← R2 + 3 

 The B Source Register field is replaced by an Operand field OP 

specifying a constant. (3-bit constant, values from 0 to 7) 

 The constant: 

• Zero-fill (on the left of) the operand to form 16-bit constant 

• 16-bit representation for values 0 through 7 

ISA: Instruction Format - Jump & Branch 

 This instruction supports changes in the sequence of instruction 
execution by adding an extended, 6-bit, signed 2’s-complement 
address offset to the PC value 

 

 The SA field: permits jumps and branches on N or Z based on 
the contents of Source register A  

 

 The Address (AD) field (6-bit) replaces the DR and SB fields 

• Example: Suppose that a jump for the Opcode and the PC contains 
45 (0…0101101) and AD contains – 12 (110100). Then the new PC 
value will be: 
0…0101101 + (1…110100) = 0…0100001   (i.e.,  45 + (– 12) = 33)    

(c) Jump and Branch 

Opcode 

Source reg- 

ister A (SA) 

15 9 8 6 5 3 2 0 

Address (AD) 

(Right) 

Address (AD) 

(Left) 
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ISA: Instruction Specifications 
Instr u ctio n O pc ode Mnem on ic Form a t D escrip tion 

St a t u s 

Bits 

Move A 0000000 
MO V A RD ,RA R [DR]  R[SA ] N , Z 

Increment 0000001 
INC R D , RA R[DR]  R [ SA] + 1 N , Z 

Add 0000010 
ADD R D , RA,RB R [DR]  R[SA ] + R[ SB] N , Z 

Subtr a ct 0000101 
SUB R D , RA,RB R [DR]  R[SA ] [ SB] N , Z 

D e crement 0000110 
DEC R D , RA R[DR]  R[SA ]  1 N , Z 

AND 0001000 
AND R D , RA,RB R [DR]  R[SA ] R[SB ] N , Z 

O R 0001001 OR RD ,RA,RB R[DR]  R[SA ] R[SB ] N , Z 

Exclusive OR 0001010 XOR R D , RA,RB R [DR]  R[SA ]  R[SB] N ,  Z 

NO T 0001011 
NO T R D , RA R[DR]  N, Z R[SA ] 

R 

Move B 0001100 MO VB RD ,RB R [DR]  R[SB] 

Shift Right 0001101 SHR R D , RB R[DR]  sr  R[SB] 

Shift Left 0001110 SHL R D , RB R[DR]  sl R[SB] 

Load Imm e diate 1001100 LDI R D , O P R[DR]  zf OP 

Add Immediate 1000010 ADI R D , RA,OP R [DR]  R[SA] + zf OP 

Load 0010000 LD RD ,RA R [DR]  M[ R[SA] ] 

Store 0100000 ST RA,RB M [R[SA]]  R[SB] 

Branch on Zero 1100000 BRZ R A,AD if (R[ S A] =  0) PC  PC  + s e  A D 

Branch on Negative 1100001 BRN R A,AD if (R[ S A] <  0) PC  PC  + s e  A D 

J u mp 1110000 JMP R A P C  R[SA ] 

ISA: Example Instructions and Data in Memory 

Memory Representation of Instruction and Data 

D ecimal 

Ad d r ess 
Memory Contents 

Decimal 

Opcode Other Field Operation 

25 00001 01 001  010 011 5 (Subtract) DR:1, SA:2, SB:3 R1   R2  R3 

35 01000 00 000  100 101 32 (Store ) S A:4, SB:5 M[ R4]   R5 

45 10000 10 010  111 011 66 (Add 

Im mediate) 

DR: 2 , S A : 7 , OP :3 R 2   R7  

55 11000 00 101  110 100 96 (Branch 

on  Z e ro ) 

AD: 44, SA:6 If R6 = 0, 
PC   PC  20 

70 000 0000 00110  0 000 Data = 1 92. After  execution of instruction in 35, 
Data = 8 0 . 
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 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Multiple Cycle Hardwired Control 
• Single Cycle Computer Issues 

• Sequential Control Design 

Overview  

 Based on the ISA defined, 

design a computer architecture 

to support the ISA 

 The architecture is to fetch and 

execute each instruction in a 

single clock cycle 

Single-Cycle 

Hardwired  

Control: 

Bus A Bus B 

Address out 

Data out MW 

Data in 

MUX B 

1 0 

MUX D 

0 1 

DATAPATH 

RW 
DA 

AA 

Constant 
in 

BA 

MB 

FS 

V 

C 

N 

Z 

Function 
unit 

A B 

F 

MD 
Bus D 

IR(2:0) 

Data_in  Address 

Data 
memory 

Data out 

Register 
file 

D 

A B 

Instruction 
memory 

Address 

Instruction 

Zero fill 

D 
A 

B 
A 

A 
A 

F 
S 

M 
D 

R 
W 

M 
W 

M 
B 

Instruction decoder 

J 
B 

Extend 

L 

P B 
C 

Branch 
Control 

V 
C 
N 
Z 

J 
B L 

P B 
C 

IR(8:6) || IR(2:0) 

PC 

CONTROL 
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The Control Unit 

 Datapath: the Data Memory has been attached to the Address 

Out, Data Out, and Data In lines of the Datapath. 

 

 Control Unit:  

• The MW input to the Data Memory is the Memory Write signal from 

the Control Unit. 

• The Instruction Memory address input is provided by the PC and its 

instruction output feeds the Instruction Decoder. 

• Zero-filled IR(2:0) becomes Constant In 

• Extended IR(8:6) || IR(2:0) and Bus A are address inputs to the PC. 

• The PC is controlled by Branch Control logic 

Program Counter (PC) Function 

 PC function is based on instruction specifications involving jumps 

and branches: 

 

 

 

• The first two transfers require addition to the PC of:   

 Address Offset = Extended IR(8:6) || IR(2:0)  

• The third transfer requires that the PC be loaded with:   

 Jump Address = Bus A = R[SA] 

 

 In addition to the above register transfers, the PC must implement 

the counting function:   

• PC ←  PC + 1 

Branch on Zero BRZ if (R[ S A] =  0) PC 

← 
 PC  + s e   A D 

Branch on Negative BRN if (R[ S A] <  0) PC  PC  + s e  A D 

J u mp JMP P C  R[SA ] 

← 

← 
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PC Function (Contd.) 

 Branch Control determines the PC transfers based on five 

inputs: 

• N,Z – negative and zero status bits 

• PL – load enable for the PC 

• JB – Jump/Branch select: If JB = 1, Jump, else Branch 

• BC  –  Branch Condition select: If BC = 1, branch for N = 1, else 

branch for Z = 1.  

  
PL JB BC PC Operation 

0 X X Count Up 

1 1 X Jump 

1 0 1 Branch on Negative (else Count Up) 

1 0 0 Branch on Zero (else Count Up) 

Instruction Decoder 

 Converts the instruction into the signals necessary to 
control the computer during the single cycle execution, 
combinational 
• Inputs: the 16-bit Instruction 

• Outputs: control signals 

 DA, AA, and BA: Register file addresses (IR (8:0)) 

• simply pass-through signals:  DA = DR, AA = SA, and BA = SB 

 FS: Function Unit Select 

 MB and MD: Multiplexer Select Controls 

 RW and MW: Register file and Data Memory Write Controls 

 PL, JB, and BC: PC Controls 

 Observe that for other than branches and jumps, FS = 
IR(12:9)  
• The other control signals should depend as much as possible on 

IR(15:13) 
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Instruction Decoder (Contd.) 

T ruth T a ble for Instruction Decoder Logic 

Instruction Function T ype 

Instruction Bits 

15 14 13 9 

1. Function unit operations using 

registers 

0       0       0 X 

2. Memory read 0 0 1 X 

3. Memory write 0 1 0 X 

4. Function unit operations using 

register and constant 

1       0       0 X 

5. Conditional branch on zero (Z) 1 1 0 0          X 

6. Conditional branch on negative  

(N) 

1 1 0 1 

7. Unconditional J     ump 1 1 1 X         X 

Contr ol W o r d  Bits 

M B M D R W M W P L J B B C 

0       0      1       0 0 X     X 

0       1      1       0 0 X     X 

0 X 0      1 0 X     X 

1        0      1      0 0 X     X 

X 0 0      1      0      0 

X      X 0 0      1      0      1 

X 0 0      1      1 X 

Instruction Decoder (Contd.) 

 Instruction types are based on the control blocks and the 
seven control signals to be generated (MB, MD, RW, 
MW, PL, JB, BC): 

 
• Datapath and Memory Control (types 1-4)  

 Mux B 

 Memory and Mux D 

 

• PC Control (types 5-7)  
 Bit 15 = Bit 14 = 1 =>  PL 

 Bit 13 => JB. 

 Bit 9 was use as BC which contradicts FS = 0000 needed for 
branches.  To force FS(0) to 0 for branches, Bit 9 into FS(0) is 
disabled by PL. 
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Instruction Decoder (Contd.) 

 The end result by use of the types, careful assignment of codes, 

and use of don't cares, yields very simple logic: 

 

 This completes the 

design of most of the  

essential parts of 

the single-cycle  

simple computer 

 

19 – 17 

DA 

16 – 14 

AA 

13 – 11 

BA 

10 

MB 

9 – 6 

FS 

5 

MD 

4 

RW 

3 

MW 

2 

PL 

1 

JB 

0 

BC 

Instruction 

Opcode DR SA SB 

Control word 

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0 

Example Instruction Execution 

 Decoding, control inputs and paths shown for 

ADI, LD and BRZ  on next 6 slides 
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Decoding for ADI 

19 – 17 

DA 

16 – 14 

AA 

13 – 11 

BA 

10 

MB 

9 – 6 

FS 

5 

MD 

4 

RW 

3 

MW 

2 

PL 

1 

JB 

0 

BC 

Instruction 

Opcode DR SA SB 

Control word 

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0 

1  0  0   0   0  1  0 

1 1 0 0 1 0 0 0 0 0 0 

Bus A Bus B 

Address out 

Data out MW 

Data in 

MUX B 

1 0 

MUX D 

0 1 

DATAPATH 

RW 
DA 

AA 

Constant 
in 

BA 

MB 

FS 

V 

C 

N 

Z 

Function 
unit 

A B 

F 

MD 
Bus D 

IR(2:0) 

Data in Address 

Data 
memory 

Data out 

Register 
file 

D 

A B 

Instruction 
memory 

Address 

Instruction 

Zero fill 

D 
A 

B 
A 

A 
A 

F 
S 

M 
D 

R 
W 

M 
W 

M 
B 

Instruction decoder 

J 
B 

Extend 

L 

P B 
C 

Branch 
Control 

V 
C 
N 
Z 

J 
B L 

P B 
C 

IR(8:6) || IR(2:0) 

PC 

CONTROL 
1 1 

0
 0

 1
 0

 

0 0 0 0 0 
0 0 1 0 

1 

0 

1 

0 

0 0 0 

+ 

No  

Write 

Increment  

PC 

Control Inputs and  

Paths for ADI 
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Decoding for LD 

19 – 17 

DA 

16 – 14 

AA 

13 – 11 

BA 

10 

MB 

9 – 6 

FS 

5 

MD 

4 

RW 

3 

MW 

2 

PL 

1 

JB 

0 

BC 

Instruction 

Opcode DR SA SB 

Control word 

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0 

0  0  1   0   0  0  0 

0 1 0 0 0 0 1 0 0 1 0 

Bus A Bus B 

Address out 

Data out MW 

Data in 

MUX B 

1 0 

MUX D 

0 1 

DATAPATH 

RW 
DA 

AA 

Constant 
in 

BA 

MB 

FS 

V 

C 

N 

Z 

Function 
unit 

A B 

F 

MD 
Bus D 

IR(2:0) 

Data in Address 

Data 
memory 

Data out 

Register 
file 

D 

A B 

Instruction 
memory 

Address 

Instruction 

Zero fill 

D 
A 

B 
A 

A 
A 

F 
S 

M 
D 

R 
W 

M 
W 

M 
B 

Instruction decoder 

J 
B 

Extend 

L 

P B 
C 

Branch 
Control 

V 
C 
N 
Z 

J 
B L 

P B 
C 

IR(8:6) || IR(2:0) 

PC 

CONTROL 
0 1 

0
 0

 0
 0

 

1 0 0 1 0 
0 0 0 0 

0 

1 

1 

0 

0 1 0 

No Write 

Increment 

PC 

Control Inputs and  

Paths for LD 
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Decoding for BRZ 

19 – 17 

DA 

16 – 14 

AA 

13 – 11 

BA 

10 

MB 

9 – 6 

FS 

5 

MD 

4 

RW 

3 

MW 

2 

PL 

1 

JB 

0 

BC 

Instruction 

Opcode DR SA SB 

Control word 

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0 

1 1  0   0   0  0  0 

1 0 0 0 0 0 0 1 0 0 0 

Bus A Bus B 

Address out 

Data out MW 

Data in 

MUX B 

1 0 

MUX D 

0 1 

DATAPATH 

RW 
DA 

AA 

Constant 
in 

BA 

MB 

FS 

V 

C 

N 

Z 

Function 
unit 

A B 

F 

MD 
Bus D 

IR(2:0) 

Data in Address 

Data 
memory 

Data out 

Register 
file 

D 

A B 

Instruction 
memory 

Address 

Instruction 

Zero fill 

D 
A 

B 
A 

A 
A 

F 
S 

M 
D 

R 
W 

M 
W 

M 
B 

Instruction decoder 

J 
B 

Extend 

L 

P B 
C 

Branch 
Control 

V 
C 
N 
Z 

J 
B L 

P B 
C 

IR(8:6) || IR(2:0) 

PC 

CONTROL 
1 0 

0
 0

 0
 0

 

0 1 0 0 0 
0 0 0 0 

1 

0 

0 

0 

1 0 0 

No Write 

Branch on 

Z 

No Write 

Control Inputs and  

Paths for BRZ 
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Abstract View of Critical Path 

 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Multiple Cycle Hardwired Control 
• Single Cycle Computer Issues 

• Sequential Control Design 

Overview  
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Single-Cycle Computer Issues 

 Shortcoming of Single Cycle Design 

• Complexity of instructions executable in a single cycle is limited 

• Accessing both an instruction and data from a simple single 

memory impossible 

• A long worst case delay path limits clock frequency and the rate of 

performing instructions 

 

 Handling of Shortcomings 

• The first two shortcomings can be handled by the multiple-cycle 

computer  

• The third shortcoming is dealt with by using a technique called 

pipelining described in later lectures 

Multiple-Cycle Computer 

 Converting the single-cycle computer into a 

multiple-cycle computer involves: 

• Modifications to the datapath/memory 

• Modification to the control unit 

• Design of a multiple-cycle hardwired control 
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Bus A Bus B 

Address out 

Data out MW 

Data in 

MUX B 

1 0 

MUX D 

0 1 

DATAPATH 

RW 
DA 

AA 

Constant 
in 

BA 

MB 

FS 

V 

C 

N 

Z 

Function 
unit 

A B 

F 

MD 
Bus D 

IR(2:0) 

Data in Address 

Data 
memory 

Data out 

Register 
file 

D 

A B 

Instruction 
memory 

Address 

Instruction 

Zero fill 

D 
A 

B 
A 

A 
A 

F 
S 

M 
D 

R 
W 

M 
W 

M 
B 

Instruction decoder 

J 
B 

Extend 

L 

P B 
C 

Branch 
Control 

V 
C 
N 
Z 

J 
B L 

P B 
C 

IR(8:6) || IR(2:0) 

PC 

CONTROL 

Single-Cycle  

Simple Computer (SC) 

Inst. & Data 

Memory 

Inst. & Data 

Address Mux 

New Instruction 

Path Datapath 

Modifications 

Use a single memory for 

both instructions and 

data 

  

 Requires new MUX M 

with control signal MM to 

select between the 

instruction address from 

the PC and the data 

address 

 

 Requires path from 

Memory Data Out to the 

instruction register in the 

control unit 
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Datapath Modifications (Continued) 

 Additional registers needed to hold operands 

between cycles 

• Add 8 temporary storage registers to the Register File 

 Register File becomes 16 x 16 

 Addresses to Register File increase from 3 to 4 bits 

• Register File addresses come from: 

 The instruction for the Storage Resource registers (0 to 7) 

 The control word for the Temporary Storage registers (8 to 15) 

• Add Register Address Logic to the Register File to select 

the register address sources 

 Three new control fields for register address source selection 

and temporary storage addressing: DX, AX, BX 

Register 

Address 

Logic 

16 x 16 Register 

File 
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 Control Unit Modifications 

 Must hold instruction over the multiple cycles to 

draw on instruction information throughout 

instruction execution 

• Requires an Instruction Register (IR) to hold the 

instruction 

 Load control signal IL 

 

• Requires the addition of a "hold" operation to the PC 

since it only counts up to obtain a new instruction 

 New encoding for the PC operations uses 2 bits 

 

Instruction 

Register IR 

Add "hold" 

operation 
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 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Multiple Cycle Hardwired Control 
• Single Cycle Computer Issues 

• Sequential Control Design 

Overview  

Sequential Control Design 

 To control microoperations over multiple cycles, a Sequential 

Control replaces the Instruction Decoder 

• Input: Opcode, Status Bits, Control State 

• Output:  

 Control Word (Modified Datapath Control part) 

 Next State: Control Word (New Sequencing Control part) 

 

• Consists of: 

 Register to store the Control State 

 Combinational Logic to generate the Control Word (both 

sequencing and datapath control parts) 

 

• The Combinational Logic is quite complex so we assume that it 

is implemented by using a PLA or synthesized logic and focus on 

ASM level design 
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Control State 

Register  

Combinational 

Control Logic 

New/ Modified 

Control Word 

Control Word 

 Datapath part: field MM added, and fields DX, AX, and BX 

replace DA, AA, and BA, respectively 

• If the MSB of a field is 0, e.g., AX = 0XXX,  then AA is 0 

concatenated with SA (3bits) field in the IR 

• If the MSB of a field is 1, e. g. AX = 1011, then AA = 1011 

 Sequencing part:  

• IL controls the loading of the IR 

• PS controls the operations of the PC 

• NS gives the next state of the Control State register 

 E.g., NS is 4 bits, the length of the Control State register - 16 states are 

viewed as adequate for this design 

NS PS 

I 

L 

M 

B 

M 

D 

R 

W 

M 

M 

M 

W 

DX AX BX FS 

27 24 23 22 21 20 17 16 13 12 9 8 7 4 3 2 1 0 

Datapath Sequencing 
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DX AX BX Code MB Code FS Code MD R W MM MW Code 

R [DR] R [SA] R [SB] 0 XXX Register 0 0000 FnUt No 

write 

Address 

Out 

No 

write 

0 

R 8 R 8 R 8 1000 Constant 1 0001 Data In Write PC Write 1 

R 9 R 9 R 9 1001 0010 

R 10 R 10 R 10 1010 Unused 0011 

R 11 R 11 R 11 1011 Unused 0100 

R 12 R 12 R 12 1100 0101 

R 13 R 13 R 13 1101 0110 

R 14 R 14 R 14 1110 Unused 0111 

R 15 R 15 R 15 1111 1000 

1001 

1010 

1011 

1100 

1101 

1110 

Unused 1111 

F      A 
← 

F      A 1 
+ ← 

F      A B 
+ ← 

F      A B 1 
+ ← 

F      A 1 
– ← 

F      A B ^ 

 

← 

F      A B 
v ← 

F      A B 
← 

F      A 
← 

F      B 
← 

F sr B 
← 

F sl B 
← 

+ 

+ 

Encoding for Datapath Control 

Encoding for Sequencing Control 

NS PS IL 

Ne xt State Action Code Action Code 

Gives next state 

of Control State 

Register 

Hold PC 00 No load 0 

Inc PC 01 Load instr . 1 

Branch 10 

J ump 11 
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ASM Charts for Sequential Control 

 An instruction requires two steps:  

• Instruction fetch – obtaining an instruction from memory 

• Instruction execution – the execution of a sequence of 

microoperations to perform instruction processing 

• Due to the use of the IR, these two steps require a minimum of 

two clock cycles  

 

 ISA: Instruction Specifications  and ASM charts for the 

instructions (that all require two clock cycles)  

• A vector decision box is used for the opcode 

• Scalar decision boxes are used for the status bits 

ISA: Instruction Specifications (for reference)  

I n st ruction Speci fications for the Simple Comput er - Part 1 

Instr u ctio n O pc ode Mnem on ic Form a t D escrip tion 

St a t u s 

Bits 

Move A 0000000 
MO V A RD ,RA R [DR]  R[SA ] N , Z 

Increment 0000001 
INC R D , RA R[DR]  R [ SA] + 1 N , Z 

Add 0000010 
ADD R D , RA,RB R [DR]  R[SA ] + R[ SB] N , Z 

Subtr a ct 0000101 
SUB R D , RA,RB R [DR]  R[SA ] [ SB] N , Z 

D e crement 0000110 
DEC R D , RA R[DR]  R[SA ]  1 N , Z 

AND 0001000 
AND R D , RA,RB R [DR]  R[SA ] R[SB ] N , Z 

O R 0001001 OR RD ,RA,RB R[DR]  R[SA ] R[SB ] N , Z 

Exclusive OR 0001010 XOR R D , RA,RB R [DR]  R[SA ]  R[SB] N ,  Z 

NO T 0001011 
NO T R D , RA R[DR]  N, Z R[SA ] 

R 
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P  C P  C + 1 

+ R [ S B ] + 1 

R 
[ D R 

] R 
[ S A 

] 

v 

R 
[ S B 

] 

R 
[ D R 

] R 
[ S A 

] 

R 
[ D R 

] R 
[ S A 

] 

+ R 
[ S B 

] 

R 
[ D R 

] R 
[ S A 

] 

– 

 

1 R [ D R ] R [ S A ] 

R 
[ S B 

] 

R 
[ D R 

] R 
[ S A 

] 

R 
[ S B 

] 

R 
[ D R 

] R 
[ S A 

] 

0 0 0 0 0 0 1 

0 0 0 0 0 1 0 
0 0 0 0 1 0 1 
0 0 0 0 1 1 0 

0 0 0 1 0 0 0 
0 0 0 1 0 0 1 
0 0 0 1 0 1 0 
0 0 0 1 0 1 1 

0 0 0 0 0 0 0 

O p c o d e 

E X 0 

I N F 

R [ D R ] R [ S A ] 

← 

+ 1 R [ D R ] R [ S A ] ← 

← 

← 

I R M [ P C ] ← 

← 

← 

← 

← 

← 

← 

+ 

ASM Chart for 2-Cycle 

Instructions - Part 1 

ISA: Instruction Specifications (for reference) 

I n st ruction Speci fications for the Simple Comput er - Part 2 

Instr u ctio n O pc ode Mnem on ic Form a t D escrip tion 

St a t u s 

Bits 

Move B 0001100 MO VB RD ,RB R [DR]  R[SB] 

Shift Right 0001101 SHR R D , RB R[DR]  sr  R[SB] 

Shift Left 0001110 SHL R D , RB R[DR]  sl R[SB] 

Load Imm e diate 1001100 LDI R D , O P R[DR]  zf OP 

Add Immediate 1000010 ADI R D , RA,OP R [DR]  R[SA] + zf OP 

Load 0010000 LD RD ,RA R [DR]  M[ SA ] 

Store 0100000 ST RA,RB M [SA]  R[SB] 

Branch on Zero 1100000 BRZ R A,AD if (R[ S A] =  0) PC  PC  + s e  A D 

Branch on Negative 1100001 BRN R A,AD if (R[ S A] <  0) PC  PC  + s e  A D 

J u mp 1110000 JMP R A P C  R[SA ] 
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IR ←M[PC] 

0 0 1 0 0 0 0 

0 1 0 0 0 0 0 

1 0 0 1 1 0 0 
1 0 0 0 0 1 0 
1 1 0 0 0 0 0 

1 1 0 0 0 0 1 

1 1 1 0 0 0 0 

0 0 0 1 1 0 0 

O p c o d e 

E X 0 

I N F 

P  C P  C + 1 ← 

R 
[ D R 

] R 
[ S B 

] ← 

+ se AD PC     PC 
← 

PC R [ S A ] 
← 

R 
[ D R 

] zf OP ← 

Chapter 10  Part 2 

[ ] R 
[ D R 

] R 
[ S A 

] ← M 

R [ S B ] ← [ ] R 
[ S A 

] M 

R 
[ D R 

] R 
[ S A 

] ← 

+ zf OP 

0 

0 

1 

1 

ASM Chart for 2-Cycle 

Instructions - Part 2  

 Portion in Red 

duplicated from 

previous ASM 

chart 

Z 

N 

To INF 

State Table for 2-Cycle Instructions 

S t a t e 

I n p u t s 
N e x t 

s t a t e 

O u t p u t s 

C o m m e n t s O p c o d e V C N Z 

I 

L 

P 

S D X A X B X 

M 

B F S 

M 

D 

R 

W 

M 

M 

M 

W 

I N F X X X X X X X X X X X EX0 1 00 X X X X X X X X X X X X X X X X X X 0 1 0 I R ← 
 

M [ PC ] 

E X 0 0 000000 X X X X INF 0 01 0 X X X 0 X X X X X X X X 0000 0 1 X 0 M O V A R [DR ] 
← R [SA]* 

E X 0 0 000001 X X X X INF 0 01 0 X X X 0 X X X X X X X X 0001 0 1 X 0 I N C R [DR ] 
← R [S A ] + 1* 

E X 0 0 000010 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 0010 0 1 X 0 A D D R [DR ] 
← R [S A ] + R [S B ]* 

E X 0 0 000101 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 0101 0 1 X 0 S U B R [DR } 
← R [S A ] + + 1* 

E X 0 0 000110 X X X X INF 0 01 0 X X X 0 X X X X X X X X 0110 0 1 X 0 D E C R [DR ] 
← R [S A ] + ( - 1) * 

E X 0 0 001000 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 1000 0 1 X 0 A N D R [DR ] 
← R [SA] ^ R [S B ]* 

E X 0 0 001001 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 1001 0 1 X 0 O R R [DR ] 
← R [SA] 

v R [S B ]* 

E X 0 0 001010 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 1010 0 1 X 0 X O R R [DR ] 
← R [SA] R [S B ]* 

E X 0 0 001011 X X X X INF 0 01 0 X X X 0 X X X X X X X X 1011 0 1 X 0 N O T R [DR ] 
← * 

E X 0 0 001100 X X X X INF 0 01 0 X X X X X X X 0 X X X 0 1100 0 1 X 0 M O V B R [DR ] 
← R [S B ]* 

E X 0 0 010000 X X X X INF 0 01 0 X X X 0 X X X X X X X X X X X X 1 1 0 0 L D R [DR ] 
← M [ R [SA]]* 

E X 0 0 100000 X X X X INF 0 01 X X X X 0 X X X 0 X X X 0 X X X X X 0 0 1 S T M [ R [SA]] 
← R [S B ]* 

E X 0 1 001100 X X X X INF 0 01 0 X X X X X X X X X X X 1 1100 0 1 0 0 LDI R [DR ] 
← z f OP * 

E X 0 1 000010 X X X X INF 0 01 0 X X X 0 X X X X X X X 1 0010 0 1 0 0 ADI R [DR ] 
← R [S A ] + z f OP * 

E X 0 1 100000 X X X  1 I N F 0 1 0 X X X X 0 X X X X X X X X 0000 X 0 0 0 B R Z PC 
← PC + s e A D 

E X 0 1 100000 X X X  0 I N F 0 0 1 X X X X 0 X X X X X X X X 0000 X 0 0 0 B R Z PC 
← PC + 1 

E X 0 1 100001 X X  1 X INF 0 10 X X X X 0 X X X X X X X X 0000 X 0 0 0 B R N PC 
← PC + s e A D 

E X 0 1 100001 X X  0 X INF 0 01 X X X X 0 X X X X X X X X 0000 X 0 0 0 B R N PC 
← PC + 1 

E X 0 1 110000 X X X X INF 0 11 X X X X 0 X X X X X X X X 0000 X 0 0 0 J M P PC 
← R [S A ] 

R S B [ ] 

R S A [ ] 

+ 

* For this state and input combinations, PC  PC+1 also occurs 
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3-Process ASM VHDL Code 

entity controller is 

    port ( opcode : in std_logic_vector(6 downto 0); 

           reset, clk : in std_logic; 

           zero, negative : in std_logic; 

           IL, MB, MD, MM, RW, MW : out std_logic; 

           PS : out std_logic_vector(1 downto 0); 

           DX, AX, BX, FS : out std_logic_vector(3 downto 0); 

); 

end controller; 

 

architecture Behavioral of controller is 

type state_type is (RES, FTH, EX); 

signal cur_state, next_state : state_type; 

begin 

state_register:process(clk, reset) 

    begin  

    if (reset='1') then  

        cur_state<=RES; 

    elsif (clk'event and clk='1') then  

        cur_state<=next_state; 

    end if; 

end process; 

3-Process ASM VHDL Code 

out_func: process (cur_state, opcode, zero, negative) 

begin 

(IL,PS, MB, FS, MD, RW, MW, MM) <= std_logic_vector'(0x"000"); 

FS<="0000"; 

    case cur_state is  

        when RES =>   

            next_state <= FTH;   

        when FTH =>  

            -- set the control vector values 

            next_state <= EXE;   

        when EXE =>  

            case opcde is:  

                when “0000000” +> 

 

 

end process; 

 

end Behavioral;    
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EX0 

Opcode 

Opcode 

Opcode 

To INF 

Opcode 

Opcode 

0001101 
Z 

Z 

Z 

0 

1 

0 

1 

1 

0 

0001101 

0001101 

0001101 

0001101 

EX1 

EX2 

EX3 

EX4 

R8 ← R[SA] 

R9 ←  zf OP 

R8 ← sr R8 

R9 ← R9 -  1 

PC ← PC + 
 1 

R[DR] ←  R8 

ASM Chart for Multiple 

Bits Right Shift 

 R8 – used to perform shifts 

 

 R9 – used to store  and 

decrement shift count 

 

 Zero test in EX1 is to 

determine if the shift amount 

is 0; if so, goes to state INF 

 

 

State Table For Multiple Bits Right Shift 

S t a t e 

I n p u t s 

N e x t 

s t a t e 

O u t p u t s 

C o m m e n t s 

O p c o d e V C N Z 

I 

L P S D X A X B X M B F S M D R W M M 

M 

W 

EX0 0001 101 X X X 0 E X 1 0 0 0 1000 0 X X X X X X X X 0000 0 1 X 0 S R M R 8 
← R [S A ], : 

→ EX1 

EX0 0001 101 X X X 1 I N F 0 0 1 1000 0 X X X X X X X X 0000 0 1 X 0 S R M R 8 
← R [S A ], Z : 

→ I N F * 

EX1 0001 101 X X X 0 E X 2 0 0 0 1001 X X X X X X X X 1 1100 0 1 X 0 S R M R 9 
← z f OP , : 

→ EX2 

EX1 0001 101 X X X 1 I N F 0 0 1 1001 X X X X X X X X 1 1100 0 1 X 0 S R M R 9 
← z f OP , Z : 

→ I N F * 

EX2 0001 101 X X X X EX3 0 00 1000 X X X X 1000 0 1101 0 1 X 0 S R M R 8 
← s r R 8, 

→ EX3 

EX3 0001 101 X X X 0 E X2 0 0 0 1001 1001 X X X X X 0110 0 1 X 0 S R M R 9 
← R 9 - 1, : 

→ E X 2 

EX3 0001 101 X X X 1 E X4 0 0 0 1001 1001 X X X X X 0110 0 1 X 0 S R M R 9 
← R 9 - 1, Z : 

→ E X 4 

EX4 0001 101 X X X X INF 0 01 0 X X X 1000 X X X X X 0000 0 1 X 0 S R M R [D R ] 
← R 8, 

→ I N F * 

Z 

Z 

Z 

* For this state and input combinations, PC  PC+1 also occurs 
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Summary 

 Concept of Datapath for implementing 

computer microinstructions 

 Control word provides a means of organizing 

the control of the microoperations 

 Concept of ISA and instruction formats and 

operations of Simple Computer (SC) 

 Single clock cycle vs. multiple cycle 

(instruction fetch + instruction execution) 


