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EE 459/500 – HDL Based Digital 

Design with Programmable Logic 

  

Lecture 18  

Computer Basics 

References:  

Chapter 9 of M. Morris Mano and Charles Kime, Logic and 

Computer Design Fundamentals, Pearson Prentice Hall, 4th 

Edition, 2008. 

Overview  

 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Multiple Cycle Hardwired Control 
• Single Cycle Computer Issues 

• Sequential Control Design 
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Introduction 

 Computer Specification 

• Instruction Set Architecture (ISA) - the specification of a 

computer's appearance to a programmer at its lowest level 

• Computer Architecture - a high-level description of the hardware 

implementing the computer derived from the ISA 

• The architecture usually includes additional specifications such as 

speed/performance, cost, and reliability 

Introduction 

 Simple computer architecture decomposed into: 

• Datapath: performing operations (i.e., data manipulation) 

 A set of registers 

 Microoperations performed on the data stored in the registers 

 A control interface 

• Control unit: controlling datapath operations 

 Programmable & Non-programmable 

Control 
inputs 

Data 

inputs 

Data 

outputs 

Datapath 

Control 
outputs 

Control signals 

Status signals 

Control 
unit 
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 Register file: 

• Four parallel-load regs  

• Two mux-based  
register selectors 

• Register destination  
decoder 

 Microoperation implementation 

• Mux B for external  
constant input 

• Buses A and B with external 
address and data outputs 

• Function Unit: 

 ALU and Shifter with 
Mux F for output select 

 Mux D for external data input 

 Logic for generating status bits:  
V, C, N, Z 

 Datapath Example 
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Datapath Example: Performing a Microoperation 

 Apply 01 to A select to place  

contents of R1 onto Bus A 

  Apply 10 to B select to place  

contents of R2 onto B data and  

apply 0 to MB select to place  

B data on Bus B 

 
 Apply 0010 to G select to perform 

addition  G = Bus A + Bus B  

 Apply 0 to MF select and 0 to MD 

select to place the value of G onto 

BUS D 

 Apply 00 to Destination select to 

enable the Load input to R0  

 Apply 1 to Load Enable to force the Load 

input to R0 to 1 so that R0 is loaded on 

the clock pulse (not shown) 

 The overall microoperation requires 

1 clock cycle 
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Datapath Example: Key Control Actions for 

Microoperation Alternatives 

Various microoperations: 

 Perform a shift microoperation: 

apply 1 to MF select 

 Use a constant in a micro-operation 

using Bus B:  apply 1 to MB select 

 Provide an address and data for a 

memory or output  write 

microoperation – apply 0 to Load 

enable to prevent register loading 

 Provide an address and obtain data 

for a memory or output read 

microoperation – apply 1 to MD 

select 

 For some of the above, other control 

signals become don't cares 
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 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Multiple Cycle Hardwired Control 
• Single Cycle Computer Issues 

• Sequential Control Design 

Overview  
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Arithmetic Logic Unit (ALU) 

C i C i  + 
 1 
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 Decompose the ALU into: 

• An arithmetic circuit & A logic circuit 

• A selector to pick between the two circuits 

 There are only four functions of B 
to select as Y in G = A + Y +Cin: 

 

• 0 

• B 

• B 

• 1 

Arithmetic Circuit 

 Arithmetic circuit design 

• Decompose the arithmetic circuit 
into: 

 An n-bit parallel adder 

 A logic block that selects four 
choices for input B to the adder  
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B input 
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G = A + 1 
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G = A 

G = A + B 

G = A + B + 1 

G = A + B + 1 

Y 

Arithmetic 

operations 
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4-Bit Basic Left/Right Shifter 

 

 
 

 
 
 

 

 

 

 Serial Inputs: 
• IR for right shift 

• IL for left shift 

 

  

  

  

  

  
  

  

 Shift Functions: 
(S1, S0) = 00  Pass B unchanged 
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                11  Unused 
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 A rotate is a shift in which the bits shifted out are inserted into the positions 

vacated 

 The circuit rotates its contents left from 0 to 3 positions depending on S: 

S = 00 position unchanged                  S = 10 rotate left by 2 positions 

S = 01 rotate left by 1 positions           S = 11 rotate left by 3 positions 
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 Large barrel shifters can be constructed using: 

• Layers of multiplexers  

• 2-dimensional array circuits designed at the electronic level 

• Example 8-bit: 

 Layer 1 shifts by 0, 4 

 Layer 2 shifts by 0, 2 

 Layer 3 shifts by 0, 1 

 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Multiple Cycle Hardwired Control 
• Single Cycle Computer Issues 

• Sequential Control Design 

Overview  
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Datapath Representation 

 In the register file: 
• Select inputs for multiplexers 

=> A address & B address  

• Decoder input => D address 

• Load enable => write 

• Input data to the registers => 
D data 

• Multiplexer outputs => A 
data & B data 

 

 The register file now 
appears like a memory 
based on clocked flip-
flops 
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The Control Word 

 The datapath has many control 

input signals, can be organized 

into a control word 

 To execute a microinstruction, we 

apply control word values for a 

clock cycle  

 Control word 
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Microoperations for the Datapath – Symbolic & 

Binary Representation 

Micr o- 

o p eratio n D A A A B A M B F S M D R W 

0 0 1 0 1 0 011 0 010 1 0 1 
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 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Multiple Cycle Hardwired Control 
• Single Cycle Computer Issues 

• Sequential Control Design 

Overview  

Instruction Set Architecture (ISA) for Simple 

Computer (SC) 

 Instructions are stored in RAM or ROM as a program, the addresses 
for instructions are provided by a program counter (PC)  
• Count up or load a new address  

• The PC and associated control logic are part of the Control Unit 

 

 A typical instruction specifies: 
• Operands to use  

• Operation to be performed 

• Where to place the result, or which instruction to execute next 

 

 Executing an instruction  
• Activate the necessary sequence of operations specified by the 

instruction 

• Be controlled by the control unit and performed in: 
 Datapath 

 Control unit 

 External hardware such as memory or input/output 
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ISA Examples 

 RISC (Reduced Instruction Set Computer) 
• Digital Alpha 

• Sun Sparc 

• MIPS RX000 

• IBM PowerPC 

• HP PA/RISC 

 

 CISC (Complex Instruction Set Computer) 
• Intel x86 

• Motorola 68000 

• DEC VAX 

 

 VLIW (Very Large Instruction Word) 
• Intel Itanium  

ISA: Storage Resources 

 "Harvard architecture“:  

    separate instruction and 

data memories 

 

 Permit use of 

single clock cycle per 

instruction 

implementation 

 

 Due  to use of "cache" in  

modern computer 

architectures, it is a fairly 

realistic model 

Instruction 
memory 

2 
15 x  16 

Data 
memory 

2 
15  x  16 

Register file 

8 x  16 

Program counter 

(PC) 
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ISA: Instruction Formats 

 The three formats are: Register, Immediate, and Jump/Branch 

 

 

 

 

 

 

 

 

 

 

 

 

 All formats contain an Opcode field in bits 9 through 15. 

• The Opcode specifies the operation to be performed 

(c) Jump and Branch 

(a) Register 

Opcode 

Destination 
register (DR) 

Source reg- 
ister A (SA) 

Source reg- 
ister B (SB) 

15 9 8 6 5 3 2 0 

(b) Immediate 

Opcode 

Destination 
register (DR) 

Source reg- 
ister A (SA) 

15 9 8 6 5 3 2 0 

Operand (OP) 

Opcode 

Source reg- 
ister A (SA) 

15 9 8 6 5 3 2 0 

Address (AD) 
(Right) 

Address (AD) 
(Left) 

ISA: Instruction Format - Register 

 This format supports: 

• R1 ← R2 + R3 

• R1 ← sl R2 

 Three 3-bit register fields: 

• DR - destination register (R1 in the examples) 

• SA - the A source register (R2 in the first example) 

• SB - the B source register (R3 in the first example and R2 in the 

second example) 

 Why is R2 in the second example SB instead of SA? 

(a) Register 

Opcode 

Destination 

register (DR) 

Source reg- 

ister A (SA) 

Source reg- 

ister B (SB) 

15 9 8 6 5 3 2 0 
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ISA: Instruction Format - Immediate 

(b) Immediate 

Opcode 

Destination 

register (DR) 

Source reg- 

ister A (SA) 

15 9 8 6 5 3 2 0 

Operand (OP) 

 This format supports: 

• R1 ← R2 + 3 

 The B Source Register field is replaced by an Operand field OP 

specifying a constant. (3-bit constant, values from 0 to 7) 

 The constant: 

• Zero-fill (on the left of) the operand to form 16-bit constant 

• 16-bit representation for values 0 through 7 

ISA: Instruction Format - Jump & Branch 

 This instruction supports changes in the sequence of instruction 
execution by adding an extended, 6-bit, signed 2’s-complement 
address offset to the PC value 

 

 The SA field: permits jumps and branches on N or Z based on 
the contents of Source register A  

 

 The Address (AD) field (6-bit) replaces the DR and SB fields 

• Example: Suppose that a jump for the Opcode and the PC contains 
45 (0…0101101) and AD contains – 12 (110100). Then the new PC 
value will be: 
0…0101101 + (1…110100) = 0…0100001   (i.e.,  45 + (– 12) = 33)    

(c) Jump and Branch 

Opcode 

Source reg- 

ister A (SA) 

15 9 8 6 5 3 2 0 

Address (AD) 

(Right) 

Address (AD) 

(Left) 
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ISA: Instruction Specifications 
Instr u ctio n O pc ode Mnem on ic Form a t D escrip tion 

St a t u s 

Bits 

Move A 0000000 
MO V A RD ,RA R [DR]  R[SA ] N , Z 

Increment 0000001 
INC R D , RA R[DR]  R [ SA] + 1 N , Z 

Add 0000010 
ADD R D , RA,RB R [DR]  R[SA ] + R[ SB] N , Z 

Subtr a ct 0000101 
SUB R D , RA,RB R [DR]  R[SA ] [ SB] N , Z 

D e crement 0000110 
DEC R D , RA R[DR]  R[SA ]  1 N , Z 

AND 0001000 
AND R D , RA,RB R [DR]  R[SA ] R[SB ] N , Z 

O R 0001001 OR RD ,RA,RB R[DR]  R[SA ] R[SB ] N , Z 

Exclusive OR 0001010 XOR R D , RA,RB R [DR]  R[SA ]  R[SB] N ,  Z 

NO T 0001011 
NO T R D , RA R[DR]  N, Z R[SA ] 

R 

Move B 0001100 MO VB RD ,RB R [DR]  R[SB] 

Shift Right 0001101 SHR R D , RB R[DR]  sr  R[SB] 

Shift Left 0001110 SHL R D , RB R[DR]  sl R[SB] 

Load Imm e diate 1001100 LDI R D , O P R[DR]  zf OP 

Add Immediate 1000010 ADI R D , RA,OP R [DR]  R[SA] + zf OP 

Load 0010000 LD RD ,RA R [DR]  M[ R[SA] ] 

Store 0100000 ST RA,RB M [R[SA]]  R[SB] 

Branch on Zero 1100000 BRZ R A,AD if (R[ S A] =  0) PC  PC  + s e  A D 

Branch on Negative 1100001 BRN R A,AD if (R[ S A] <  0) PC  PC  + s e  A D 

J u mp 1110000 JMP R A P C  R[SA ] 

ISA: Example Instructions and Data in Memory 

Memory Representation of Instruction and Data 

D ecimal 

Ad d r ess 
Memory Contents 

Decimal 

Opcode Other Field Operation 

25 00001 01 001  010 011 5 (Subtract) DR:1, SA:2, SB:3 R1   R2  R3 

35 01000 00 000  100 101 32 (Store ) S A:4, SB:5 M[ R4]   R5 

45 10000 10 010  111 011 66 (Add 

Im mediate) 

DR: 2 , S A : 7 , OP :3 R 2   R7  

55 11000 00 101  110 100 96 (Branch 

on  Z e ro ) 

AD: 44, SA:6 If R6 = 0, 
PC   PC  20 

70 000 0000 00110  0 000 Data = 1 92. After  execution of instruction in 35, 
Data = 8 0 . 
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 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Multiple Cycle Hardwired Control 
• Single Cycle Computer Issues 

• Sequential Control Design 

Overview  

 Based on the ISA defined, 

design a computer architecture 

to support the ISA 

 The architecture is to fetch and 

execute each instruction in a 

single clock cycle 

Single-Cycle 

Hardwired  

Control: 

Bus A Bus B 

Address out 

Data out MW 

Data in 

MUX B 

1 0 

MUX D 

0 1 

DATAPATH 

RW 
DA 

AA 

Constant 
in 

BA 

MB 

FS 

V 

C 

N 

Z 

Function 
unit 

A B 

F 

MD 
Bus D 

IR(2:0) 

Data_in  Address 

Data 
memory 

Data out 

Register 
file 

D 

A B 

Instruction 
memory 

Address 

Instruction 

Zero fill 

D 
A 

B 
A 

A 
A 

F 
S 

M 
D 

R 
W 

M 
W 

M 
B 

Instruction decoder 

J 
B 

Extend 

L 

P B 
C 

Branch 
Control 

V 
C 
N 
Z 

J 
B L 

P B 
C 

IR(8:6) || IR(2:0) 

PC 

CONTROL 
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The Control Unit 

 Datapath: the Data Memory has been attached to the Address 

Out, Data Out, and Data In lines of the Datapath. 

 

 Control Unit:  

• The MW input to the Data Memory is the Memory Write signal from 

the Control Unit. 

• The Instruction Memory address input is provided by the PC and its 

instruction output feeds the Instruction Decoder. 

• Zero-filled IR(2:0) becomes Constant In 

• Extended IR(8:6) || IR(2:0) and Bus A are address inputs to the PC. 

• The PC is controlled by Branch Control logic 

Program Counter (PC) Function 

 PC function is based on instruction specifications involving jumps 

and branches: 

 

 

 

• The first two transfers require addition to the PC of:   

 Address Offset = Extended IR(8:6) || IR(2:0)  

• The third transfer requires that the PC be loaded with:   

 Jump Address = Bus A = R[SA] 

 

 In addition to the above register transfers, the PC must implement 

the counting function:   

• PC ←  PC + 1 

Branch on Zero BRZ if (R[ S A] =  0) PC 

← 
 PC  + s e   A D 

Branch on Negative BRN if (R[ S A] <  0) PC  PC  + s e  A D 

J u mp JMP P C  R[SA ] 

← 

← 
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PC Function (Contd.) 

 Branch Control determines the PC transfers based on five 

inputs: 

• N,Z – negative and zero status bits 

• PL – load enable for the PC 

• JB – Jump/Branch select: If JB = 1, Jump, else Branch 

• BC  –  Branch Condition select: If BC = 1, branch for N = 1, else 

branch for Z = 1.  

  
PL JB BC PC Operation 

0 X X Count Up 

1 1 X Jump 

1 0 1 Branch on Negative (else Count Up) 

1 0 0 Branch on Zero (else Count Up) 

Instruction Decoder 

 Converts the instruction into the signals necessary to 
control the computer during the single cycle execution, 
combinational 
• Inputs: the 16-bit Instruction 

• Outputs: control signals 

 DA, AA, and BA: Register file addresses (IR (8:0)) 

• simply pass-through signals:  DA = DR, AA = SA, and BA = SB 

 FS: Function Unit Select 

 MB and MD: Multiplexer Select Controls 

 RW and MW: Register file and Data Memory Write Controls 

 PL, JB, and BC: PC Controls 

 Observe that for other than branches and jumps, FS = 
IR(12:9)  
• The other control signals should depend as much as possible on 

IR(15:13) 
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Instruction Decoder (Contd.) 

T ruth T a ble for Instruction Decoder Logic 

Instruction Function T ype 

Instruction Bits 

15 14 13 9 

1. Function unit operations using 

registers 

0       0       0 X 

2. Memory read 0 0 1 X 

3. Memory write 0 1 0 X 

4. Function unit operations using 

register and constant 

1       0       0 X 

5. Conditional branch on zero (Z) 1 1 0 0          X 

6. Conditional branch on negative  

(N) 

1 1 0 1 

7. Unconditional J     ump 1 1 1 X         X 

Contr ol W o r d  Bits 

M B M D R W M W P L J B B C 

0       0      1       0 0 X     X 

0       1      1       0 0 X     X 

0 X 0      1 0 X     X 

1        0      1      0 0 X     X 

X 0 0      1      0      0 

X      X 0 0      1      0      1 

X 0 0      1      1 X 

Instruction Decoder (Contd.) 

 Instruction types are based on the control blocks and the 
seven control signals to be generated (MB, MD, RW, 
MW, PL, JB, BC): 

 
• Datapath and Memory Control (types 1-4)  

 Mux B 

 Memory and Mux D 

 

• PC Control (types 5-7)  
 Bit 15 = Bit 14 = 1 =>  PL 

 Bit 13 => JB. 

 Bit 9 was use as BC which contradicts FS = 0000 needed for 
branches.  To force FS(0) to 0 for branches, Bit 9 into FS(0) is 
disabled by PL. 
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Instruction Decoder (Contd.) 

 The end result by use of the types, careful assignment of codes, 

and use of don't cares, yields very simple logic: 

 

 This completes the 

design of most of the  

essential parts of 

the single-cycle  

simple computer 

 

19 – 17 

DA 

16 – 14 

AA 

13 – 11 

BA 

10 

MB 

9 – 6 

FS 

5 

MD 

4 

RW 

3 

MW 

2 

PL 

1 

JB 

0 

BC 

Instruction 

Opcode DR SA SB 

Control word 

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0 

Example Instruction Execution 

 Decoding, control inputs and paths shown for 

ADI, LD and BRZ  on next 6 slides 
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Decoding for ADI 

19 – 17 

DA 

16 – 14 

AA 

13 – 11 

BA 

10 

MB 

9 – 6 

FS 

5 

MD 

4 

RW 

3 

MW 

2 

PL 

1 

JB 

0 

BC 

Instruction 

Opcode DR SA SB 

Control word 

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0 

1  0  0   0   0  1  0 

1 1 0 0 1 0 0 0 0 0 0 

Bus A Bus B 

Address out 

Data out MW 

Data in 

MUX B 

1 0 

MUX D 

0 1 

DATAPATH 

RW 
DA 

AA 

Constant 
in 

BA 

MB 

FS 

V 

C 

N 

Z 

Function 
unit 

A B 

F 

MD 
Bus D 

IR(2:0) 

Data in Address 

Data 
memory 

Data out 

Register 
file 

D 

A B 

Instruction 
memory 

Address 

Instruction 

Zero fill 

D 
A 

B 
A 

A 
A 

F 
S 

M 
D 

R 
W 

M 
W 

M 
B 

Instruction decoder 

J 
B 

Extend 

L 

P B 
C 

Branch 
Control 

V 
C 
N 
Z 

J 
B L 

P B 
C 

IR(8:6) || IR(2:0) 

PC 

CONTROL 
1 1 

0
 0

 1
 0

 

0 0 0 0 0 
0 0 1 0 

1 

0 

1 

0 

0 0 0 

+ 

No  

Write 

Increment  

PC 

Control Inputs and  

Paths for ADI 
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Decoding for LD 

19 – 17 

DA 

16 – 14 

AA 

13 – 11 

BA 

10 

MB 

9 – 6 

FS 

5 

MD 

4 

RW 

3 

MW 

2 

PL 

1 

JB 

0 

BC 

Instruction 

Opcode DR SA SB 

Control word 

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0 

0  0  1   0   0  0  0 

0 1 0 0 0 0 1 0 0 1 0 

Bus A Bus B 

Address out 

Data out MW 

Data in 

MUX B 

1 0 

MUX D 

0 1 

DATAPATH 

RW 
DA 

AA 

Constant 
in 

BA 

MB 

FS 

V 

C 

N 

Z 

Function 
unit 

A B 

F 

MD 
Bus D 

IR(2:0) 

Data in Address 

Data 
memory 

Data out 

Register 
file 

D 

A B 

Instruction 
memory 

Address 

Instruction 

Zero fill 

D 
A 

B 
A 

A 
A 

F 
S 

M 
D 

R 
W 

M 
W 

M 
B 

Instruction decoder 

J 
B 

Extend 

L 

P B 
C 

Branch 
Control 

V 
C 
N 
Z 

J 
B L 

P B 
C 

IR(8:6) || IR(2:0) 

PC 

CONTROL 
0 1 

0
 0

 0
 0

 

1 0 0 1 0 
0 0 0 0 

0 

1 

1 

0 

0 1 0 

No Write 

Increment 

PC 

Control Inputs and  

Paths for LD 
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Decoding for BRZ 

19 – 17 

DA 

16 – 14 

AA 

13 – 11 

BA 

10 

MB 

9 – 6 

FS 

5 

MD 

4 

RW 

3 

MW 

2 

PL 

1 

JB 

0 

BC 

Instruction 

Opcode DR SA SB 

Control word 

15 14 13 12 11 10 9 8 – 6 5 – 3 2 – 0 

1 1  0   0   0  0  0 

1 0 0 0 0 0 0 1 0 0 0 

Bus A Bus B 

Address out 

Data out MW 

Data in 

MUX B 

1 0 

MUX D 

0 1 

DATAPATH 

RW 
DA 

AA 

Constant 
in 

BA 

MB 

FS 

V 

C 

N 

Z 

Function 
unit 

A B 

F 

MD 
Bus D 

IR(2:0) 

Data in Address 

Data 
memory 

Data out 

Register 
file 

D 

A B 

Instruction 
memory 

Address 

Instruction 

Zero fill 

D 
A 

B 
A 

A 
A 

F 
S 

M 
D 

R 
W 

M 
W 

M 
B 

Instruction decoder 

J 
B 

Extend 

L 

P B 
C 

Branch 
Control 

V 
C 
N 
Z 

J 
B L 

P B 
C 

IR(8:6) || IR(2:0) 

PC 

CONTROL 
1 0 

0
 0

 0
 0

 

0 1 0 0 0 
0 0 0 0 

1 

0 

0 

0 

1 0 0 

No Write 

Branch on 

Z 

No Write 

Control Inputs and  

Paths for BRZ 
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Abstract View of Critical Path 

 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Multiple Cycle Hardwired Control 
• Single Cycle Computer Issues 

• Sequential Control Design 

Overview  
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Single-Cycle Computer Issues 

 Shortcoming of Single Cycle Design 

• Complexity of instructions executable in a single cycle is limited 

• Accessing both an instruction and data from a simple single 

memory impossible 

• A long worst case delay path limits clock frequency and the rate of 

performing instructions 

 

 Handling of Shortcomings 

• The first two shortcomings can be handled by the multiple-cycle 

computer  

• The third shortcoming is dealt with by using a technique called 

pipelining described in later lectures 

Multiple-Cycle Computer 

 Converting the single-cycle computer into a 

multiple-cycle computer involves: 

• Modifications to the datapath/memory 

• Modification to the control unit 

• Design of a multiple-cycle hardwired control 
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Bus A Bus B 

Address out 

Data out MW 

Data in 

MUX B 

1 0 

MUX D 

0 1 

DATAPATH 

RW 
DA 

AA 

Constant 
in 

BA 

MB 

FS 

V 

C 

N 

Z 

Function 
unit 

A B 

F 

MD 
Bus D 

IR(2:0) 

Data in Address 

Data 
memory 

Data out 

Register 
file 

D 

A B 

Instruction 
memory 

Address 

Instruction 

Zero fill 

D 
A 

B 
A 

A 
A 

F 
S 

M 
D 

R 
W 

M 
W 

M 
B 

Instruction decoder 

J 
B 

Extend 

L 

P B 
C 

Branch 
Control 

V 
C 
N 
Z 

J 
B L 

P B 
C 

IR(8:6) || IR(2:0) 

PC 

CONTROL 

Single-Cycle  

Simple Computer (SC) 

Inst. & Data 

Memory 

Inst. & Data 

Address Mux 

New Instruction 

Path Datapath 

Modifications 

Use a single memory for 

both instructions and 

data 

  

 Requires new MUX M 

with control signal MM to 

select between the 

instruction address from 

the PC and the data 

address 

 

 Requires path from 

Memory Data Out to the 

instruction register in the 

control unit 
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Datapath Modifications (Continued) 

 Additional registers needed to hold operands 

between cycles 

• Add 8 temporary storage registers to the Register File 

 Register File becomes 16 x 16 

 Addresses to Register File increase from 3 to 4 bits 

• Register File addresses come from: 

 The instruction for the Storage Resource registers (0 to 7) 

 The control word for the Temporary Storage registers (8 to 15) 

• Add Register Address Logic to the Register File to select 

the register address sources 

 Three new control fields for register address source selection 

and temporary storage addressing: DX, AX, BX 

Register 

Address 

Logic 

16 x 16 Register 

File 
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 Control Unit Modifications 

 Must hold instruction over the multiple cycles to 

draw on instruction information throughout 

instruction execution 

• Requires an Instruction Register (IR) to hold the 

instruction 

 Load control signal IL 

 

• Requires the addition of a "hold" operation to the PC 

since it only counts up to obtain a new instruction 

 New encoding for the PC operations uses 2 bits 

 

Instruction 

Register IR 

Add "hold" 

operation 



29 

 Part 1 – Datapaths 
• Introduction 

• Datapath Example 

 Arithmetic Logic Unit (ALU) 

 Shifter 

• Datapath Representation and Control Word 

 

 Part 2 – A Simple Computer 
• Instruction Set Architecture (ISA) 

• Single-Cycle Hardwired Control 

 

 Part 3 – Multiple Cycle Hardwired Control 
• Single Cycle Computer Issues 

• Sequential Control Design 

Overview  

Sequential Control Design 

 To control microoperations over multiple cycles, a Sequential 

Control replaces the Instruction Decoder 

• Input: Opcode, Status Bits, Control State 

• Output:  

 Control Word (Modified Datapath Control part) 

 Next State: Control Word (New Sequencing Control part) 

 

• Consists of: 

 Register to store the Control State 

 Combinational Logic to generate the Control Word (both 

sequencing and datapath control parts) 

 

• The Combinational Logic is quite complex so we assume that it 

is implemented by using a PLA or synthesized logic and focus on 

ASM level design 
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Control State 

Register  

Combinational 

Control Logic 

New/ Modified 

Control Word 

Control Word 

 Datapath part: field MM added, and fields DX, AX, and BX 

replace DA, AA, and BA, respectively 

• If the MSB of a field is 0, e.g., AX = 0XXX,  then AA is 0 

concatenated with SA (3bits) field in the IR 

• If the MSB of a field is 1, e. g. AX = 1011, then AA = 1011 

 Sequencing part:  

• IL controls the loading of the IR 

• PS controls the operations of the PC 

• NS gives the next state of the Control State register 

 E.g., NS is 4 bits, the length of the Control State register - 16 states are 

viewed as adequate for this design 

NS PS 

I 

L 

M 

B 

M 

D 

R 

W 

M 

M 

M 

W 

DX AX BX FS 

27 24 23 22 21 20 17 16 13 12 9 8 7 4 3 2 1 0 

Datapath Sequencing 
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DX AX BX Code MB Code FS Code MD R W MM MW Code 

R [DR] R [SA] R [SB] 0 XXX Register 0 0000 FnUt No 

write 

Address 

Out 

No 

write 

0 

R 8 R 8 R 8 1000 Constant 1 0001 Data In Write PC Write 1 

R 9 R 9 R 9 1001 0010 

R 10 R 10 R 10 1010 Unused 0011 

R 11 R 11 R 11 1011 Unused 0100 

R 12 R 12 R 12 1100 0101 

R 13 R 13 R 13 1101 0110 

R 14 R 14 R 14 1110 Unused 0111 

R 15 R 15 R 15 1111 1000 

1001 

1010 

1011 

1100 

1101 

1110 

Unused 1111 

F      A 
← 

F      A 1 
+ ← 

F      A B 
+ ← 

F      A B 1 
+ ← 

F      A 1 
– ← 

F      A B ^ 

 

← 

F      A B 
v ← 

F      A B 
← 

F      A 
← 

F      B 
← 

F sr B 
← 

F sl B 
← 

+ 

+ 

Encoding for Datapath Control 

Encoding for Sequencing Control 

NS PS IL 

Ne xt State Action Code Action Code 

Gives next state 

of Control State 

Register 

Hold PC 00 No load 0 

Inc PC 01 Load instr . 1 

Branch 10 

J ump 11 
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ASM Charts for Sequential Control 

 An instruction requires two steps:  

• Instruction fetch – obtaining an instruction from memory 

• Instruction execution – the execution of a sequence of 

microoperations to perform instruction processing 

• Due to the use of the IR, these two steps require a minimum of 

two clock cycles  

 

 ISA: Instruction Specifications  and ASM charts for the 

instructions (that all require two clock cycles)  

• A vector decision box is used for the opcode 

• Scalar decision boxes are used for the status bits 

ISA: Instruction Specifications (for reference)  

I n st ruction Speci fications for the Simple Comput er - Part 1 

Instr u ctio n O pc ode Mnem on ic Form a t D escrip tion 

St a t u s 

Bits 

Move A 0000000 
MO V A RD ,RA R [DR]  R[SA ] N , Z 

Increment 0000001 
INC R D , RA R[DR]  R [ SA] + 1 N , Z 

Add 0000010 
ADD R D , RA,RB R [DR]  R[SA ] + R[ SB] N , Z 

Subtr a ct 0000101 
SUB R D , RA,RB R [DR]  R[SA ] [ SB] N , Z 

D e crement 0000110 
DEC R D , RA R[DR]  R[SA ]  1 N , Z 

AND 0001000 
AND R D , RA,RB R [DR]  R[SA ] R[SB ] N , Z 

O R 0001001 OR RD ,RA,RB R[DR]  R[SA ] R[SB ] N , Z 

Exclusive OR 0001010 XOR R D , RA,RB R [DR]  R[SA ]  R[SB] N ,  Z 

NO T 0001011 
NO T R D , RA R[DR]  N, Z R[SA ] 

R 
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P  C P  C + 1 

+ R [ S B ] + 1 

R 
[ D R 

] R 
[ S A 

] 

v 

R 
[ S B 

] 

R 
[ D R 

] R 
[ S A 

] 

R 
[ D R 

] R 
[ S A 

] 

+ R 
[ S B 

] 

R 
[ D R 

] R 
[ S A 

] 

– 

 

1 R [ D R ] R [ S A ] 

R 
[ S B 

] 

R 
[ D R 

] R 
[ S A 

] 

R 
[ S B 

] 

R 
[ D R 

] R 
[ S A 

] 

0 0 0 0 0 0 1 

0 0 0 0 0 1 0 
0 0 0 0 1 0 1 
0 0 0 0 1 1 0 

0 0 0 1 0 0 0 
0 0 0 1 0 0 1 
0 0 0 1 0 1 0 
0 0 0 1 0 1 1 

0 0 0 0 0 0 0 

O p c o d e 

E X 0 

I N F 

R [ D R ] R [ S A ] 

← 

+ 1 R [ D R ] R [ S A ] ← 

← 

← 

I R M [ P C ] ← 

← 

← 

← 

← 

← 

← 

+ 

ASM Chart for 2-Cycle 

Instructions - Part 1 

ISA: Instruction Specifications (for reference) 

I n st ruction Speci fications for the Simple Comput er - Part 2 

Instr u ctio n O pc ode Mnem on ic Form a t D escrip tion 

St a t u s 

Bits 

Move B 0001100 MO VB RD ,RB R [DR]  R[SB] 

Shift Right 0001101 SHR R D , RB R[DR]  sr  R[SB] 

Shift Left 0001110 SHL R D , RB R[DR]  sl R[SB] 

Load Imm e diate 1001100 LDI R D , O P R[DR]  zf OP 

Add Immediate 1000010 ADI R D , RA,OP R [DR]  R[SA] + zf OP 

Load 0010000 LD RD ,RA R [DR]  M[ SA ] 

Store 0100000 ST RA,RB M [SA]  R[SB] 

Branch on Zero 1100000 BRZ R A,AD if (R[ S A] =  0) PC  PC  + s e  A D 

Branch on Negative 1100001 BRN R A,AD if (R[ S A] <  0) PC  PC  + s e  A D 

J u mp 1110000 JMP R A P C  R[SA ] 
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IR ←M[PC] 

0 0 1 0 0 0 0 

0 1 0 0 0 0 0 

1 0 0 1 1 0 0 
1 0 0 0 0 1 0 
1 1 0 0 0 0 0 

1 1 0 0 0 0 1 

1 1 1 0 0 0 0 

0 0 0 1 1 0 0 

O p c o d e 

E X 0 

I N F 

P  C P  C + 1 ← 

R 
[ D R 

] R 
[ S B 

] ← 

+ se AD PC     PC 
← 

PC R [ S A ] 
← 

R 
[ D R 

] zf OP ← 

Chapter 10  Part 2 

[ ] R 
[ D R 

] R 
[ S A 

] ← M 

R [ S B ] ← [ ] R 
[ S A 

] M 

R 
[ D R 

] R 
[ S A 

] ← 

+ zf OP 

0 

0 

1 

1 

ASM Chart for 2-Cycle 

Instructions - Part 2  

 Portion in Red 

duplicated from 

previous ASM 

chart 

Z 

N 

To INF 

State Table for 2-Cycle Instructions 

S t a t e 

I n p u t s 
N e x t 

s t a t e 

O u t p u t s 

C o m m e n t s O p c o d e V C N Z 

I 

L 

P 

S D X A X B X 

M 

B F S 

M 

D 

R 

W 

M 

M 

M 

W 

I N F X X X X X X X X X X X EX0 1 00 X X X X X X X X X X X X X X X X X X 0 1 0 I R ← 
 

M [ PC ] 

E X 0 0 000000 X X X X INF 0 01 0 X X X 0 X X X X X X X X 0000 0 1 X 0 M O V A R [DR ] 
← R [SA]* 

E X 0 0 000001 X X X X INF 0 01 0 X X X 0 X X X X X X X X 0001 0 1 X 0 I N C R [DR ] 
← R [S A ] + 1* 

E X 0 0 000010 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 0010 0 1 X 0 A D D R [DR ] 
← R [S A ] + R [S B ]* 

E X 0 0 000101 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 0101 0 1 X 0 S U B R [DR } 
← R [S A ] + + 1* 

E X 0 0 000110 X X X X INF 0 01 0 X X X 0 X X X X X X X X 0110 0 1 X 0 D E C R [DR ] 
← R [S A ] + ( - 1) * 

E X 0 0 001000 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 1000 0 1 X 0 A N D R [DR ] 
← R [SA] ^ R [S B ]* 

E X 0 0 001001 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 1001 0 1 X 0 O R R [DR ] 
← R [SA] 

v R [S B ]* 

E X 0 0 001010 X X X X INF 0 01 0 X X X 0 X X X 0 X X X 0 1010 0 1 X 0 X O R R [DR ] 
← R [SA] R [S B ]* 

E X 0 0 001011 X X X X INF 0 01 0 X X X 0 X X X X X X X X 1011 0 1 X 0 N O T R [DR ] 
← * 

E X 0 0 001100 X X X X INF 0 01 0 X X X X X X X 0 X X X 0 1100 0 1 X 0 M O V B R [DR ] 
← R [S B ]* 

E X 0 0 010000 X X X X INF 0 01 0 X X X 0 X X X X X X X X X X X X 1 1 0 0 L D R [DR ] 
← M [ R [SA]]* 

E X 0 0 100000 X X X X INF 0 01 X X X X 0 X X X 0 X X X 0 X X X X X 0 0 1 S T M [ R [SA]] 
← R [S B ]* 

E X 0 1 001100 X X X X INF 0 01 0 X X X X X X X X X X X 1 1100 0 1 0 0 LDI R [DR ] 
← z f OP * 

E X 0 1 000010 X X X X INF 0 01 0 X X X 0 X X X X X X X 1 0010 0 1 0 0 ADI R [DR ] 
← R [S A ] + z f OP * 

E X 0 1 100000 X X X  1 I N F 0 1 0 X X X X 0 X X X X X X X X 0000 X 0 0 0 B R Z PC 
← PC + s e A D 

E X 0 1 100000 X X X  0 I N F 0 0 1 X X X X 0 X X X X X X X X 0000 X 0 0 0 B R Z PC 
← PC + 1 

E X 0 1 100001 X X  1 X INF 0 10 X X X X 0 X X X X X X X X 0000 X 0 0 0 B R N PC 
← PC + s e A D 

E X 0 1 100001 X X  0 X INF 0 01 X X X X 0 X X X X X X X X 0000 X 0 0 0 B R N PC 
← PC + 1 

E X 0 1 110000 X X X X INF 0 11 X X X X 0 X X X X X X X X 0000 X 0 0 0 J M P PC 
← R [S A ] 

R S B [ ] 

R S A [ ] 

+ 

* For this state and input combinations, PC  PC+1 also occurs 
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3-Process ASM VHDL Code 

entity controller is 

    port ( opcode : in std_logic_vector(6 downto 0); 

           reset, clk : in std_logic; 

           zero, negative : in std_logic; 

           IL, MB, MD, MM, RW, MW : out std_logic; 

           PS : out std_logic_vector(1 downto 0); 

           DX, AX, BX, FS : out std_logic_vector(3 downto 0); 

); 

end controller; 

 

architecture Behavioral of controller is 

type state_type is (RES, FTH, EX); 

signal cur_state, next_state : state_type; 

begin 

state_register:process(clk, reset) 

    begin  

    if (reset='1') then  

        cur_state<=RES; 

    elsif (clk'event and clk='1') then  

        cur_state<=next_state; 

    end if; 

end process; 

3-Process ASM VHDL Code 

out_func: process (cur_state, opcode, zero, negative) 

begin 

(IL,PS, MB, FS, MD, RW, MW, MM) <= std_logic_vector'(0x"000"); 

FS<="0000"; 

    case cur_state is  

        when RES =>   

            next_state <= FTH;   

        when FTH =>  

            -- set the control vector values 

            next_state <= EXE;   

        when EXE =>  

            case opcde is:  

                when “0000000” +> 

 

 

end process; 

 

end Behavioral;    
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EX0 

Opcode 

Opcode 

Opcode 

To INF 

Opcode 

Opcode 

0001101 
Z 

Z 

Z 

0 

1 

0 

1 

1 

0 

0001101 

0001101 

0001101 

0001101 

EX1 

EX2 

EX3 

EX4 

R8 ← R[SA] 

R9 ←  zf OP 

R8 ← sr R8 

R9 ← R9 -  1 

PC ← PC + 
 1 

R[DR] ←  R8 

ASM Chart for Multiple 

Bits Right Shift 

 R8 – used to perform shifts 

 

 R9 – used to store  and 

decrement shift count 

 

 Zero test in EX1 is to 

determine if the shift amount 

is 0; if so, goes to state INF 

 

 

State Table For Multiple Bits Right Shift 

S t a t e 

I n p u t s 

N e x t 

s t a t e 

O u t p u t s 

C o m m e n t s 

O p c o d e V C N Z 

I 

L P S D X A X B X M B F S M D R W M M 

M 

W 

EX0 0001 101 X X X 0 E X 1 0 0 0 1000 0 X X X X X X X X 0000 0 1 X 0 S R M R 8 
← R [S A ], : 

→ EX1 

EX0 0001 101 X X X 1 I N F 0 0 1 1000 0 X X X X X X X X 0000 0 1 X 0 S R M R 8 
← R [S A ], Z : 

→ I N F * 

EX1 0001 101 X X X 0 E X 2 0 0 0 1001 X X X X X X X X 1 1100 0 1 X 0 S R M R 9 
← z f OP , : 

→ EX2 

EX1 0001 101 X X X 1 I N F 0 0 1 1001 X X X X X X X X 1 1100 0 1 X 0 S R M R 9 
← z f OP , Z : 

→ I N F * 

EX2 0001 101 X X X X EX3 0 00 1000 X X X X 1000 0 1101 0 1 X 0 S R M R 8 
← s r R 8, 

→ EX3 

EX3 0001 101 X X X 0 E X2 0 0 0 1001 1001 X X X X X 0110 0 1 X 0 S R M R 9 
← R 9 - 1, : 

→ E X 2 

EX3 0001 101 X X X 1 E X4 0 0 0 1001 1001 X X X X X 0110 0 1 X 0 S R M R 9 
← R 9 - 1, Z : 

→ E X 4 

EX4 0001 101 X X X X INF 0 01 0 X X X 1000 X X X X X 0000 0 1 X 0 S R M R [D R ] 
← R 8, 

→ I N F * 

Z 

Z 

Z 

* For this state and input combinations, PC  PC+1 also occurs 
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Summary 

 Concept of Datapath for implementing 

computer microinstructions 

 Control word provides a means of organizing 

the control of the microoperations 

 Concept of ISA and instruction formats and 

operations of Simple Computer (SC) 

 Single clock cycle vs. multiple cycle 

(instruction fetch + instruction execution) 


