EE 459/500 – HDL Based Digital Design with Programmable Logic

# Lecture 18 Computer Basics

References:

Chapter 9 of M. Morris Mano and Charles Kime, Logic and Computer Design Fundamentals, Pearson Prentice Hall, 4<sup>th</sup> Edition, 2008.













| • F | Part 1 – Datapaths                                           |
|-----|--------------------------------------------------------------|
|     | Introduction                                                 |
|     | Datapath Example                                             |
|     | Arithmetic Logic Unit (ALU)                                  |
|     | <ul> <li>Datapath Representation and Control Word</li> </ul> |
| • F | Part 2 – A Simple Computer                                   |
|     | Instruction Set Architecture (ISA)                           |
|     | Single-Cycle Hardwired Control                               |
| • F | Part 3 – Multiple Cycle Hardwired Control                    |
|     | Single Cycle Computer Issues                                 |
|     | Sequential Control Design                                    |















| Defin<br>(FS) ( | ition o<br>Codes | of Funct         | ion Se           | Iect                                      |
|-----------------|------------------|------------------|------------------|-------------------------------------------|
| FS(3:0)         | MF<br>Select     | G<br>Select(3:0) | H<br>Select(1:0) | Microoperation                            |
| 0000            | 0                | 0000             | XX               | $F \leftarrow A$                          |
| 0001            | 0                | 0001             | XX               | <i>F</i> ← + 1                            |
| 0010            | 0                | 0010             | XX               | $F \leftarrow + B$                        |
| 0011            | 0                | 0011             | XX               | <i>F</i> ← + 3 +                          |
| 0100            | 0                | 0100             | XX               | $F \leftarrow + \overline{B}$             |
| 0101            | 0                | 0101             | XX               | $F \leftarrow + \overline{B} + 1$         |
| 0110            | 0                | 0110             | XX               | $F \leftarrow -  $                        |
| 0111            | 0                | 0111             | XX               | $F \leftarrow$                            |
| 1000            | 0                | 1 X00            | XX               | $F \leftarrow \land 3$ Boolean Equations: |
| 1001            | 0                | 1 X01            | XX               | $F \leftarrow \lor 3$                     |
| 1010            | 0                | 1 X 10           | XX               | $F \leftarrow \oplus \}$ $MF_i = F_3 F_2$ |
| 1011            | 0                | 1 X 11           | XX               | $F \leftarrow G_i = F_i$                  |
| 1100            | 1                | XXXX             | 00               | F ← H - E                                 |
| 1101            | 1                | XXXX             | 01               | $F \leftarrow B$                          |
| 1110            | 1                | XXXX             | 10               | F← B                                      |



| DA, AA     | , ВА | MB       |      | FS                                 |      | MD       |      | RW       |      |
|------------|------|----------|------|------------------------------------|------|----------|------|----------|------|
| Function   | Code | Function | Code | Function                           | Code | Function | Code | Function | Code |
| <b>R</b> 0 | 000  | Register | 0    | F←                                 | 0000 | Function | 0    | No write | 0    |
| R1         | 001  | Constant | 1    | <i>F</i> ← + 1                     | 0001 | Data In  | 1    | Write    | 1    |
| R2         | 010  |          |      | $F \leftarrow + B$                 | 0010 |          |      |          |      |
| R3         | 011  |          |      | $F \leftarrow + \underline{B} + 1$ | 0011 |          |      |          |      |
| R4         | 100  |          |      | F ← + ∃                            | 0100 |          |      |          |      |
| R5         | 101  |          |      | $F \leftarrow + \overline{3} + 1$  | 0101 |          |      |          |      |
| <b>R</b> 6 | 110  |          |      | <i>F</i> ← − 1                     | 0110 |          |      |          |      |
| R7         | 111  |          |      | F←                                 | 0111 |          |      |          |      |
|            |      |          |      | $F \leftarrow \land \downarrow$    | 1000 |          |      |          |      |
|            |      |          |      | $F \leftarrow \lor i$              | 1001 |          |      |          |      |
|            |      |          |      | <i>F</i> ← ⊕                       | 1010 |          |      |          |      |
|            |      |          |      | F ←                                | 1011 |          |      |          |      |
|            |      |          |      | F←                                 | 1100 |          |      |          |      |
|            |      |          |      | F← B                               | 1101 |          |      |          |      |
|            |      |          |      | F← B                               | 1110 |          |      |          |      |

| operation               | DA         | AA         | BA         | МВ       | FS                         | MD       | RW       |
|-------------------------|------------|------------|------------|----------|----------------------------|----------|----------|
| R1← 2–R3                | <i>R</i> 1 | <i>R</i> 2 | R3         | Register | $F = A + \overline{B} + 1$ | Function | Write    |
| <i>R</i> 4← R6          | <i>R</i> 4 | _          | <i>R</i> 6 | Register | F = sl B                   | Function | Write    |
| <i>R</i> 7← 7+1         | R7         | R7         | —          | Register | F = A + 1                  | Function | Write    |
| R1← )+2                 | <i>R</i> 1 | <i>R</i> 0 | —          | Constant | F = A + B                  | Function | Write    |
| Data out ← 3            |            | _          | <b>R</b> 3 | Register | —                          | —        | No Write |
| <i>R</i> 4← ata in      | <i>R</i> 4 |            | -          | _        | _                          | Data in  | Write    |
| R5←                     | <i>R</i> 5 | <i>R</i> 0 | <i>R</i> 0 | Register | $F = A \oplus$             | Function | Write    |
| Micro-<br>operation     | DA         | AA         | BA         | МВ       | FS                         | MD       | RW       |
| R1← 2_R3                | 001        | 010        | 011        | 0        | 0101                       | 0        | 1        |
| <i>R</i> 4← R6          | 100        | XXX        | 110        | 0        | 1110                       | 0        | 1        |
| <i>R</i> 7← 7+1         | 111        | 111        | ХХХ        | 0        | 0001                       | 0        | 1        |
| <i>R</i> 1← 0+2         | 001        | 000        | ххх        | 1        | 0010                       | 0        | 1        |
| Data out $\leftarrow$ 3 | XXX        | XXX        | 011        | 0        | XXXX                       | Х        | 0        |
| R4← ata in              | 100        | XXX        | ххх        | Х        | XXXX                       | 1        | 1        |
|                         |            |            |            |          |                            |          |          |



















| Instruction        | Opcode  | Mnemonic | Format   | Description                              | Bits |
|--------------------|---------|----------|----------|------------------------------------------|------|
| Move A             | 0000000 | MOVA     | RD,RA    | $R[DR] \leftarrow R[SA]$                 | N, Z |
| Increment          | 0000001 | INC      | RD,RA    | $R[DR] \leftarrow R[SA] + 1$             | N, Z |
| Add                | 0000010 | ADD      | RD,RA,RB | $R[DR] \leftarrow R[SA] + R[SB]$         | N, Z |
| Subtract           | 0000101 | SUB      | RD,RA,RB | $R[DR] \leftarrow R[SA] - R[SB]$         | N, Z |
| Decrement          | 0000110 | DEC      | RD,RA    | $R[DR] \leftarrow R[SA] - 1$             | N, Z |
| AND                | 0001000 | AND      | RD,RA,RB | $R[DR] \leftarrow R[SA] \land R[SB]$     | N, Z |
| OR                 | 0001001 | OR       | RD,RA,RB | $R[DR] \leftarrow R[SA] \lor R[SB]$      | N, Z |
| Exclusive OR       | 0001010 | XOR      | RD,RA,RB | $R[DR] \leftarrow R[SA] \oplus R[SB]$    | N, Z |
| NO T               | 0001011 | NO T     | RD,RA    | $R[DR] \leftarrow \overline{R[SA]}$      | N, Z |
| Move B             | 0001100 | MOVB     | RD,RB    | $R[DR] \leftarrow R[SB]$                 |      |
| Shift Right        | 0001101 | SHR      | RD,RB    | $R[DR] \leftarrow sr R[SB]$              |      |
| Shift Left         | 0001110 | SHL      | RD,RB    | $R[DR] \leftarrow sl R[SB]$              |      |
| Load Immediate     | 1001100 | LDI      | RD, OP   | $R[DR] \leftarrow zfOP$                  |      |
| Add Immediate      | 1000010 | ADI      | RD,RA,OP | $R[DR] \leftarrow R[SA] + zfOP$          |      |
| Load               | 0010000 | LD       | RD,RA    | $R[DR] \leftarrow M[R[SA]]$              |      |
| Store              | 0100000 | ST       | RA,RB    | $M[R[SA]] \leftarrow R[SB]$              |      |
| Branch on Zero     | 1100000 | BRZ      | RA,AD    | if $(R[SA] = 0) PC \leftarrow PC + se A$ | D    |
| Branch on Negative | 1100001 | BRN      | RA,AD    | if $(R[SA] < 0) PC \leftarrow PC + se A$ | D    |
| Jump               | 1110000 | JMP      | RA       | $PC \leftarrow R[SA]$                    |      |

| iory Repre          | esentation of Instructi | on and Data              |                        |                            |
|---------------------|-------------------------|--------------------------|------------------------|----------------------------|
| Decimal<br>Ad dress | Memory Contents         | Decimal<br>Opcode        | Other Field            | Operation                  |
| 25                  | 0000101 001 010 011     | 5 (Subtract)             | DR:1, SA:2, SB:3       | R1 ← R2 - R3               |
| 35                  | 0100000 000 100 101     | 32 (Store)               | SA:4, SB:5             | M[ R4] ← R5                |
| 45                  | 1000010 010 111 011     | 66 (Add<br>Im mediate)   | DR: 2, SA :7, OP :3    | R2 ← R7 + 3                |
| 55                  | 1100000 101 110 100     | 96 (Branch<br>on Z ero ) | AD: 44, SA:6           | lf R6 = 0,<br>PC ← PC − 20 |
| 70                  | 0000000 00110 0 000     | Data = 192.              | After execution of ins | struction in 35,           |

## 













| Instruction | Decoder | (Contd.) |
|-------------|---------|----------|
|             |         | (        |

### **Truth Table for Instruction Decoder Logic**

|                                                         | In | struc | tion H | Bits |    | (  | Contro | ol Wo | rd B | its |    |
|---------------------------------------------------------|----|-------|--------|------|----|----|--------|-------|------|-----|----|
| Instruction Function Type                               | 15 | 14    | 13     | 9    | MB | MD | RW     | MW    | PL   | JB  | BC |
| 1. Function unit operations using registers             | 0  | 0     | 0      | X    | 0  | 0  | 1      | 0     | 0    | X   | X  |
| 2. Memory read                                          | 0  | 0     | 1      | Х    | 0  | 1  | 1      | 0     | 0    | X   | X  |
| 3. Memory write                                         | 0  | 1     | 0      | X    | 0  | X  | 0      | 1     | 0    | X   | X  |
| 4. Function unit operations using register and constant | 1  | 0     | 0      | X    | 1  | 0  | 1      | 0     | 0    | X   | X  |
| 5. Conditional branch on zero (Z)                       | 1  | 1     | 0      | 0    | X  | X  | 0      | 0     | 1    | 0   | 0  |
| 6. Conditional branch on negative                       | 1  | 1     | 0      | 1    | X  | X  | 0      | 0     | 1    | 0   | 1  |
| (N)<br>7. Unconditional Jump                            | 1  | 1     | 1      | X    | X  | X  | 0      | 0     | 1    | 1   | X  |





| Six In    | structio       | nsforthe Sim | ile-Cycle Compute                         | r                                    |        |    |    |    |    |    | •  |
|-----------|----------------|--------------|-------------------------------------------|--------------------------------------|--------|----|----|----|----|----|----|
| Operation | Symbol<br>Name | ic<br>Format | Description                               | Func tion                            | мв     | MD | RW | мw | PL | JB | вс |
| 1000 010  | ADI            | Imme diate   | A dd immediate<br>operand                 | $R[DR] \leftarrow R[SA] + zf I(2:0)$ | 1      | 0  | 1  | 0  | 0  | 0  | 0  |
| 0010 000  | LD             | Register     | Load mem ory<br>content in to<br>register | R [DR ] ← M [ R [ SA ] ]             | 0      | 1  | 1  | 0  | 0  | 1  | 0  |
| 0100 000  | ST             | Register     | Store re gister<br>conten t in<br>memory  | M[R[SA]] ← R[SB]                     | 0      | 1  | 0  | 1  | 0  | 0  | 0  |
| 0001 110  | SL             | Register     | Shift left                                | R [DR ] ← sI R [ SB]                 | 0      | 0  | 1  | 0  | 0  | 1  | 0  |
| 0001 011  | ΝΟ Τ           | Register     | Comple ment<br>register                   | $R[DR] \leftarrow \overline{R[SA]}$  | 0      | 0  | 1  | 0  | 0  | 0  | 1  |
| 1100 000  | BRZ            | Jump/Branch  | If R [SA] = 0, bran<br>to PC + se AD      | nch if R[SA]=0,                      | 1<br>1 | 0  | 0  | 0  | 1  | 0  | 0  |

ADI, LD and BRZ on next 6 slides















| Overview                                                                                                                                                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Part 1 – Datapaths</li> <li>Introduction</li> <li>Datapath Example         <ul> <li>Arithmetic Logic Unit (ALU)</li> <li>Shifter</li> </ul> </li> <li>Datapath Representation and Control Word</li> </ul> |  |
| <ul> <li>Part 2 – A Simple Computer</li> <li>Instruction Set Architecture (ISA)</li> <li>Single-Cycle Hardwired Control</li> </ul>                                                                                 |  |
| <ul> <li>Part 3 – Multiple Cycle Hardwired Control</li> <li>Single Cycle Computer Issues</li> <li>Sequential Control Design</li> </ul>                                                                             |  |

























| DX          | AX          | BX          | Code | MB       | Code | FS                                  | Code | MD      | RW          | MM             | MW          | Cod |
|-------------|-------------|-------------|------|----------|------|-------------------------------------|------|---------|-------------|----------------|-------------|-----|
| R[DR]       | R[SA]       | R[SB]       | 0XXX | Register | • 0  | $F \leftarrow A$                    | 0000 | FnUt    | No<br>write | Address<br>Out | No<br>write | 0   |
| <b>R</b> 8  | <b>R</b> 8  | <b>R</b> 8  | 1000 | Constan  | t 1  | $F \leftarrow A + 1$                | 0001 | Data In | Write       | РС             | Write       | 1   |
| <b>R</b> 9  | <b>R</b> 9  | <i>R</i> 9  | 1001 |          |      | $F \leftarrow A + B$                | 0010 |         |             |                |             |     |
| <i>R</i> 10 | <i>R</i> 10 | <i>R</i> 10 | 1010 |          |      | Unused                              | 0011 |         |             |                |             |     |
| <i>R</i> 11 | <i>R</i> 11 | <i>R</i> 11 | 1011 |          |      | Unused                              | 0100 |         |             |                |             |     |
| <i>R</i> 12 | <i>R</i> 12 | <i>R</i> 12 | 1100 |          |      | $F \leftarrow A + \overline{B} + 1$ | 0101 |         |             |                |             |     |
| <i>R</i> 13 | <i>R</i> 13 | <i>R</i> 13 | 1101 |          |      | $F \leftarrow A - 1$                | 0110 |         |             |                |             |     |
| <i>R</i> 14 | <i>R</i> 14 | <i>R</i> 14 | 1110 |          |      | Unused                              | 0111 |         |             |                |             |     |
| <i>R</i> 15 | <i>R</i> 15 | <i>R</i> 15 | 1111 |          |      | $F \leftarrow A \land B$            | 1000 |         |             |                |             |     |
|             |             |             |      |          |      | $F \leftarrow A \lor B$             | 1001 |         |             |                |             |     |
|             |             |             |      |          |      | $F \leftarrow A \oplus B$           | 1010 |         |             |                |             |     |
|             |             |             |      |          |      | $F \leftarrow \overline{A}$         | 1011 |         |             |                |             |     |
|             |             |             |      |          |      | $F \leftarrow B$                    | 1100 |         |             |                |             |     |
|             |             |             |      |          |      | F ← sr B                            | 1101 |         |             |                |             |     |
|             |             |             |      |          |      | $F \leftarrow \text{sl } B$         | 1110 |         |             |                |             |     |
|             |             |             |      |          |      | Unused                              | 1111 |         |             |                |             |     |

| NS                                               | PS                                  | PS                   |                        | <u>IL</u> |  |
|--------------------------------------------------|-------------------------------------|----------------------|------------------------|-----------|--|
| Next State                                       | Action                              | Code                 | Action                 | Code      |  |
| Gives next state<br>of Control State<br>Register | Hold PC<br>Inc PC<br>Branch<br>Jump | 00<br>01<br>10<br>11 | No load<br>Load instr. | 0<br>1    |  |
|                                                  |                                     |                      |                        |           |  |
|                                                  |                                     |                      |                        |           |  |
|                                                  |                                     |                      |                        |           |  |



| Instruction Specifications for the Simple Computer - Part 1 |         |          |          |                                       |                  |  |  |  |  |  |
|-------------------------------------------------------------|---------|----------|----------|---------------------------------------|------------------|--|--|--|--|--|
| Instr u ction                                               | Opcode  | Mnemonic | Format   | Description                           | St a tus<br>Bits |  |  |  |  |  |
| Move A                                                      | 0000000 | MOVA     | RD,RA    | $R[DR] \leftarrow R[SA]$              | N, Z             |  |  |  |  |  |
| Increment                                                   | 0000001 | INC      | RD,RA    | $R[DR] \leftarrow R[SA] + 1$          | N, Z             |  |  |  |  |  |
| Add                                                         | 0000010 | ADD      | RD,RA,RB | $R[DR] \leftarrow R[SA] + R[SB]$      | N, Z             |  |  |  |  |  |
| Subtract                                                    | 0000101 | SUB      | RD,RA,RB | $R[DR] \leftarrow R[SA] - R[SB]$      | N, Z             |  |  |  |  |  |
| Decrement                                                   | 0000110 | DEC      | RD,RA    | $R[DR] \leftarrow R[SA] - 1$          | N, Z             |  |  |  |  |  |
| AND                                                         | 0001000 | AND      | RD,RA,RB | $R[DR] \leftarrow R[SA] \land R[SB]$  | N, Z             |  |  |  |  |  |
| OR                                                          | 0001001 | OR       | RD,RA,RB | $R[DR] \leftarrow R[SA] \lor R[SB]$   | N, Z             |  |  |  |  |  |
| Exclusive OR                                                | 0001010 | XOR      | RD,RA,RB | $R[DR] \leftarrow R[SA] \oplus R[SB]$ | N, Z             |  |  |  |  |  |
| NO T                                                        | 0001011 | NO T     | RD,RA    | $R[DR] \leftarrow \overline{R[SA]}$   | N, Z             |  |  |  |  |  |



| Instruction Specifications for the Simple Computer - Part 2 |         |          |          |                                            |                 |  |  |  |  |  |
|-------------------------------------------------------------|---------|----------|----------|--------------------------------------------|-----------------|--|--|--|--|--|
| Instr u ction                                               | Opcode  | Mnemonic | Format   | Description                                | St a tu<br>Bits |  |  |  |  |  |
| Move B                                                      | 0001100 | MOVB     | RD,RB    | $R[DR] \leftarrow R[SB]$                   |                 |  |  |  |  |  |
| Shift Right                                                 | 0001101 | SHR      | RD,RB    | $R[DR] \leftarrow sr R[SB]$                |                 |  |  |  |  |  |
| Shift Left                                                  | 0001110 | SHL      | RD,RB    | $R[DR] \leftarrow sl R[SB]$                |                 |  |  |  |  |  |
| Load Immediate                                              | 1001100 | LDI      | RD, OP   | $R[DR] \leftarrow zfOP$                    |                 |  |  |  |  |  |
| Add Immediate                                               | 1000010 | ADI      | RD,RA,OP | $R[DR] \leftarrow R[SA] + zfOP$            |                 |  |  |  |  |  |
| Load                                                        | 0010000 | LD       | RD,RA    | $R[DR] \leftarrow M[SA]$                   |                 |  |  |  |  |  |
| Store                                                       | 0100000 | ST       | RA,RB    | $M[SA] \leftarrow R[SB]$                   |                 |  |  |  |  |  |
| Branch on Zero                                              | 1100000 | BRZ      | RA,AD    | if $(R[SA] = 0) PC \leftarrow PC + se A D$ |                 |  |  |  |  |  |
| Branch on Negative                                          | 1100001 | BRN      | RA,AD    | if $(R[SA] < 0) PC \leftarrow PC + se A D$ |                 |  |  |  |  |  |
| Jump                                                        | 1110000 | JMP      | RA       | $PC \leftarrow R[SA]$                      |                 |  |  |  |  |  |



| Input |         | s    |        |        | Outputs |      |      |      |        |      |        |        |        |        |      |                                                 |
|-------|---------|------|--------|--------|---------|------|------|------|--------|------|--------|--------|--------|--------|------|-------------------------------------------------|
| State | Opcode  | VCNZ | st ate | I<br>L | P<br>S  | DX   | AX   | BX   | M<br>B | FS   | M<br>D | R<br>W | M<br>M | M<br>W |      | Comme nts                                       |
| INF   | XXXXXXX | xxxx | EX0    | 1      | 00      | xxxx | xxxx | xxxx | х      | xxxx | х      | 0      | 1      | 0      |      | $IR \leftarrow M[PC]$                           |
| EX0   | 0000000 | XXXX | INF    | 0      | 01      | 0XXX | 0XXX | XXXX | х      | 0000 | 0      | 1      | х      | 0      | MOVA | $R[DR] \leftarrow R[SA]^*$                      |
| EX0   | 0000001 | XXXX | INF    | 0      | 01      | 0XXX | 0XXX | XXXX | х      | 0001 | 0      | 1      | х      | 0      | INC  | $R[DR] \leftarrow R[SA] + 1*$                   |
| EX0   | 0000010 | XXXX | INF    | 0      | 01      | 0XXX | 0XXX | 0XXX | 0      | 0010 | 0      | 1      | Х      | 0      | ADD  | $R[DR] \leftarrow R[SA] + R[SB]^*$              |
| EX0   | 0000101 | XXXX | INF    | 0      | 01      | 0XXX | 0XXX | 0XXX | 0      | 0101 | 0      | 1      | Х      | 0      | SUB  | $R[DR] \leftarrow R[SA] + \overline{R[SB]} + 1$ |
| EX0   | 0000110 | XXXX | INF    | 0      | 01      | 0XXX | 0XXX | XXXX | Х      | 0110 | 0      | 1      | Х      | 0      | DEC  | $R[DR] \leftarrow R[SA] + (-1)^*$               |
| EX0   | 0001000 | XXXX | INF    | 0      | 01      | 0XXX | 0XXX | 0XXX | 0      | 1000 | 0      | 1      | Х      | 0      | AND  | $R[DR] \leftarrow R[SA] \land R[SB]^*$          |
| EX0   | 0001001 | XXXX | INF    | 0      | 01      | 0XXX | 0XXX | 0XXX | 0      | 1001 | 0      | 1      | х      | 0      | OR   | $R[DR] \leftarrow R[SA] \lor R[SB]^*$           |
| EX0   | 0001010 | XXXX | INF    | 0      | 01      | 0XXX | 0XXX | 0XXX | 0      | 1010 | 0      | 1      | Х      | 0      | XOR  | $R[DR] \leftarrow R[SA] \oplus R[SB]^*$         |
| EX0   | 0001011 | XXXX | INF    | 0      | 01      | 0XXX | 0XXX | XXXX | Х      | 1011 | 0      | 1      | Х      | 0      | NOT  | $R[DR] \leftarrow \overline{R[SA]} *$           |
| EX0   | 0001100 | XXXX | INF    | 0      | 01      | 0XXX | XXXX | 0XXX | 0      | 1100 | 0      | 1      | Х      | 0      | MOVB | $R[DR] \leftarrow R[SB]^*$                      |
| EX0   | 0010000 | XXXX | INF    | 0      | 01      | 0XXX | 0XXX | XXXX | Х      | XXXX | 1      | 1      | 0      | 0      | LD   | $R[DR] \leftarrow M[R[SA]]^*$                   |
| EX0   | 0100000 | XXXX | INF    | 0      | 01      | XXXX | 0XXX | 0XXX | 0      | XXXX | Х      | 0      | 0      | 1      | ST   | $M[R[SA]] \leftarrow R[SB]^*$                   |
| EX0   | 1001100 | XXXX | INF    | 0      | 01      | 0XXX | XXXX | XXXX | 1      | 1100 | 0      | 1      | 0      | 0      | LDI  | $R[DR] \leftarrow zf OP^*$                      |
| EX0   | 1000010 | XXXX | INF    | 0      | 01      | 0XXX | 0XXX | XXXX | 1      | 0010 | 0      | 1      | 0      | 0      | ADI  | $R[DR] \leftarrow R[SA] + zf OP^*$              |
| EX0   | 1100000 | XXX1 | INF    | 0      | 10      | XXXX | 0XXX | XXXX | Х      | 0000 | Х      | 0      | 0      | 0      | BRZ  | $PC \leftarrow PC + se AD$                      |
| EX0   | 1100000 | XXX0 | INF    | 0      | 01      | XXXX | 0XXX | XXXX | Х      | 0000 | Х      | 0      | 0      | 0      | BRZ  | $PC \leftarrow PC + 1$                          |
| EX0   | 1100001 | XXIX | INF    | 0      | 10      | XXXX | 0XXX | XXXX | Х      | 0000 | х      | 0      | 0      | 0      | BRN  | $PC \leftarrow PC + se AD$                      |
| EX0   | 1100001 | XX0X | INF    | 0      | 01      | XXXX | 0XXX | XXXX | Х      | 0000 | Х      | 0      | 0      | 0      | BRN  | $PC \leftarrow PC + 1$                          |
| EX0   | 1110000 | XXXX | INF    | 0      | 11      | XXXX | 0XXX | XXXX | Х      | 0000 | Х      | 0      | 0      | 0      | JMP  | $PC \leftarrow R[SA]$                           |

## **3-Process ASM VHDL Code**

entity controller is
 port ( opcode : in std\_logic\_vector(6 downto 0);
 reset, clk : in std\_logic;
 zero, negative : in std\_logic;
 IL, MB, MD, MM, RW, MW : out std\_logic;
 PS : out std\_logic\_vector(1 downto 0);
 DX, AX, BX, FS : out std\_logic\_vector(3 downto 0);
);

end controller;

architecture Behavioral of controller is type state\_type is (RES, FTH, EX); signal cur\_state, next\_state : state\_type; begin state\_register:process(clk, reset) begin if (reset='1') then cur\_state<=RES; elsif (clk'event and clk='1') then cur\_state<=next\_state; end if; end process;





### State Table For Multiple Bits Right Shift Inputs Outputs Next Comments State state I М Opcode VCNZ L PS DX AX BX MB FS MD RW MM W $R8 \leftarrow R[SA], \overline{Z} : \rightarrow EX1$ EX0 0001101 0 Х 0 SRM XXX0 EX1 0 00 1000 0XXX XXXX X 0000 1 EX0 0001101 XXX1 INF 0 01 1000 0XXX XXXX X 0000 0 1 Х 0 SRM $R8 \leftarrow R[SA], Z: \rightarrow INF*$ EX1 0001101 XXX0 EX2 0 00 1001 XXXX XXXX 1 1100 0 X 0 SRM $R9 \leftarrow zf OP, \overline{Z} : \rightarrow EX2$ 1 EX1 0001101 XXX1 INF 0 01 1001 XXXX XXXX 1 1100 0 1 Х 0 SRM $R9 \! \leftarrow \! zf \, OP,\! Z : \! \rightarrow \! INF^*$ $R8 \leftarrow sr R8, \rightarrow EX3$ EX2 0001101 XXXX EX3 0 00 1000 XXXX 1000 0 1101 0 1 X 0 SRM EX3 0001101 XXX0 EX2 0 00 1001 1001 XXXX X 0110 0 1 X 0 SRM $R9 \leftarrow R9 - 1, \overline{Z} : \rightarrow EX2$ EX3 0001101 XXX1 EX4 0 00 1001 1001 XXXX X 0110 0 1 Х 0 SRM $R9 \leftarrow R9 - 1,Z: \rightarrow EX4$ $R[DR] \leftarrow R8, \rightarrow INF*$ 0001101 0 SRM EX4 XXXX INF 0 01 0XXX 1000 XXXX X 0000 0 1 Х

